1
|
Sun L, Wilke Saliba S, Apweiler M, Akmermer K, Herlan C, Grathwol C, de Oliveira ACP, Normann C, Jung N, Bräse S, Fiebich BL. Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Int J Mol Sci 2024; 25:4462. [PMID: 38674048 PMCID: PMC11049839 DOI: 10.3390/ijms25084462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Kamil Akmermer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
| | - Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | - Claus Normann
- Mechanisms of Depression Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
2
|
Valdes O, Ali A, Carrasco-Sánchez V, Cabrera-Barjas G, Duran-Lara E, Ibrahim M, Ahmad S, Moreno R, Concepción O, de la Torre AF, Abrar M, Morales-Quintana L, Abril D. Ugi efficient synthesis of novel N-alkylated lipopeptides, antimicrobial properties and computational studies in Staphylococcus aureus via MurD antibacterial target. Comput Biol Chem 2023; 106:107932. [PMID: 37487249 DOI: 10.1016/j.compbiolchem.2023.107932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Lipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme. The FT94, FT95 and FT97 compounds revealed binding affinity scores of -8.585 kcal mol- 1, -7.660 kcal mol- 1 and -7.351 kcal mol- 1, respectively. Furthermore, dynamics analysis pointed the systems high structure dynamics. The docking and simulation results were validated by binding free energies, demonstrating solid intermolecular interactions and in the assay in vitro, the Minimal Inhibitory Concentration (MIC) of FT97 to Staphylococcus aureus (S. aureus) was 62.5 μg/mL. In conclusion, a moderate inhibitory response of peptoid FT97 was observed against the Gram-positive bacteria, S. aureus and B. cereus.
Collapse
Affiliation(s)
- Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile.
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Verónica Carrasco-Sánchez
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, 2 Norte 681, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, Concepción, CP 4080871, Chile
| | - Esteban Duran-Lara
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile; Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Rachel Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Odette Concepción
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Muhammad Abrar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
3
|
Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. J Inorg Biochem 2021; 219:111431. [PMID: 33798828 DOI: 10.1016/j.jinorgbio.2021.111431] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5,6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1,4, 7,10] tetraazacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 μM, while Mn(II) chloro N-(phenolato)-N,N'-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 μM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels.
Collapse
|
4
|
Electrochemical and Mechanistic Study of Superoxide Elimination by Mesalazine through Proton-Coupled Electron Transfer. Pharmaceuticals (Basel) 2021; 14:ph14020120. [PMID: 33557324 PMCID: PMC7915641 DOI: 10.3390/ph14020120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
The elimination of superoxide radical anions (O2•−) by 5-amino-2-hydroxybenzoic acid (mesalazine, 5-ASA), 4-amino-2-hydroxybenzoic acid (4-ASA), and related compounds used for ulcerative colitis treatment was investigated using cyclic voltammetry and electron spin resonance (ESR) analyses aided by density functional theory (DFT) calculations. Quasi-reversible O2/O2•− redox was found to be modified by the compounds, suggesting that an acid–base reaction in which a hydroperoxyl radical (HO2•) is formed from O2•− occurs. However, the deprotonated 5-ASA anion can eliminate O2•− through proton-coupled electron transfer (PCET), forming a radical product. This electron transfer (ET) was confirmed by ESR analysis. The 4-aminophenol moiety in 5-ASA plays an important role in the PCET, involving two proton transfers and one ET based on π-conjugation. The electrochemical and DFT results indicated that O2•− elimination by 5-ASA proceeds efficiently through the PCET mechanism after deprotonation of the 1-carboxyl group. Thus, 5-ASA may act as an anti-inflammatory agent in the alkali intestine through PCET-based O2•− elimination.
Collapse
|
5
|
Tapanyiğit O, Demirkol O, Güler E, Erşatır M, Çam ME, Giray ES. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Mathieu E, Bernard AS, Delsuc N, Quévrain E, Gazzah G, Lai B, Chain F, Langella P, Bachelet M, Masliah J, Seksik P, Policar C. A Cell-Penetrant Manganese Superoxide Dismutase (MnSOD) Mimic Is Able To Complement MnSOD and Exerts an Antiinflammatory Effect on Cellular and Animal Models of Inflammatory Bowel Diseases. Inorg Chem 2017; 56:2545-2555. [PMID: 28198622 DOI: 10.1021/acs.inorgchem.6b02695] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inorganic complexes are increasingly used for biological and medicinal applications, and the question of the cell penetration and distribution of metallodrugs is key to understanding their biological activity. Oxidative stress is known to be involved in inflammation and in inflammatory bowel diseases for which antioxidative defenses are weakened. We report here the study of the manganese complex Mn1 mimicking superoxide dismutase (SOD), a protein involved in cell protection against oxidative stress, using an approach in inorganic cellular chemistry combining the investigation of Mn1 intracellular speciation using mass spectrometry and of its quantification and distribution using electron paramagnetic resonance and spatially resolved X-ray fluorescence with evaluation of its biological activity. More precisely, we have looked for and found the MS signature of Mn1 in cell lysates and quantified the overall manganese content. Intestinal epithelial cells activated by bacterial lipopolysaccharide were taken as a cellular model of oxidative stress and inflammation. DNBS-induced colitis in mice was used to investigate Mn1 activity in vivo. Mn1 exerts an intracellular antiinflammatory activity, remains at least partially coordinated, with diffuse distribution over the whole cell, and functionally complements mitochondrial MnSOD.
Collapse
Affiliation(s)
- Emilie Mathieu
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Anne-Sophie Bernard
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Nicolas Delsuc
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Elodie Quévrain
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Géraldine Gazzah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Barry Lai
- X-ray Science Division, Argonne National Laboratory (ANL) , Argonne, Illinois 60439, United States
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Maria Bachelet
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Joelle Masliah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France.,Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France
| | - Philippe Seksik
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Clotilde Policar
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
7
|
Antioxidant Activities of Peptoid-Grafted Chitosan Films. Appl Biochem Biotechnol 2016; 181:283-293. [DOI: 10.1007/s12010-016-2212-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 01/28/2023]
|
8
|
Formation of anti- versus syn-dinuclear CuII complexes from bis-glycinamide ligands. Synergistic roles of a His/His dyad and supporting-ligand backbones in CuII binding. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Arjmand F, Muddassir M. Design and synthesis of heterobimetallic topoisomerase I and II inhibitor complexes: in vitro DNA binding, interaction with 5'-GMP and 5'-TMP and cleavage studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:37-46. [PMID: 20638859 DOI: 10.1016/j.jphotobiol.2010.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/11/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
New potential cancer chemotherapeutic complexes Cu-Sn(2)/Zn-Sn(2) 3 and 4 were designed and prepared as topoisomerases inhibitors; their in vitro DNA binding studies were carried out which reveal strong electrostatic binding via phosphate backbone of DNA helix, in addition to other binding modes viz. coordinate covalent and partial intercalation. To throw insight to molecular binding event at the target site, UV-vis titrations of 3 and 4 with mononucleotides of interest, viz, 5'-GMP and 5'-TMP were carried out, (in case of 4) by (1)H and (31)P NMR. Cleavage studies employing gel electrophoresis demonstrate both the complexes 3 and 4 are efficient cleavage agents and are specific groove binders (complex 3 binds to both major and minor groove while complex 4 is specifically minor groove binder only). In addition, the complexes show high inhibition activity against topoisomerase I and II. However, complex 4 exhibits significant inhibitory effects on the Topo I activity at a very low concentration approximately 2.5 microM.
Collapse
Affiliation(s)
- Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, India.
| | | |
Collapse
|
10
|
Aminosalicylic acid conjugates of EDTA as potential anti-inflammatory pro-drugs: synthesis, copper chelation and superoxide dismutase-like activities. TRANSIT METAL CHEM 2007. [DOI: 10.1007/s11243-007-9031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Cisnetti F, Lefèvre AS, Guillot R, Lambert F, Blain G, Anxolabéhère-Mallart E, Policar C. A New Pentadentate Ligand Forms Both a Di- and a Mononuclear MnII Complex: Electrochemical, Spectroscopic and Superoxide Dismutase Activity Studies. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601236] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Durot S, Policar C, Cisnetti F, Lambert F, Renault JP, Pelosi G, Blain G, Korri-Youssoufi H, Mahy JP. Series of Mn Complexes Based onN-Centered Ligands and Superoxide - Reactivity in an Anhydrous Medium and SOD-Like Activity in an Aqueous Medium Correlated to MnII/MnIII Redox Potentials. Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200400835] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bourque TA, Nelles ME, Gullon TJ, Garon CN, Ringer MK, Leger LJ, Mason JW, Wheaton SL, Baerlocher FJ, Vogels CM, Decken A, Westcott SA. Late metal salicylaldimine complexes derived from 5-aminosalicylic acid Molecular structure of a zwitterionic mono Schiff base zinc complex. CAN J CHEM 2005. [DOI: 10.1139/v05-091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Condensation of salicylaldehyde (2-HOC6H4C(O)H) with 5-aminosalicylic acid (5-H2NC6H3-2-(OH)-CO2H) afforded the Schiff base 2-HOC6H4C(H)=NC6H3-2-(OH)-5-CO2H (a). Similar reactivity with 5-bromosalicylaldehyde was also observed to give 5-Br-2-HOC6H3C(H)=NC6H3-2-(OH)-5-CO2H (b). Reaction of these salicylaldehydes with Pd(II), Cu(II), and Zn(II) salts gave the corresponding bis(N-arylsalicylaldiminato)metal complexes (M = Pd (1), Cu (2), Zn (3)). The molecular structure of the Schiff base compound a has been confirmed by an X-ray diffraction study. Crystals of a were monoclinic, space group P2(1)/c, a = 7.0164(7) Å, b = 11.0088(11) Å, c = 14.8980(15) Å, β = 102.917(2)°, Z = 4. The molecular structure of a novel zwitterionic conformer of 3a was also characterized by an X-ray diffraction study. Crystals of 4 were monoclinic, space group P2(1)/c, a = 9.5284(5) Å, b = 19.5335(11) Å, c = 8.6508(5) Å, β = 90.596(1)°, Z = 4. All new compounds have been tested for their antifungal activity against Aspergillus niger and Aspergillus flavus. Key words: 5-aminosalicylic acid (5-ASA), antifungal, copper, palladium, salicylaldimines, Schiff base, zinc.
Collapse
|