1
|
Tran C, Rosenfield GR, Cleves PA, Krediet CJ, Paul MR, Clowez S, Grossman AR, Pringle JR. Photosynthesis and other factors affecting the establishment and maintenance of cnidarian-dinoflagellate symbiosis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230079. [PMID: 38497261 PMCID: PMC10945401 DOI: 10.1098/rstb.2023.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Coral growth depends on the partnership between the animal hosts and their intracellular, photosynthetic dinoflagellate symbionts. In this study, we used the sea anemone Aiptasia, a laboratory model for coral biology, to investigate the poorly understood mechanisms that mediate symbiosis establishment and maintenance. We found that initial colonization of both adult polyps and larvae by a compatible algal strain was more effective when the algae were able to photosynthesize and that the long-term maintenance of the symbiosis also depended on photosynthesis. In the dark, algal cells were taken up into host gastrodermal cells and not rapidly expelled, but they seemed unable to reproduce and thus were gradually lost. When we used confocal microscopy to examine the interaction of larvae with two algal strains that cannot establish stable symbioses with Aiptasia, it appeared that both pre- and post-phagocytosis mechanisms were involved. With one strain, algae entered the gastric cavity but appeared to be completely excluded from the gastrodermal cells. With the other strain, small numbers of algae entered the gastrodermal cells but appeared unable to proliferate there and were slowly lost upon further incubation. We also asked if the exclusion of either incompatible strain could result simply from their cells' being too large for the host cells to accommodate. However, the size distributions of the compatible and incompatible strains overlapped extensively. Moreover, examination of macerates confirmed earlier reports that individual gastrodermal cells could expand to accommodate multiple algal cells. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Cawa Tran
- Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA
- Department of Biology, University of San Diego, San Diego, CA 92110, USA
| | - Gabriel R. Rosenfield
- Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Phillip A. Cleves
- Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Cory J. Krediet
- Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Maitri R. Paul
- Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - John R. Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford CA 94305, USA
| |
Collapse
|
2
|
Studivan MS, Voss JD. Transcriptomic plasticity of mesophotic corals among natural populations and transplants of
Montastraea cavernosa
in the Gulf of Mexico and Belize. Mol Ecol 2020; 29:2399-2415. [DOI: 10.1111/mec.15495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Michael S. Studivan
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
- Cooperative Institute for Marine and Atmospheric Studies University of Miami Rosenstiel School of Marine and Atmospheric Sciences Miami FL USA
| | - Joshua D. Voss
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
| |
Collapse
|
3
|
Bellantuono AJ, Dougan KE, Granados‐Cifuentes C, Rodriguez‐Lanetty M. Free‐living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Mol Ecol 2019; 28:5265-5281. [DOI: 10.1111/mec.15300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Katherine E. Dougan
- Department of Biological Sciences Florida International University Miami FL USA
| | - Camila Granados‐Cifuentes
- Department of Biological Sciences Florida International University Miami FL USA
- Baruch College The City University of New York New York NY USA
| | | |
Collapse
|
4
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|
5
|
Ishii Y, Maruyama S, Takahashi H, Aihara Y, Yamaguchi T, Yamaguchi K, Shigenobu S, Kawata M, Ueno N, Minagawa J. Global Shifts in Gene Expression Profiles Accompanied with Environmental Changes in Cnidarian-Dinoflagellate Endosymbiosis. G3 (BETHESDA, MD.) 2019; 9:2337-2347. [PMID: 31097480 PMCID: PMC6643889 DOI: 10.1534/g3.118.201012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Stable endosymbiotic relationships between cnidarian animals and dinoflagellate algae are vital for sustaining coral reef ecosystems. Recent studies have shown that elevated seawater temperatures can cause the collapse of their endosymbiosis, known as 'bleaching', and result in mass mortality. However, the molecular interplay between temperature responses and symbiotic states still remains unclear. To identify candidate genes relevant to the symbiotic stability, we performed transcriptomic analyses under multiple conditions using the symbiotic and apo-symbiotic (symbiont free) Exaiptasia diaphana, an emerging model sea anemone. Gene expression patterns showed that large parts of differentially expressed genes in response to heat stress were specific to the symbiotic state, suggesting that the host sea anemone could react to environmental changes in a symbiotic state-dependent manner. Comparative analysis of expression profiles under multiple conditions highlighted candidate genes potentially important in the symbiotic state transition under heat-induced bleaching. Many of these genes were functionally associated with carbohydrate and protein metabolisms in lysosomes. Symbiont algal genes differentially expressed in hospite encode proteins related to heat shock response, calcium signaling, organellar protein transport, and sugar metabolism. Our data suggest that heat stress alters gene expression in both the hosts and symbionts. In particular, heat stress may affect the lysosome-mediated degradation and transportation of substrates such as carbohydrates through the symbiosome (phagosome-derived organelle harboring symbiont) membrane, which potentially might attenuate the stability of symbiosis and lead to bleaching-associated symbiotic state transition.
Collapse
Affiliation(s)
- Yuu Ishii
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | - Hiroki Takahashi
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yusuke Aihara
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takeshi Yamaguchi
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Jun Minagawa
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
6
|
Medrano E, Merselis DG, Bellantuono AJ, Rodriguez-Lanetty M. Proteomic Basis of Symbiosis: A Heterologous Partner Fails to Duplicate Homologous Colonization in a Novel Cnidarian- Symbiodiniaceae Mutualism. Front Microbiol 2019; 10:1153. [PMID: 31214134 PMCID: PMC6554683 DOI: 10.3389/fmicb.2019.01153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/06/2019] [Indexed: 12/29/2022] Open
Abstract
Reef corals and sea anemones form symbioses with unicellular symbiotic dinoflagellates. The molecular circumventions that underlie the successful intracellular colonization of hosts by symbionts are still largely unknown. We conducted proteomic analyses to determine molecular differences of Exaiptasia pallida anemones colonized by physiologically different symbiont species, in comparison with symbiont-free (aposymbiotic) anemones. We compared one homologous species, Symbiodinium linucheae, that is natively associated with the clonal Exaiptasia strain (CC7) to another heterologous species, Durusdinium trenchii, a thermally tolerant species that colonizes numerous coral species. This approach allowed the discovery of a core set of host genes that are differentially regulated as a function of symbiosis regardless of symbiont species. The findings revealed that symbiont colonization at higher densities requires circumvention of the host cellular immunological response, enhancement of ammonium regulation, and suppression of phagocytosis after a host cell in colonized. Furthermore, the heterologous symbionts failed to duplicate the same level of homologous colonization within the host, evidenced by substantially lower symbiont densities. This reduced colonization of D. trenchii correlated with its inability to circumvent key host systems including autophagy-suppressing modulators, cytoskeletal alteration, and isomerase activity. The larger capability of host molecular circumvention by homologous symbionts could be the result of a longer evolutionary history of host/symbiont interactions, which translates into a more finely tuned symbiosis. These findings are of great importance within the context of the response of reef corals to climate change since it has been suggested that coral may acclimatize to ocean warming by changing their dominant symbiont species.
Collapse
|
7
|
Dani V, Priouzeau F, Mertz M, Mondin M, Pagnotta S, Lacas-Gervais S, Davy SK, Sabourault C. Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Vincent Dani
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| | - Fabrice Priouzeau
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| | - Marjolijn Mertz
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
| | - Magali Mondin
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée; Université Côte d'Azur; Nice France
| | | | - Simon K. Davy
- School of Biological Sciences; Victoria University of Wellington; Wellington New Zealand
| | - Cécile Sabourault
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| |
Collapse
|
8
|
Cabrales-Arellano P, Islas-Flores T, Thomé PE, Villanueva MA. Indomethacin reproducibly induces metamorphosis in Cassiopea xamachana scyphistomae. PeerJ 2017; 5:e2979. [PMID: 28265497 PMCID: PMC5335687 DOI: 10.7717/peerj.2979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
Cassiopea xamachana jellyfish are an attractive model system to study metamorphosis and/or cnidarian–dinoflagellate symbiosis due to the ease of cultivation of their planula larvae and scyphistomae through their asexual cycle, in which the latter can bud new larvae and continue the cycle without differentiation into ephyrae. Then, a subsequent induction of metamorphosis and full differentiation into ephyrae is believed to occur when the symbionts are acquired by the scyphistomae. Although strobilation induction and differentiation into ephyrae can be accomplished in various ways, a controlled, reproducible metamorphosis induction has not been reported. Such controlled metamorphosis induction is necessary for an ensured synchronicity and reproducibility of biological, biochemical, and molecular analyses. For this purpose, we tested if differentiation could be pharmacologically stimulated as in Aurelia aurita, by the metamorphic inducers thyroxine, KI, NaI, Lugol’s iodine, H2O2, indomethacin, or retinol. We found reproducibly induced strobilation by 50 μM indomethacin after six days of exposure, and 10–25 μM after 7 days. Strobilation under optimal conditions reached 80–100% with subsequent ephyrae release after exposure. Thyroxine yielded inconsistent results as it caused strobilation occasionally, while all other chemicals had no effect. Thus, indomethacin can be used as a convenient tool for assessment of biological phenomena through a controlled metamorphic process in C. xamachana scyphistomae.
Collapse
Affiliation(s)
- Patricia Cabrales-Arellano
- Posgrado en Ciencias del Mar y Limnología-UNAM, Instituto de Ciencias del Mar y Limnología-UNAM , Ciudad de México , México
| | - Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM , Puerto Morelos , México
| | - Patricia E Thomé
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM , Puerto Morelos , México
| | - Marco A Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM , Puerto Morelos , México
| |
Collapse
|
9
|
Oakley CA, Ameismeier MF, Peng L, Weis VM, Grossman AR, Davy SK. Symbiosis induces widespread changes in the proteome of the model cnidarianAiptasia. Cell Microbiol 2016; 18:1009-23. [DOI: 10.1111/cmi.12564] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Clinton A. Oakley
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| | - Michael F. Ameismeier
- Gene Center, Department of Chemistry and Biochemistry; University of Munich; Munich 81377 Germany
| | - Lifeng Peng
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| | - Virginia M. Weis
- Department of Integrative Biology; Oregon State University; Corvallis OR 97331 USA
| | - Arthur R. Grossman
- Department of Plant Biology; The Carnegie Institution; Stanford CA 94305 USA
| | - Simon K. Davy
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| |
Collapse
|
10
|
Heterologous DNA Uptake in Cultured Symbiodinium spp. Aided by Agrobacterium tumefaciens. PLoS One 2015; 10:e0132693. [PMID: 26167858 PMCID: PMC4500500 DOI: 10.1371/journal.pone.0132693] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
Plant-targeted pCB302 plasmids containing sequences encoding gfp fusions with a microtubule-binding domain; gfp with the fimbrin actin-binding domain 2; and gfp with AtRACK1C from Arabidopsis thaliana, all harbored in Agrobacterium tumefaciens, were used to assay heterologous expression on three different clades of the photosynthetic dinoflagellate, Symbiodinium. Accessibility to the resistant cell wall and through the plasma membrane of these dinoflagellates was gained after brief but vigorous shaking in the presence of glass beads and polyethylene glycol. A resistance gene to the herbicide Basta allowed appropriate selection of the cells expressing the hybrid proteins, which showed a characteristic green fluorescence, although they appeared to lose their photosynthetic pigments and did not further divide. Cell GFP expression frequency measured as green fluorescence emission yielded 839 per every 106 cells for Symbiodinium kawagutii, followed by 640 and 460 per every 106 cells for Symbiodinium microadriaticum and Symbiodinium sp. Mf11, respectively. Genomic PCR with specific primers amplified the AtRACK1C and gfp sequences after selection in all clades, thus revealing their presence in the cells. RT-PCR from RNA of S. kawagutii co-incubated with A. tumefaciens harboring each of the three vectors with their respective constructs, amplified products corresponding to the heterologous gfp sequence while no products were obtained from three distinct negative controls. The reported procedure shows that mild abrasion followed by co-incubation with A. tumefaciens harboring heterologous plasmids with CaMV35S and nos promoters can lead to expression of the encoded proteins into the Symbiodinium cells in culture. Despite the obvious drawbacks of the procedure, this is an important first step towards a stable transformation of Symbiodinium.
Collapse
|
11
|
Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3-GENES GENOMES GENETICS 2014; 4:277-95. [PMID: 24368779 PMCID: PMC3931562 DOI: 10.1534/g3.113.009084] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coral reefs provide habitats for a disproportionate number of marine species relative to the small area of the oceans that they occupy. The mutualism between the cnidarian animal hosts and their intracellular dinoflagellate symbionts provides the nutritional foundation for coral growth and formation of reef structures, because algal photosynthesis can provide >90% of the total energy of the host. Disruption of this symbiosis (“coral bleaching”) is occurring on a large scale due primarily to anthropogenic factors and poses a major threat to the future of coral reefs. Despite the importance of this symbiosis, the cellular mechanisms involved in its establishment, maintenance, and breakdown remain largely unknown. We report our continued development of genomic tools to study these mechanisms in Aiptasia, a small sea anemone with great promise as a model system for studies of cnidarian–dinoflagellate symbiosis. Specifically, we have generated de novo assemblies of the transcriptomes of both a clonal line of symbiotic anemones and their endogenous dinoflagellate symbionts. We then compared transcript abundances in animals with and without dinoflagellates. This analysis identified >900 differentially expressed genes and allowed us to generate testable hypotheses about the cellular functions affected by symbiosis establishment. The differentially regulated transcripts include >60 encoding proteins that may play roles in transporting various nutrients between the symbiotic partners; many more encoding proteins functioning in several metabolic pathways, providing clues regarding how the transported nutrients may be used by the partners; and several encoding proteins that may be involved in host recognition and tolerance of the dinoflagellate.
Collapse
|
12
|
Meyer E, Weis VM. Study of cnidarian-algal symbiosis in the "omics" age. THE BIOLOGICAL BULLETIN 2012; 223:44-65. [PMID: 22983032 DOI: 10.1086/bblv223n1p44] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.
Collapse
Affiliation(s)
- Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
13
|
Morgan MB, Parker CC, Robinson JW, Pierce EM. Using Representational Difference Analysis to detect changes in transcript expression of Aiptasia genes after laboratory exposure to lindane. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:66-73. [PMID: 22281777 DOI: 10.1016/j.aquatox.2012.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 05/31/2023]
Abstract
Molecular stress responses to pesticide exposures represent an understudied area of cnidarian transcriptome investigations. The organochlorine pesticide lindane is known to disrupt normal neuron function. Cnidarians with simple nervous systems are recognized as sensitive indicators of water quality, yet nothing is known about cnidarian responses to lindane. Sea anemones (Aiptasia pallida) were exposed for 4h to lindane (20 μg/l). Because anemones have neurons and lindane is known to target neurons, it is anticipated that cnidarian stress responses will include changes in transcription of genes associated with neurons. Representational Difference Analysis (RDA) was utilized to isolate differentially transcribed genes in the anemones exposed to the pesticide. After two rounds of RDA hybridizations, 148 amplified fragments ranging in size from 150 to 800 bp were cloned. Sequencing and bioinformatic analyses of 106 clones revealed 56 different gene fragments. Virtual Northern dot blots were used as a preliminary screening tool to identify the most responsive RDA products. To further characterize the specificity of response, additional anemones were exposed to a series of lindane concentrations (0, 0.2, 2.0, 10, and 20 μg/l). Northern dot blots were subsequently used to develop expression profiles for selected RDA products over the range of pesticide concentrations. The seven most responsive RDA products represent genes with products associated with neuron development, immune responses, and Ca(2+) binding/transport. The resulting expression profiles illustrate that these RDA products exhibit various degrees of concentration specificity with some RDA products being significantly up-regulated at 20 μg/l while other RDA products are most responsive at concentrations <20 μg/l. Results also demonstrate how RDA can be used to identify potentially important biomarkers of organochlorine exposure while generating new hypotheses about important phenomena such as endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA 30149, USA.
| | | | | | | |
Collapse
|
14
|
Analysis of Codon Usage Patterns in Toxic Dinoflagellate Alexandrium tamarense through Expressed Sequence Tag Data. Comp Funct Genomics 2010; 2010:138538. [PMID: 21052492 PMCID: PMC2967832 DOI: 10.1155/2010/138538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/01/2010] [Indexed: 11/29/2022] Open
Abstract
We have analyzed synonymous codon usage in the genome of A. tamarense CCMP 1598 for protein-coding sequences from 10865 expressed sequence tags (ESTs). We reconstructed a total of 4284 unigenes, including 74 ribosomal protein and 40 plastid-related genes, from ESTs using FrameDP, an open reading frame (ORF) prediction program. Correspondence analysis of A. tamarense genes based on codon usage showed that the GC content at the third base of synonymous codons (GC3s) was strongly correlated with the first axis (r = 0.93 with P < .001). On the other hand, the second axis discriminated between presumed highly and low expressed genes, with expression levels being confirmed by the analysis of EST frequencies (r = −0.89 with P < .001). Our results suggest that mutational bias is the major factor in shaping codon usage in A. tamarense genome, but other factors, namely, translational selection, hydropathy, and aromaticity, also appear to influence the selection of codon usage in this species.
Collapse
|
15
|
Coral larvae exhibit few measurable transcriptional changes during the onset of coral-dinoflagellate endosymbiosis. Mar Genomics 2010; 3:107-16. [PMID: 21798204 DOI: 10.1016/j.margen.2010.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/05/2010] [Accepted: 08/07/2010] [Indexed: 01/11/2023]
Abstract
The cellular mechanisms controlling the successful establishment of a stable mutualism between cnidarians and their dinoflagellate partners are largely unknown. The planula larva of the solitary Hawaiian scleractinian coral Fungia scutaria and its dinoflagellate symbiont Symbiodinium sp. type C1f represents an ideal model for studying the onset of cnidarian-dinoflagellate endosymbiosis due to the predictable availability of gametes, the ability to raise non-symbiotic larvae and establish the symbiosis experimentally, and the ability to precisely quantify infection success. The goal of this study was to identify genes differentially expressed in F. scutaria larvae during the initiation of endosymbiosis with Symbiodinium sp. C1f. Newly symbiotic larvae were compared to non-symbiotic larvae using a custom cDNA microarray. The 5184-feature array was constructed with cDNA libraries from newly symbiotic and non-symbiotic F. scutaria larvae, including 3072 features (60%) that were enriched for either state by subtractive hybridization. Our analyses revealed very few changes in the F. scutaria transcriptome as a result of infection with Symbiodinium sp. C1f, similar to other studies focused on the early stages of this symbiotic interaction. We suggest that these results may be due, in part, to an inability to detect the transcriptional signal from the small percentage of infected cells compared to uninfected cells. We discuss several other potential explanations for this result, including suggesting that certain types of Symbiodinium sp. may have evolved mechanisms to suppress or circumvent cnidarian host responses to infection.
Collapse
|
16
|
Johansen SD, Emblem Å, Karlsen BO, Okkenhaug S, Hansen H, Moum T, Coucheron DH, Seternes OM. Approaching marine bioprospecting in hexacorals by RNA deep sequencing. N Biotechnol 2010; 27:267-75. [DOI: 10.1016/j.nbt.2010.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Soza-Ried J, Hotz-Wagenblatt A, Glatting KH, del Val C, Fellenberg K, Bode HR, Frank U, Hoheisel JD, Frohme M. The transcriptome of the colonial marine hydroid Hydractinia echinata. FEBS J 2009; 277:197-209. [PMID: 19961538 DOI: 10.1111/j.1742-4658.2009.07474.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An increasing amount of expressed sequence tag (EST) and genomic data, predominantly for the cnidarians Acropora, Hydra and Nematostella, reveals that cnidarians have a high genomic complexity, despite being one of the morphologically simplest multicellular animals. Considering the diversity of cnidarians, we performed an EST project on the hydroid Hydractinia echinata, to contribute towards a broader coverage of this phylum. After random sequencing of almost 9000 clones, EST characterization revealed a broad diversity in gene content. Corroborating observations in other cnidarians, Hydractinia sequences exhibited a higher sequence similarity to vertebrates than to ecdysozoan invertebrates. A significant number of sequences were hitherto undescribed in metazoans, suggesting that these may be either cnidarian innovations or ancient genes lost in the bilaterian genomes analysed so far. However, we cannot rule out some degree of contamination from commensal bacteria. The identification of unique Hydractinia sequences emphasizes that the acquired genomic information generated so far is not large enough to be representative of the highly diverse cnidarian phylum. Finally, a database was created to store all the acquired information (http://www.mchips.org/hydractinia_echinata.html).
Collapse
Affiliation(s)
- Jorge Soza-Ried
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis. BMC Genomics 2009; 10:333. [PMID: 19627569 PMCID: PMC2727540 DOI: 10.1186/1471-2164-10-333] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 07/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm) can be easily separated. Results A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed). We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs). Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial). We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. Conclusion This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest available genome, the sea anemone N. vectensis, as well as with EST datasets from other symbiotic cnidarians provided a set of candidate genes involved in symbiosis-related molecular crosstalks. Altogether, these results provide new molecular insights that could be used as a starting-point for further functional genomics studies.
Collapse
|
19
|
Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 2009; 10:258. [PMID: 19500365 PMCID: PMC2702317 DOI: 10.1186/1471-2164-10-258] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/05/2009] [Indexed: 12/14/2022] Open
Abstract
Background The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs) from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp.), a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs (contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6–6.4%). This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion We have established the first large-scale transcriptomic resource for Aiptasia pallida and its dinoflagellate symbiont. These data provide researchers with tools to study questions related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This groundwork represents a crucial step towards the establishment of a tractable model system that can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-generation sequencing methods, the transcriptomic inventory of A. pallida and its symbiont, and thus the extent of AiptasiaBase, should expand dramatically in the near future.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- School of Natural Sciences, University of California, Merced, CA 95344, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Richier S, Rodriguez-Lanetty M, Schnitzler CE, Weis VM. Response of the symbiotic cnidarian Anthopleura elegantissima transcriptome to temperature and UV increase. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:283-9. [PMID: 20494848 DOI: 10.1016/j.cbd.2008.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 02/05/2023]
Abstract
Elevated temperature and solar radiation, including ultraviolet radiation, are now recognized as the primary environmental stresses that lead to mass cnidarian bleaching. This study takes a functional genomics approach to identifying genes that change expression soon after exposure to these stressors in the temperate sea anemone Anthopleura elegantissima that harbors Symbiodinium, the same genus of symbionts found in reef-building corals. Symbiotic anemones were subjected to elevated temperature or UV over a 24 h period. cDNA from these animals was hybridized to a 10,000-feature cDNA microarray of A. elegantissima. Overall 2.7% of the 10,000 features were found to be differentially expressed as a function of temperature or UV stress. Of the 86 features sequenced, 45% displayed significant homology to sequences in GenBank. There are 27 features that were differentially expressed in both stress conditions. Gene ontology analysis placed the differentially expressed genes in a wide range of categories including cytoskeleton organization and biogenesis, protein biosynthesis, cell proliferation, apoptosis and transport. This suggests that the early stress response to elevated temperature and UV involves essentially all aspects of host cellular regulation and machinery and that downstream cnidarian bleaching is a complex cellular response in host tissues.
Collapse
Affiliation(s)
- Sophie Richier
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA; Laboratoire d'Océanographie de Villefranche, Université Pierre et Marie Curie-Paris 6, 06234 Villefranche-sur-Mer, France.
| | | | | | | |
Collapse
|
21
|
Perez S, Weis V. Cyclophilin and the regulation of symbiosis in Aiptasia pallida. THE BIOLOGICAL BULLETIN 2008; 215:63-72. [PMID: 18723638 DOI: 10.2307/25470684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sea anemone Aiptasia pallida, symbiotic with intracellular dinoflagellates, expresses a peptydyl-prolyl cis-trans isomerase (PPIase) belonging to the conserved family of cytosolic cyclophilins (ApCypA). Protein extracts from A. pallida exhibited PPIase activity. Given the high degree of conservation of ApCypA and its known function in the cellular stress response, we hypothesized that it plays a similar role in the cnidarian-dinoflagellate symbiosis. To explore its role, we inhibited the activity of cyclophilin with cyclosporin A (CsA). CsA effectively inhibited the PPIase activity of protein extracts from symbiotic A. pallida. CsA also induced the dose-dependent release of symbiotic algae from host tissues (bleaching). Laser scanning confocal microscopy using superoxide and nitric oxide-sensitive fluorescent dyes on live specimens of A. pallida revealed that CsA strongly induced the production of these known mediators of bleaching. We tested whether the CsA-sensitive isomerase activity is important for maintaining the activity of the antioxidant enzyme superoxide dismutase (SOD). SOD activity of protein extracts was not affected by pre-incubation with CsA in vitro.
Collapse
Affiliation(s)
- S Perez
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
22
|
Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR. Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 2008; 23:369-76. [PMID: 18501991 DOI: 10.1016/j.tree.2008.03.004] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/16/2008] [Accepted: 03/11/2008] [Indexed: 01/02/2023]
Abstract
Corals provide the foundation of important tropical reef ecosystems but are in global decline for multiple reasons, including climate change. Coral health depends on a fragile partnership with intracellular dinoflagellate symbionts. We argue here that progress in understanding coral biology requires intensive study of the cellular processes underlying this symbiosis. Such study will inform us on how the coral symbiosis will be affected by climate change, mechanisms driving coral bleaching and disease, and the coevolution of this symbiosis in the context of other host-microbe interactions. Drawing lessons from the broader history of molecular and cell biology and the study of other host-microbe interactions, we argue that a model-systems approach is essential for making effective progress in understanding coral cell biology.
Collapse
Affiliation(s)
- Virginia M Weis
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
23
|
Yellowlees D, Rees TAV, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts. PLANT, CELL & ENVIRONMENT 2008; 31:679-94. [PMID: 18315536 DOI: 10.1111/j.1365-3040.2008.01802.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Some invertebrates have enlisted autotrophic unicellular algae to provide a competitive metabolic advantage in nutritionally demanding habitats. These symbioses exist primarily but not exclusively in shallow tropical oceanic waters where clear water and low nutrient levels provide maximal advantage to the association. Mostly, the endosymbiotic algae are localized in host cells surrounded by a host-derived membrane (symbiosome). This anatomy has required adaptation of the host biochemistry to allow transport of the normally excreted inorganic nutrients (CO2, NH3 and PO43-) to the alga. In return, the symbiont supplies photosynthetic products to the host to meet its energy demands. Most attention has focused on the metabolism of CO2 and nitrogen sources. Carbon-concentrating mechanisms are a feature of all algae, but the products exported to the host following photosynthetic CO2 fixation vary. Identification of the stimulus for release of algal photosynthate in hospite remains elusive. Nitrogen assimilation within the symbiosis is an essential element in the host's control over the alga. Recent studies have concentrated on cnidarians because of the impact of global climate change resulting in coral bleaching. The loss of the algal symbiont and its metabolic contribution to the host has the potential to result in the transition from a coral-dominated to an algal-dominated ecosystem.
Collapse
Affiliation(s)
- David Yellowlees
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy & Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | |
Collapse
|
24
|
Reusch TBH, Veron AS, Preuss C, Weiner J, Wissler L, Beck A, Klages S, Kube M, Reinhardt R, Bornberg-Bauer E. Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:297-309. [PMID: 18239962 PMCID: PMC2757623 DOI: 10.1007/s10126-007-9065-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 10/27/2007] [Accepted: 11/01/2007] [Indexed: 05/20/2023]
Abstract
Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P < 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25 degrees C compared with lower, no-stress condition temperatures (4 degrees C and 17 degrees C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3-15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at http://www.uni-muenster.de/Evolution/ebb/Services/zostera .
Collapse
Affiliation(s)
- Thorsten B H Reusch
- Institute for Evolution & Biodiversity, Plant Evolutionary Ecology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Proteomic and transcriptional analyses of coral larvae newly engaged in symbiosis with dinoflagellates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:63-73. [DOI: 10.1016/j.cbd.2006.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 11/27/2006] [Accepted: 11/27/2006] [Indexed: 11/24/2022]
|
26
|
Dunn SR, Phillips WS, Spatafora JW, Green DR, Weis VM. Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. J Mol Evol 2006; 63:95-107. [PMID: 16770683 DOI: 10.1007/s00239-005-0236-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/12/2006] [Indexed: 10/24/2022]
Abstract
Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis.
Collapse
Affiliation(s)
- Simon R Dunn
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
27
|
Rodriguez-Lanetty M, Phillips WS, Weis VM. Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 2006; 7:23. [PMID: 16472376 PMCID: PMC1408080 DOI: 10.1186/1471-2164-7-23] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 02/10/2006] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cnidarian-dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian-algal symbiosis. RESULTS We detected statistically significant differences in host gene expression profiles between sea anemones (Anthopleura elegantissima) in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian-dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. CONCLUSION Our data do not support the existence of symbiosis-specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian-dinoflagellate associations provides critical insights into the maintenance and regulation of the symbiosis.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Lanetty
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
- Centre for Marine Studies, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wendy S Phillips
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| | - Virginia M Weis
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
28
|
Barneah O, Benayahu Y, Weis VM. Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:11-6. [PMID: 16059755 DOI: 10.1007/s10126-004-5120-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 04/04/2005] [Indexed: 05/03/2023]
Abstract
The symbiotic association between corals and photosynthetic unicellular algae is of great importance in coral reef ecosystems. The study of symbiotic relationships is multidisciplinary and involves research in phylogeny, physiology, biochemistry, and ecology. An intriguing phase in each symbiotic relationship is its initiation, in which the partners interact for the first time. The examination of this phase in coral-algae symbiosis from a molecular point of view is still at an early stage. In the present study we used 2-dimensional polyacrylamide gel electrophoresis to compare patterns of proteins synthesized in symbiotic and aposymbiotic primary polyps of the Red Sea soft coral Heteroxenia fuscescens. This is the first work to search for symbiosis-specific proteins during the natural onset of symbiosis in early host ontogeny. The protein profiles reveal changes in the host soft coral proteome through development, but surprisingly virtually no changes in the host proteome as a function of symbiotic state.
Collapse
Affiliation(s)
- O Barneah
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| | | | | |
Collapse
|
29
|
Yuyama I, Hayakawa H, Endo H, Iwao K, Takeyama H, Maruyama T, Watanabe T. Identification of symbiotically expressed coral mRNAs using a model infection system. Biochem Biophys Res Commun 2005; 336:793-8. [PMID: 16153603 DOI: 10.1016/j.bbrc.2005.08.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Hermatypic (or reef-building) corals live in obligatory mutualistic symbiosis with the symbiotic dinoflagellates Symbiodinium spp. (generally known as zooxanthellae). In an attempt to establish a model symbiosis system consisting of a coral host and a monoclonal population of zooxanthellae, infectivity of five cultured Symbiodinium cell lines was tested on naturally aposymbiotic juveniles of Acropora tenuis. A clade A3 strain (PL-TS-1) infected the juveniles at high density and promoted growth of the host. To identify host genes involved in the establishment or maintenance of symbiosis, mRNA expression patterns were compared between aposymbiotic and PL-TS-1-infected juvenile polyps using the suppression subtractive hybridization technique. Two mRNAs, the expression levels of which were augmented more than twofold by the presence of the symbionts, were thereby identified. One of the mRNAs, AtSym-02, encodes a novel protein of 322 amino acids which is predicted to be a glycosylated trans-membrane protein.
Collapse
Affiliation(s)
- Ikuko Yuyama
- Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | | | | | | | | | | | | |
Collapse
|