1
|
Rutecki S, Pakuła-Iwańska M, Leśniewska-Bocianowska A, Matuszewska J, Rychlewski D, Uruski P, Stryczyński Ł, Naumowicz E, Szubert S, Tykarski A, Mikuła-Pietrasik J, Książek K. Mechanisms of carboplatin- and paclitaxel-dependent induction of premature senescence and pro-cancerogenic conversion of normal peritoneal mesothelium and fibroblasts. J Pathol 2024; 262:198-211. [PMID: 37941520 DOI: 10.1002/path.6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carboplatin (CPT) and paclitaxel (PCT) are the optimal non-surgical treatment of epithelial ovarian cancer (EOC). Although their growth-restricting influence on EOC cells is well known, their impact on normal peritoneal cells, including mesothelium (PMCs) and fibroblasts (PFBs), is poorly understood. Here, we investigated whether, and if so, by what mechanism, CPT and PCT induce senescence of omental PMCs and PFBs. In addition, we tested whether PMC and PFB exposure to the drugs promotes the development of a pro-cancerogenic phenotype. The results showed that CPT and PCT induce G2/M growth arrest-associated senescence of normal peritoneal cells and that the strongest induction occurs when the drugs act together. PMCs senesce telomere-independently with an elevated p16 level and via activation of AKT and STAT3. In PFBs, telomeres shorten along with an induction of p21 and p53, and their senescence proceeds via the activation of ERK1/2. Oxidative stress in CPT + PCT-treated PMCs and PFBs is extensive and contributes causatively to their premature senescence. Both PMCs and PFBs exposed to CPT + PCT fuel the proliferation, migration, and invasion of established (A2780, OVCAR-3, SKOV-3) and primary EOCs, and this activity is linked with an overproduction of multiple cytokines altering the cancer cell transcriptome and controlled by p38 MAPK, NF-κB, STAT3, Notch1, and JAK1. Collectively, our findings indicate that CPT and PCT lead to iatrogenic senescence of normal peritoneal cells, which paradoxically and opposing therapeutic needs alters their phenotype towards pro-cancerogenic. It cannot be excluded that these adverse outcomes of chemotherapy may contribute to EOC relapse in the case of incomplete tumor eradication and residual disease initiation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Poznań University of Medical Sciences Doctoral School, Poznań, Poland
| | | | | | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Łukasz Stryczyński
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, Poznań, Poland
| | - Sebastian Szubert
- Department of Gynecology, Division of Gynecologic Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Synthesis and biological testing of 3,5-bis(arylidene)-4-piperidone conjugates with 2,5-dihydro-5H-1,2-oxaphospholenes. Bioorg Med Chem Lett 2022; 74:128940. [PMID: 35964843 DOI: 10.1016/j.bmcl.2022.128940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Using the methodology of "click" chemistry, a series of conjugates of 3,5-bis(benzylidene)-1-(prop-2-yn)piperidin-4-ones with 4-alkyl-3-azidomethyl-2-ethoxy-2,5-dihydro-5H-1,2 oxaphosphol 2-oxides was synthesized. All newly obtained compounds 8-18 were characterized by 1H, 13C, 31P, 19F NMR and IR spectroscopy. The potential antitumor activity of the synthesized conjugates8-18was studied in terms of their ability to influence the viability of variouscancercell lines, including A549, SH-SY5Y, Hep-2, and HeLa. Compound 15, which contains two fluorine atoms in the benzene ring, was shown to be the most promising. The mechanism of the cytotoxic action of this conjugate is supposed to be associated with the ability to inhibit the glycolytic profile of transformed cells.
Collapse
|
3
|
Kaltschmidt B, Witte KE, Greiner JFW, Weissinger F, Kaltschmidt C. Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review. Biomedicines 2022; 10:biomedicines10020261. [PMID: 35203471 PMCID: PMC8869483 DOI: 10.3390/biomedicines10020261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
| | - Kaya E. Witte
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Florian Weissinger
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Hematology, Oncology, Internal Medicine, Bone Marrow and Stem Cell Transplantation, Palliative Medicine, and Tumor Center, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Schildescher Str. 99, 33611 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence: ; Tel.: +49-521-106-5625
| |
Collapse
|
4
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9). Cancer Metab 2018; 6:16. [PMID: 30386595 PMCID: PMC6201570 DOI: 10.1186/s40170-018-0187-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background PCSK9 regulates low-density lipoprotein cholesterol (LDLc) level and has been implicated in hypercholesterolemia. Aberrant plasma lipid profile is often associated with various cancers. Clinically, the relationship between altered serum lipid level and hepatocellular carcinoma (HCC) has been documented; however, the underlying cause and implications of such dyslipidemia remain unclear. Methods The present study includes the use of HepG2 tumor xenograft model to study the potential role of glucose (by providing 15% glucose via drinking water) in regulating PCSK9 expression and associated hypercholesterolemia. To support in vivo findings, in vitro approaches were used by incubating HCC cells in culture medium with different glucose concentrations or treating the cells with glucose uptake inhibitors. Impact of hypercholesterolemia on chemotherapy was demonstrated by exogenously providing LDLc followed by appropriate in vitro assays. Results We observed that serum and hepatic PCSK9 level is decreased in mice which were provided with glucose containing water. Interestingly, serum and tumor PCSK9 level was upregulated in HepG2-tumor-bearing mice having access to water containing glucose. Additionally, elevated LDLc is detected in sera of these mice. In vitro studies indicated that PCSK9 expression was increased by high glucose availability with potential involvement of reactive oxygen species (ROS) and sterol regulatory element binding protein-1 (SREBP-1). Furthermore, it is also demonstrated that pre-treatment of cells with LDLc diminishes cytotoxicity of sorafenib in HCC cells. Conclusion Taken together, these results suggest a regulation of PCSK9 by high glucose which could contribute, at least partly, towards understanding the cause of hypercholesterolemia in HCC and its accompanied upshots in terms of altered response of HCC cells towards cancer therapy. Electronic supplementary material The online version of this article (10.1186/s40170-018-0187-2) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Zulfiker AHM, Hashimi SM, Qi J, Grice ID, Wei MQ. Aqueous and Ethanol Extracts of Australian Cane Toad Skins Suppress Pro-Inflammatory Cytokine Secretion in U937 Cells via NF-κB Signaling Pathway. J Cell Biochem 2016; 117:2769-2780. [PMID: 27138049 DOI: 10.1002/jcb.25577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 01/06/2023]
Abstract
Toad skin extracts, such as aqueous extracts (AE) of Chinese toad skins, have demonstrated therapeutic benefits for a range of diseases including pain, inflammation, swelling, heart failure, and various types of cancers. In this study, we investigated the anti-inflammatory potential of an AE (0.1-10 μg/mL) and a 60% ethanol extract (EE; 0.1-10 μg/mL) from Australian cane toad (Bufo marinus) skins and the known bioactive compound, bufotenine (BT; 0.1-10 nM). The assay employed a model of the human monocyte cell line U937 stimulated with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) for the release of tumor necrosis factor (TNF)-α and interleukin (IL)-6. We demonstrated that AE, EE, and BT significantly inhibited the release and expression of TNF-α and IL-6 in a dose-dependent manner when the cells were pre-treated at non-cytotoxic concentrations. Further investigation revealed that the inhibition of TNF-α and IL-6 release and expression was associated with the suppression of nuclear factor (NF)-kappa (κ)B activation. These results indicate that AE, EE, and BT are strong inflammation inhibitors, thus have the potential for further development as anti-inflammatory therapeutic agents from a natural source regarded as a feral pest in Australia. J. Cell. Biochem. 117: 2769-2780, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abu Hasanat Md Zulfiker
- School of Medical Science and Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Saeed M Hashimi
- School of Medical Science and Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.,Department of Biology, Deanship of Preparatory Year, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - Ji Qi
- School of Medical Science and Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - I Darren Grice
- Institute for Glycomics and School of Medical Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Ming Q Wei
- School of Medical Science and Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
7
|
Chouhan S, Singh S, Athavale D, Ramteke P, Pandey V, Joseph J, Mohan R, Shetty PK, Bhat MK. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4. Sci Rep 2016; 6:27558. [PMID: 27272409 PMCID: PMC4897783 DOI: 10.1038/srep27558] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Elevated glycemic index, an important feature of diabetes is implicated in an increased risk of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of this association are relatively less explored. Present study investigates the effect of hyperglycemia over HCC proliferation. We observed that high glucose culture condition (HG) specifically activates canonical Wnt signaling in HCC cells, which is mediated by suppression of DKK4 (a Wnt antagonist) expression and enhanced β-catenin level. Functional assays demonstrated that a normoglycemic culture condition (NG) maintains constitutive expression of DKK4, which controls HCC proliferation rate by suppressing canonical Wnt signaling pathway. HG diminishes DKK4 expression leading to loss of check at G0/G1/S phases of the cell cycle thereby enhancing HCC proliferation, in a β-catenin dependent manner. Interestingly, in NOD/SCID mice supplemented with high glucose, HepG2 xenografted tumors grew rapidly in which elevated levels of β-catenin, c-Myc and decreased levels of DKK4 were detected. Knockdown of DKK4 by shRNA promotes proliferation of HCC cells in NG, which is suppressed by treating cells exogenously with recombinant DKK4 protein. Our in vitro and in vivo results indicate an important functional role of DKK4 in glucose facilitated HCC proliferation.
Collapse
Affiliation(s)
- Surbhi Chouhan
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Snahlata Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Dipti Athavale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Vimal Pandey
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India.,Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, Hyderabad Central University, Hyderabad-500 046, India
| | - Jomon Joseph
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Rajashekar Mohan
- Sri Dharmasthala Manjunatheshwara Medical Sciences and Hospital, Dharwad-580009, Karnataka, India
| | - Praveen Kumar Shetty
- Sri Dharmasthala Manjunatheshwara Medical Sciences and Hospital, Dharwad-580009, Karnataka, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| |
Collapse
|
8
|
Hemmer E, Takeshita H, Yamano T, Fujiki T, Kohl Y, Löw K, Venkatachalam N, Hyodo H, Kishimoto H, Soga K. In vitro and in vivo investigations of upconversion and NIR emitting Gd₂O₃:Er³⁺,Yb³⁺ nanostructures for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2399-2412. [PMID: 22588504 DOI: 10.1007/s10856-012-4671-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/02/2012] [Indexed: 05/31/2023]
Abstract
The use of an "over 1000-nm near-infrared (NIR) in vivo fluorescence bioimaging" system based on lanthanide containing inorganic nanostructures emitting in the visible and NIR range under 980-nm excitation is proposed. It may overcome problems of currently used biomarkers including color fading, phototoxicity and scattering. Gd(2)O(3):Er(3+),Yb(3+) nanoparticles and nanorods showing upconversion and NIR emission are synthesized and their cytotoxic behavior is investigated by incubation with B-cell hybridomas and macrophages. Surface modification with PEG-b-PAAc provides the necessary chemical durability reducing the release of toxic Gd(3+) ions. NIR fluorescence microscopy is used to investigate the suitability of the nanostructures as NIR-NIR biomarkers. The in vitro uptake of bare and modified nanostructures by macrophages is investigated by confocal laser scanning microscopy. In vivo investigations revealed nanostructures in liver, lung, kidneys and spleen a few hours after injection into mice, while most of the nanostructures have been removed from the body after 24 h.
Collapse
Affiliation(s)
- Eva Hemmer
- Center for Technologies Against Cancer, Tokyo University of Science, 2669 Yamazaki, Chiba 278-0022, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pandey V, Chaube B, Bhat MK. Hyperglycemia regulates MDR-1, drug accumulation and ROS levels causing increased toxicity of carboplatin and 5-fluorouracil in MCF-7 cells. J Cell Biochem 2011; 112:2942-52. [DOI: 10.1002/jcb.23210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Liang X, Xu K, Xu Y, Liu J, Qian X. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box. Toxicol Appl Pharmacol 2011; 256:52-61. [PMID: 21821060 DOI: 10.1016/j.taap.2011.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/05/2023]
Abstract
The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P(2) promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Nuclear Factor-kappa B as a Resistance Factor to Platinum-Based Antineoplasic Drugs. Met Based Drugs 2011; 2008:576104. [PMID: 18414584 PMCID: PMC2291150 DOI: 10.1155/2008/576104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 12/18/2007] [Indexed: 11/27/2022] Open
Abstract
Platinum drugs continue to be major chemotherapy drugs for cancer treatment. Nevertheless, acquired or intrinsic resistance to these compounds is common in human tumors. One important mechanism for this resistance is the avoidance of cells entering the apoptotic pathway. Nuclear factor-kappa B (NF-kappa B, NF-κB) is a pleiotropic transcription factor key in determining the death threshold of human cells. This factor is important in the final response of cells to platinum drugs, as exemplified by in vitro and in vivo models showing that inhibition of NF-κB sensitizes cancer cells to the effects of these drugs. New approaches focusing on the inhibition of NF-κB could help to minimize or even eliminate intrinsic or acquired resistance to platinum drugs.
Collapse
|
12
|
Bencsath KP, Reu F, Dietz J, Hsi ED, Heresi GA. Idiopathic systemic capillary leak syndrome preceding diagnosis of infiltrating lobular carcinoma of the breast with quiescence during neoadjuvant chemotherapy. Mayo Clin Proc 2011; 86:260-1. [PMID: 21364118 PMCID: PMC3046949 DOI: 10.4065/mcp.2010.0819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Sharma A, Meena AS, Bhat MK. Hyperthermia-associated carboplatin resistance: differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci 2010; 101:1186-93. [PMID: 20180806 PMCID: PMC11159963 DOI: 10.1111/j.1349-7006.2010.01516.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Due to substantial technical improvements, clinical application of heat as a co-adjuvant in cancer treatment is acquiring new interest. The effect of hyperthermia on hepatoma cell lines Hep3B (p53 defective) and HepG2 (p53 wild type) when investigated led to an interesting observation that Hep3B cells are more susceptible to heat stress than HepG2 cells. In addition, heat-induced carboplatin resistance was observed in HepG2 cells only. To investigate the reasons, heat shock response was explored and it was observed that heat stress augmented heat shock protein 70 (Hsp70) expression levels in HepG2 and not in Hep3B cells. Furthermore, in HepG2 cells, induced Hsp70 is regulated by both p53 and heat shock transcription factor 1 (HSF1) wherein HSF1 levels are modulated by p53. The data implies that Hep3B are more susceptible to death upon heat stress than HepG2 cells because of non-induction of Hsp70. In addition, it was observed that inhibition of heat-induced p53/HSF1 diminishes Hsp70 levels, thereby restoring the sensitivity of heat-stressed HepG2 cells to carboplatin-triggered cell death. Collectively, the present study establishes interplay of p53, HSF1, and Hsp70 upon heat stress in HepG2 cells and also defines novel strategies to overcome constraints of utility of hyperthermia in cancer therapy through p53/HSF1-targeted therapeutic intervention.
Collapse
|
14
|
Shriram V, Kumar V, Kishor PBK, Suryawanshi SB, Upadhyay AK, Bhat MK. Cytotoxic activity of 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol from Eulophia nuda against human cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:251-253. [PMID: 20045453 DOI: 10.1016/j.jep.2009.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 11/15/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eulophia nuda L. (Orchidaceae) is a medicinally important terrestrial orchid used for the treatment of tumours and various health problems by the local healers throughout the Western Ghats region in Maharashtra (India). AIM OF THE STUDY To isolate the active molecule from Eulophia nuda and to study its cytotoxic potential against human cancer cells. MATERIALS AND METHODS The crude methanolic extract of Eulophia nuda tubers was fractionated by stepwise gradient of the solvents-chloroform-methanol to isolate the pure compound. Isolated pure compound was assessed for its cytotoxic potential against human breast cancer cell lines, MCF-7 and MDA-MB-231 using MTT assay. Structure elucidation of the isolated active compound was carried out by extensive spectroscopic analysis including (1)H NMR, (13)C NMR, NOESY, COSY, LC-MS and IR. RESULTS The isolated active molecule was identified as phenanthrene derivative 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol. This compound showed good antiproliferative activity against human breast cancer cell lines MCF-7 (91%) and MDA-MB-231 (85%) at 1000 microg/ml concentration. CONCLUSION 9,10-Dihydro-2,5-dimethoxyphenanthrene-1,7-diol from Eulophia nuda tubers showed good growth suppressive effect against human cancer cell lines MCF-7 and MDA-MB-231 making it a potential biomolecule against human cancer.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Annasaheb Magar College, Hadapsar, Pune 411028, India.
| | | | | | | | | | | |
Collapse
|
15
|
Kumari R, Sharma A, Ajay AK, Bhat MK. Mitomycin C induces bystander killing in homogeneous and heterogeneous hepatoma cellular models. Mol Cancer 2009; 8:87. [PMID: 19845939 PMCID: PMC2770032 DOI: 10.1186/1476-4598-8-87] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 10/21/2009] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide that is particularly refractory to chemotherapy. Several studies have proposed combination chemotherapy regimen for HCC treatment. However, these therapies are not effective in regressing tumor and prolonging survival of patient's suffering from HCC. Therefore, the development of more effective therapeutic tools and new strategies for the treatment of HCC are urgently needed. Over the last decade much attention has been focused on "bystander effect" as a possible therapeutic strategy for the treatment of certain human tumors. Interest in this therapeutic approach originated from numerous reports describing the radiation induced bystander effect. However, the knowledge about chemotherapy induced bystander effect is still limited. Hence, chemotherapy induced bystander phenomenon in hepatoma cells was explored by utilizing Mitomycin C (MMC). Results MMC induced bystander killing was observed only in hepatoma cells and it did not occur in cervical cancer cells. MMC induced bystander killing was transferable via medium. It occurred in co-cultured cells indicating the involvement of secreted as well as membrane bound factors. FasL and TRAIL were detected in the conditioned medium from treated cells. In medium transfer experiment, pre-treatment with EDTA (a broad range protease inhibitor) diminished MMC induced bystander killing. Following drug exposure, expression of Fas and TRAIL receptors increased and treatment with neutralizing antibodies against FasL and TRAIL inhibited bystander killing. Conclusion Our results highlight the therapeutic importance of MMC in the treatment of HCC and implicate role of membrane bound and secreted forms of FasL and TRAIL in MMC induced bystander killing.
Collapse
Affiliation(s)
- Ratna Kumari
- National Centre for Cell Science, Ganeshkhind, Pune- 411 007, India.
| | | | | | | |
Collapse
|
16
|
Bourgarel-Rey V, Savry A, Hua G, Carré M, Bressin C, Chacon C, Imbert J, Braguer D, Barra Y. Transcriptional down-regulation of Bcl-2 by vinorelbine: identification of a novel binding site of p53 on Bcl-2 promoter. Biochem Pharmacol 2009; 78:1148-56. [PMID: 19555669 DOI: 10.1016/j.bcp.2009.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 01/28/2023]
Abstract
The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with microtubule-targeting agents, including taxanes and Vinca alkaloids, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl2 expression remains poorly understood. We report here that p53 contributes to vinorelbine-induced Bcl-2 down-regulation. Indeed, the decrease in Bcl-2 protein levels observed during vinorelbine-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We identified, by chromatin immunoprecipitation, a novel p53 binding site in the Bcl-2 promoter, within a region upstream P(1) promoter. We showed that vinorelbine treatment increased this interaction in A549 cells. This work strengthens the links between p53 and Bcl-2 at a transcriptional level, upon microtubule-targeting agent treatment. Our study also provides answers that will be useful to assess microtubule-targeting agents' mechanism of action and that may help to better understand and increase their effectiveness.
Collapse
Affiliation(s)
- Véronique Bourgarel-Rey
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, Marseille Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, Han SB, Oh KW, Hong JT. Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res 2009; 32:755-65. [PMID: 19471891 DOI: 10.1007/s12272-009-1515-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 01/19/2023]
Abstract
Ginsenoside Rg3, the main constituent isolated from Panax ginseng, has been of interest for use as a cancer preventive or therapeutic agent. We investigated here whether Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. To investigate whether RG3 can suppress activation of NF-kappaB, and thus inhibit cancer cell growth, we examined the susceptibility of colon cancer cells (SW620 and HCT116) to treatment with Rg3 (25, 50, 75, 100 microM) and RG3-induced activation of NF-kappaB. RG3 dose-dependently inhibited cancer cell growth through induction of apoptosis and decreased NF-kappaB activity. In a further study of compounds in colon cancer, we used half of the IC(50) dose, values in combined treatments of Rg3 (50 microM) with conventional agents - docetaxel (5 nM), paclitaxel (10 nM) cisplatin (10 microM) and doxorubicin (2 microM). Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity. NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent.
Collapse
Affiliation(s)
- Sun Mi Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shriram V, Jahagirdar S, Latha C, Kumar V, Puranik V, Rojatkar S, Dhakephalkar PK, Shitole M. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. Int J Antimicrob Agents 2008; 32:405-10. [DOI: 10.1016/j.ijantimicag.2008.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/16/2022]
|
19
|
Sodsai A, Piyachaturawat P, Sophasan S, Suksamrarn A, Vongsakul M. Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Int Immunopharmacol 2007; 7:524-31. [PMID: 17321476 DOI: 10.1016/j.intimp.2006.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 12/14/2006] [Accepted: 12/26/2006] [Indexed: 11/20/2022]
Abstract
Curcuma comosa Roxb. is a medicinal plant that has traditionally been used in Thailand for treatment of inflammation in postpartum uterine bleeding. The purpose of this study was to evaluate its anti-inflammatory effects using peripheral blood mononuclear cells (PBMC) and human pro-monocytic cell line (U937). Pretreatment with hexane or ethanol extract or two diarylhepatanoids (5-hydroxy-7-(4-hydroxyphenyl)-1-phenyl-(1E)-1-heptene and 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene) of C. comosa significantly decreased the release of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta, from phorbol-12-myristate-13-acetate (PMA)-stimulated PBMC and U937 cells. In PMA-stimulated U937 cells, the two C. comosa diarylhepatanoids reduced the expression of TNF-alpha and suppressed expression of IkappaB kinase and activation of nuclear factor kappa B. These results indicated that C. comosa and its diarylheptanoids have anti-inflammatory properties which could be exploited for clinical use.
Collapse
Affiliation(s)
- Amorntus Sodsai
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
20
|
Singh S, Upadhyay AK, Ajay AK, Bhat MK. Gadd45α does not modulate the carboplatin or 5-fluorouracil-induced apoptosis in human papillomavirus-positive cells. J Cell Biochem 2007; 100:1191-9. [PMID: 17063488 DOI: 10.1002/jcb.21111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gadd45alpha is shown to be induced by a wide spectrum of DNA-damaging agents and implicated in negative regulation of cell growth by causing G2-M arrest or induction of apoptosis. In the present study, we explored the involvement of p53 in the promoter activation of Gadd45alpha as well as the role of Gadd45alpha in carboplatin (Carb) or 5-fluorouracil (5-FU)-induced apoptosis in human papillomavirus virus (HPV)-positive HEp-2 and HeLa cells. We report that Carb or 5-FU upregulate Gadd45alpha and p53 in both these cells. Transient transfection of chloramphenicol acetyl transferase (CAT)-reporter construct driven by Gadd45alpha promoter clearly indicated that Gadd45alpha upregulation was mediated through activation of its promoter. Inhibition of p53 function by dominant-negative-p53 expression partially suppressed the activation of Gadd45alpha promoter. Further, the induction of apoptosis was assessed by detection of poly (ADP-ribose) polymerase (PARP) cleavage by Western blot analysis. Inhibition of upregulated Gadd45alpha expression by antisense expression vector did not modulate the Carb or 5-FU-induced apoptosis. Overall, we conclude that Gadd45alpha promoter activation partially depends on p53 function in HPV-positive cells. Moreover, Gadd45alpha protein does not modulate Carb or 5-FU-induced apoptosis in these cells.
Collapse
Affiliation(s)
- Sandeep Singh
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | |
Collapse
|
21
|
Upadhyay AK, Singh S, Chhipa RR, Vijayakumar MV, Ajay AK, Bhat MK. Methyl-β-cyclodextrin enhances the susceptibility of human breast cancer cells to carboplatin and 5-fluorouracil: Involvement of Akt, NF-κB and Bcl-2. Toxicol Appl Pharmacol 2006; 216:177-85. [PMID: 16806341 DOI: 10.1016/j.taap.2006.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/11/2006] [Accepted: 05/14/2006] [Indexed: 02/02/2023]
Abstract
The response rates of extensively used chemotherapeutic drugs, carboplatin (Carb) or 5-fluorouracil (5-FU) are relatively disappointing because of considerable side effects associated with their high-dose regimen. In the present study, we determined whether treatment with a cholesterol depleting agent, methyl-beta-cyclodextrin (MCD), enhances the weak efficacy of low doses of Carb or 5-FU in human breast cancer cells. Data demonstrate that pretreatment with MCD significantly potentiates the cytotoxic activity of Carb and 5-FU in both MCF-7 and MDA-MB-231. Furthermore, we explored the molecular basis of enhanced cytotoxicity, and our data revealed that low-dose treatment with these drugs in MCD pretreated cells exhibited significantly decreased Akt phosphorylation, NF-kappaB activity and down-regulation in expression of anti-apoptotic protein Bcl-2. In addition, MCD pretreated cells demonstrated an increased intracellular drug accumulation as compared to cells treated with drugs alone. Taken together, our data provide the basis for potential therapeutic application of MCD in combination with other conventional cytotoxic drugs to facilitate reduction of drug dosage that offers a better chemotherapeutic approach with low toxicity.
Collapse
|
22
|
Singh S, Chhipa RR, Vijayakumar MV, Bhat MK. DNA damaging drugs-induced down-regulation of Bcl-2 is essential for induction of apoptosis in high-risk HPV-positive HEp-2 and KB cells. Cancer Lett 2006; 236:213-21. [PMID: 15996812 DOI: 10.1016/j.canlet.2005.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 05/12/2005] [Accepted: 05/16/2005] [Indexed: 01/19/2023]
Abstract
DNA damaging chemotherapeutic agents like carboplatin (Carb) and 5-fluorouracil (5-FU), whose effects are mediated through diverse intracellular targets, induce apoptosis in various cancer cells including human papillomavirus (HPV) positive HEp-2 and KB cells. The present work reports the involvement of Bcl-2 in response to the exposure of HEp-2 and KB cells to Carb or 5-FU. We demonstrate that both these drugs are potent inducers of apoptosis. Apoptosis was preceded by decrease in Bcl-2 protein level accompanied by caspase-9 activation and poly(ADP-ribose) polymerase (PARP) cleavage without altering Bax expression. Further analysis revealed down-regulation of Bcl-2 mRNA as well as protein in drugs treated cells. Ectopic expression of Bcl-2 protected cells against drugs mediated DNA damage-induced apoptosis. Overall, data indicates that genotoxic stress leads to down-regulation of Bcl-2 in HEp-2 and KB cells, which plays a decisive role in the outcome of stress in these cells.
Collapse
Affiliation(s)
- Sandeep Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 411 007, India
| | | | | | | |
Collapse
|
23
|
Zhang HM, Yuan J, Cheung P, Chau D, Wong BW, McManus BM, Yang D. Gamma interferon-inducible protein 10 induces HeLa cell apoptosis through a p53-dependent pathway initiated by suppression of human papillomavirus type 18 E6 and E7 expression. Mol Cell Biol 2005; 25:6247-58. [PMID: 15988033 PMCID: PMC1168823 DOI: 10.1128/mcb.25.14.6247-6258.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon-inducible protein 10 (IP10) is a member of the CXC family of chemokines. By differential mRNA display, we have demonstrated the upregulation of IP10 in coxsackievirus B3 (CVB3)-infected mouse hearts. Functional characterization of the IP10 gene in IP10-transfected Tet-On HeLa cells has found that IP10 induced cell apoptosis and inhibited viral replication. In the characterization of the IP10-induced apoptotic pathway, we found that overexpression of IP10 upregulated p53 and resulted in altered expression of p53-responsive genes such as the p21Cip1, p27kip1, NF-kappaB, Bax, and PUMA genes and the mitochondrial translocation of Bax. However, transduction of the IP10 cells with adenovirus expressing dominant negative p53 not only ablated p53-triggered gene expression but also abolished IP10-induced apoptosis and restored CVB3 replication to the control levels. These data suggest a novel mechanism by which IP10 inhibits viral replication through the induction of host cell death via a p53-mediated apoptotic pathway. We also found that constantly high-level expression of p53 in these tumor cells is attributed to the IP10-induced suppression of human papillomavirus E6 and E7 oncogene expression. Taken together, these data reveal not only a previously unrecognized link between chemokine IP10 and p53 in antiviral defense but also a mechanism by which IP10 inhibits tumor cell growth.
Collapse
Affiliation(s)
- Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, The James Hogg iCAPTURE Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | | | | | | | | | |
Collapse
|