1
|
Gao F, Zhao M, Huang S, Zhang W, Ma Z. Clinicopathological Significance of Decreased Expression of the Tumor Inhibitor Gene PDCD5 in Osteoclastoma. Genet Test Mol Biomarkers 2019; 23:807-814. [PMID: 31638427 DOI: 10.1089/gtmb.2019.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The gene programmed cell death 5 (PDCD5) has recently been characterized as a tumor suppressor gene and is believed to be an important prognostic cancer marker; it is frequently involved in neoplastic transformation and apoptosis of tumor cells. Several studies have demonstrated a decrease or loss of expression of PDCD5 in certain tumors. However, the relevance of PDCD5 expression in human osteoclastoma and its clinicopathological significance have not been extensively studied. Methods: The aim of this study was to explore the relative transcriptional and translational expression levels of PDCD5 in 79 osteoclastoma samples using multi-modal methods of analysis. Results: Our findings showed that 52% (15/29) of osteoclastoma cases exhibited reduced PDCD5 expression at the transcriptional level, and 56% (44/79) exhibited lower PDCD5 expression at the protein level, when compared with nontumor tissue. In addition, the statistical significance of the altered PDCD5 protein expression was examined using the Campanacci grading system for osteoclastoma. More importantly, the decreased expression at the translational level was observed to have a negative association with the Ki-67 staining index. Conclusion: Based on these findings, abnormal PDCD5 expression might be an important biomarker in human osteoclastoma and may contribute to tumor progression and malignant cell proliferation.
Collapse
Affiliation(s)
- Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shanying Huang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Wei Zhang
- Department of Bone Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhe Ma
- Department of Ultrasound, Shandong University Qilu Hospital, Jinan, Shandong, China
| |
Collapse
|
2
|
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 2016; 49:1801-1806. [PMID: 27826615 DOI: 10.3892/ijo.2016.3706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
Abstract
PDCD5 (programmed cell death 5) is an apoptosis related gene cloned in 1999 from a human leukemic cell line. PDCD5 protein containing 125 amino acid (aa) residues sharing significant homology to the corresponding proteins of species. Decreased expression of PDCD5 has been found in many human tumors, including breast, gastric cancer, astrocytic glioma, chronic myelogenous leukemia and hepatocellular carcinoma. In recent years, increased number of studies have shown the functions and mechanisms of PDCD5 protein in cancer cells, such as paraptosis, cell cycle and immunoregulation. In the present review, we provide a comprehensive review on the role of PDCD5 in cancer tissues and cells. This review summarizes the recent studies of the roles of PDCD5 in inflammation and cancer. We mainly focus on discoveries related to molecular mechanisms of PDCD5 protein. We also discuss some discrepancies between the current studies. Overall, the current available data will open new perspectives for a better understanding of PDCD5 in cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
3
|
Li G, Ma D, Chen Y. Cellular functions of programmed cell death 5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:572-80. [PMID: 26775586 DOI: 10.1016/j.bbamcr.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
4
|
Gong L, Wang H, Huang J, Hu M, Hu Z, Zhong G. Camptothecin-induced expression of programmed cell death gene 11 in Spodoptera litura. PEST MANAGEMENT SCIENCE 2014; 70:603-609. [PMID: 23749428 DOI: 10.1002/ps.3588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Camptothecin, one of the main active components of extract from the bark of the Chinese camptotheca tree, has been reported as a potent insecticide against various insect species. However, the mechanism of action of camptothecin as a botanical pesticide is not completely understood. RESULTS In this study, the full-length cDNA (GeneBank number JF681972) of Spodoptera litura programmed cell death protein 11 (pcdp 11) isoform 1 was cloned, sequenced and characterised. Quantitative real-time PCR (qRT-PCR) data showed that pcdp 11 was differentially expressed during the developmental stages, with significantly high expression during the transition from egg to larva and larva to pupa. Furthermore, pcdp 11 was upregulated in a time-dependent manner in SL-1 cells after treatment with 1.2 µg mL(-1) of camptothecin. The induced expression profile of pcdp 11 in the larval midgut after feeding camptothecin was visualised by fluorescence in situ hybridisation (FISH) and further quantified by qRT-PCR. Apoptosis in camptothecin-treated larval midguts was confirmed using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. CONCLUSION The results reveal a clear functional link between pcdp 11 expression and camptothecin-induced apoptosis, and prove that camptothecin exhibits strong toxicity towards S. litura by inducing midgut epithelial cell apoptosis.
Collapse
Affiliation(s)
- Liang Gong
- Key Laboratory of Pesticide and Chemical Biology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
5
|
FU DAZHI, CHENG YING, HE HUI, LIU HAIYANG, LIU YONGFENG. PDCD5 expression predicts a favorable outcome in patients with hepatocellular carcinoma. Int J Oncol 2013; 43:821-30. [DOI: 10.3892/ijo.2013.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/10/2013] [Indexed: 11/05/2022] Open
|
6
|
The anti-tumor role and mechanism of integrated and truncated PDCD5 proteins in osteosarcoma cells. Cell Signal 2012; 24:1713-21. [PMID: 22560879 DOI: 10.1016/j.cellsig.2012.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a high-grade malignant bone tumor. In these studies, the cell apoptosis-related gene, programmed cell death 5 gene (PDCD5), and various fragments of it, were overexpressed in the OS cell line, MG-63. The effects of PDCD5 on MG-63 cells both in vivo and in vitro were then identified. Our results indicate that PDCD5 can induce apoptosis and G(2) phase arrest in MG-63 cells. Moreover, expression of PDCD5 in established xenografted tumors was associated with a decrease in tumor size and weight. Accordingly, the survival rate of these mice was significantly higher than that of mice bearing tumors that did not express PDCD5. To analyze the signaling pathway involved, western blotting was performed. In these assays, PDCD5 was found to inhibit the Ras/Raf/MEK/ERK signaling pathway, leading to inhibition of cyclin B and CDK1. In addition, down-regulation of ERK resulted in activation of caspase 3 and caspase 9. These results are consistent with the G(2) phase arrest observed with overexpression of PDCD5. However, a G(1) phase arrest was not observed. Therefore, proteins associated with the G(1) phase of the cell cycle were overexpressed in combination with PDCD5 overexpression. Overall, these studies demonstrate the anti-tumor activity of PDCD5 in the OS cell line, MG-63, and provide insight into relevant mechanisms that may lead to novel treatments for OS.
Collapse
|
7
|
Yao H, Feng Y, Zhou T, Wang J, Wang ZX. NMR Studies of the Interaction between Human Programmed Cell Death 5 and Human p53. Biochemistry 2012; 51:2684-93. [DOI: 10.1021/bi201822x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hongwei Yao
- MOE Key Laboratory
of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yingang Feng
- National Laboratory of Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Tao Zhou
- National Laboratory of Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Jinfeng Wang
- National Laboratory of Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Zhi-Xin Wang
- MOE Key Laboratory
of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
8
|
Julien O, Mercier P, Allen CN, Fisette O, Ramos CHI, Lagüe P, Blumenschein TMA, Sykes BD. Is there nascent structure in the intrinsically disordered region of troponin I? Proteins 2011; 79:1240-50. [DOI: 10.1002/prot.22959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/20/2010] [Accepted: 11/27/2010] [Indexed: 11/08/2022]
|
9
|
Yao H, Xu L, Feng Y, Liu D, Chen Y, Wang J. Structure-function correlation of human programmed cell death 5 protein. Arch Biochem Biophys 2009; 486:141-9. [PMID: 19358820 DOI: 10.1016/j.abb.2009.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/25/2009] [Accepted: 03/28/2009] [Indexed: 01/03/2023]
Abstract
Human programmed cell death 5 (PDCD5) is a translocatory protein playing an important role in the apoptotic process of cells. Although there are accumulated data about PDCD5 function, the correlation of the structure with the function of PDCD5 has not been investigated. Here, we report the studies of structure-function relationship of PDCD5 by multidimensional NMR methods and by FACScan flow cytometer and fluorescence microscope. The 3D structure of intact PDCD5 and the internal motions of PDCD5 have been determined. PDCD5 has a compact core structure of low flexibility with two mobile alpha-helices at N-terminal region and a flexible unstructured C-terminal region. The flow cytometry and internalization measurements of different PDCD5 fragments indicate that the charged residues are crucial for the ability of apoptosis-promoting and cell translocation of the protein. Combined analyses reveal a fact that the regions that seem to be most involved in the function also are more flexible in PDCD5.
Collapse
Affiliation(s)
- Hongwei Yao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
10
|
Yang YH, Zhao M, Li WM, Lu YY, Chen YY, Kang B, Lu YY. Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis 2007; 11:993-1001. [PMID: 16547588 DOI: 10.1007/s10495-006-6714-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The protein of programmed cell death 5 (PDCD5) is believed to participate in regulation of apoptosis. Although PDCD5 is reducibly expressed in various human tumors, it is not clear which expression level of PDCD5 is in gastric cancer (GC). In this study, we have systematically employed the approaches of RT-PCR, Real- time PCR, Immunohistochemistry (IHC), Immunofluorescence staining (IFS) and Western blot to determine the PDCD5 expression in GC cells and primary tumors, at mRNA and protein level, respectively. Our data revealed that the positive rate of PDCD5 expression in the gastric tumor tissues was significantly less than that of the normal tissues (14 out of 102 vs 36 out of 51), whereas, the decreased expression of PDCD5 protein was well correlated with the up-regulated expression of Bcl-2 in these tissues, and the up-regulated expression and nuclear translocation of PDCD5 protein were verified in the apoptotic GC cells induced by Diallyl trisulfide (DATS). Furthermore, the survival curve has suggested that the more PDCD5 expressions were found in the patients, the longer the survival periods were. Therefore, our observations lay down a reasonable postulation that PDCD5 may play a key role to regulate the apoptotic processes in the GC cells and gastric tumors.
Collapse
Affiliation(s)
- Y-H Yang
- Molecular Oncology Laboratory, Beijing Institute for Cancer Research, School of Oncology, Peking University, Fu-Cheng Road 52#, Hai-Dian District, Beijing, 100036, P R China
| | | | | | | | | | | | | |
Collapse
|
11
|
Ling X, Liu Y, Fan H, Zhong Y, Li D, Wang Y. Studies on interactions of programmed cell death 5 (PDCD5) and its related peptides with heparin by capillary zone electrophoresis. Anal Bioanal Chem 2006; 387:909-16. [PMID: 17165023 DOI: 10.1007/s00216-006-0983-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/01/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
Capillary zone electrophoresis (CZE) was used to investigate interactions between heparin and programmed cell death 5 (PDCD5), and between heparin and PDCD5-related peptides. Samples containing PDCD5, PDCD5-related peptides, and heparin at various ratios were incubated at room temperature and then separated by CZE with tris-acetate buffer at pH 7.2. Both qualitative and quantitative characterizations of the binding of PDCD5 and PDCD5-related peptides to heparin were determined. The changes in the signals of PDCD5 and PDCD5-related peptides were monitored by comparing the electropherograms of the mixtures containing PDCD5 and heparin and PDCD5-related peptides and heparin with that of PDCD5 or PDCD5-related peptides only. The binding constant of the interaction between PDCD5 and heparin was calculated as 4.17 x 10(4) M(-1) by Scatchard analysis. Our investigations show that it is possible to characterize the interaction between PDCD5 and heparin quantitatively and the interaction between PDCD5-related peptides and heparin qualitatively using CZE.
Collapse
Affiliation(s)
- Xiaomei Ling
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing, 100083, China.
| | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Li D, Fan H, Tian L, Zhong Y, Zhang Y, Yuan L, Jin C, Yin C, Ma D. Cellular Uptake of Exogenous Human PDCD5 Protein. J Biol Chem 2006; 281:24803-17. [PMID: 16754680 DOI: 10.1074/jbc.m600183200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PDCD5 (human programmed cell death 5) plays a significant role in apoptotic and paraptotic cell deaths. However, it was found that recombinant PDCD5 added exogenously to culture medium could also enhance programmed cell death triggered by certain stimuli. Here we show that PDCD5 has a remarkable role in intercellular transport in various cells (endogenous caveolin-1-positive and -negative cells) through a clathrin-independent endocytic pathway that originates from heparan sulfate proteoglycan binding and lipid rafts. These conclusions are supported by the studies of slow internalization kinetics of PDCD5 endosomes, by the resistance of endosomes to nonionic detergents, by the overexpression of the clathrin dominant negative mutant form, which did not block PDCD5-fluorescein isothiocyanate uptake, and by PDCD5 localization in lipid rafts by immunofluorescence, electron microscopy techniques, and sucrose density centrifugation. This is further supported by the findings that certain drugs that disrupt lipid rafts, compete with cell membrane heparan sulfate proteoglycans, or block the caveolae pathway, impair the PDCD5 internalization process. The translocation activity of PDCD5 may possess physiological significance and be a potential mechanism for its programmed cell death-promoting activity. PDCD5 protein also has the ability to drive the internalization of large protein cargo, depending on the residues 109-115 mapped by deletion mutagenesis, and can introduce the Mdm-2 binding domain of human p53 into living cells to induce cell death in human cancer cells, indicating that PDCD5 may serve as a vehicle and thus have potential in the field of protein delivery to the cells. This is the first evidence of such findings.
Collapse
Affiliation(s)
- Ying Wang
- Center for Human Disease Genomics, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu D, Yao H, Chen Y, Feng Y, Chen Y, Wang J. The N-terminal 26-residue fragment of human programmed cell death 5 protein can form a stable alpha-helix having unique electrostatic potential character. Biochem J 2006; 392:47-54. [PMID: 16083422 PMCID: PMC1317663 DOI: 10.1042/bj20050688] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PDCD5-(1-26) is a N-terminal 26-residue fragment of human PDCD5 (programmed cell death 5) protein. PDCD5 is an important novel protein that regulates both apoptotic and non-apoptotic programmed cell death. The conformation of PDCD5 protein is a stable helical core consisting of a triple-helix bundle and two dissociated terminal regions. The N-terminal region is ordered and contains abundant secondary structure. Overexpression and purification of the N-terminal 26-residure fragment, PDCD5-(1-26), was performed in this study to better understand its tertiary structure. The spectroscopic studies using CD and hetero- and homo-nuclear NMR methods determine a stable alpha-helix formed by Asp3-Ala19 of PDCD5-(1-26). The N-terminal residues Asp3-Ala19 of PDCD5 were then affirmed to have the capacity to form a stable alpha-helix independently of the core of the protein. Analysis of the helical peptide of PDCD5-(1-26) indicates that the surface of this well-formed alpha-helix has a unique electrostatic potential character. This may provide an environment for the N-terminal alpha-helix of PDCD5 to serve as an independent functional entity of the protein. The apoptosis activity assay shows that the deletion of the N-terminal alpha-helix of PDCD5 significantly attenuates the apoptosis-promoting effects on HL-60 cells induced by serum withdrawal.
Collapse
Affiliation(s)
- Dongsheng Liu
- *National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Hongwei Yao
- *National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yaoyao Chen
- †Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, China
| | - Yingang Feng
- *National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yingyu Chen
- †Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, China
| | - Jinfeng Wang
- *National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- To whom correspondence should be addressed (email address: )
| |
Collapse
|