1
|
Tiwade PB, Fung V, VanKeulen-Miller R, Narasipura EA, Ma Y, Fenton OS. Non-Viral RNA Therapies for Non-Small Cell Lung Cancer and Their Corresponding Clinical Trials. Mol Pharm 2025; 22:1752-1774. [PMID: 40131145 DOI: 10.1021/acs.molpharmaceut.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ribonucleic acid (RNA)-based therapies represent a promising class of drugs for the treatment of non-small cell lung cancer (NSCLC) due to their ability to modulate gene expression. Therapies leveraging small interfering RNA (siRNA), messenger RNA (mRNA), microRNA (miRNA), and antisense oligonucleotides (ASOs) offer various advantages over conventional treatments, including the ability to target specific genetic mutations and the potential for personalized medicine approaches. However, the clinical translation of these therapeutics for the treatment of NSCLC faces challenges in delivery due to their immunogenicity, negative charge, and large size, which can be mitigated with delivery platforms. In this review, we provide a description of the pathophysiology of NSCLC and an overview of RNA-based therapeutics, specifically highlighting their potential application in the treatment of NSCLC. We discuss relevant classes of RNA and their therapeutic potential for NSCLC. We then discuss challenges in delivery and non-viral delivery strategies such as lipid- and polymer-based nanoparticles that have been developed to address these issues in preclinical models. Furthermore, we provide a summary table of clinical trials that leverage RNA therapies for NSCLC [which includes their National Clinical Trial (NCT) numbers] to highlight the current progress in NSCLC. We also discuss how these NSCLC therapies can be integrated with existing treatment modalities to enhance their efficacy and improve patient outcomes. Overall, we aim to highlight non-viral strategies that tackle RNA delivery challenges while showcasing RNA's potential as a next-generation therapy for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/administration & dosage
- Clinical Trials as Topic
- Animals
- Nanoparticles/chemistry
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- RNA, Messenger/genetics
- Genetic Therapy/methods
- Drug Delivery Systems/methods
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eshan Amruth Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024; 63:3059-3077. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
3
|
Bai C, Wang C, Lu Y. Novel Vectors and Administrations for mRNA Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303713. [PMID: 37475520 DOI: 10.1002/smll.202303713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Indexed: 07/22/2023]
Abstract
mRNA therapy has shown great potential in infectious disease vaccines, cancer immunotherapy, protein replacement therapy, gene editing, and other fields due to its central role in all life processes. However, mRNA is challenging to pass through the cell membrane due to its significant negative charges and degradation from RNase, so the key to mRNA therapy is efficient packaging and delivery of it with appropriate vectors. Presently researchers have developed various vectors such as viruses and liposomes, but these conventional vectors are now difficult to meet the growing requirement like safety, efficiency, and targeting, so many novel delivery vectors with unique advantages have emerged recently. This review mainly introduces two categories of novel vectors: biomacromolecules and inorganic nanoparticles, as well as two novel methods of control and administration based on these novel vectors: controlled-release administration and non-invasive administration. These novel delivery strategies have the advantages of high safety, biocompatibility, versatility, intelligence, and targeting. This paper analyzes the challenges faced by the field of mRNA delivery in depth, and discusses how to use the characteristics of novel vectors and administrations to solve these problems.
Collapse
Affiliation(s)
- Chenghai Bai
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Madanagopal P, Muthukumar H, Thiruvengadam K. Computational study and design of effective siRNAs to silence structural proteins associated genes of Indian SARS-CoV-2 strains. Comput Biol Chem 2022; 98:107687. [PMID: 35537364 PMCID: PMC9052778 DOI: 10.1016/j.compbiolchem.2022.107687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/26/2023]
Abstract
SARS-CoV-2 is a highly transmissible and pathogenic coronavirus that first emerged in late 2019 and has since triggered a pandemic of acute respiratory disease named COVID-19 which poses a significant threat to all public health institutions in the absence of specific antiviral treatment. Since the outbreak began in March 2020, India has reported 4.77 lakh Coronavirus deaths, according to the World Health Organization (WHO). The innate RNA interference (RNAi) pathway, on the other hand, allows for the development of nucleic acid-based antiviral drugs in which complementary small interfering RNAs (siRNAs) mediate the post-transcriptional gene silencing (PTGS) of target mRNA. Therefore, in this current study, the potential of RNAi was harnessed to construct siRNA molecules that target the consensus regions of specific structural proteins associated genes of SARS-CoV-2, such as the envelope protein gene (E), membrane protein gene (M), nucleocapsid phosphoprotein gene (N), and surface glycoprotein gene (S) which are important for the viral pathogenesis. Conserved sequences of 811 SARS-CoV-2 strains from around India were collected to design 21 nucleotides long siRNA duplex based on various computational algorithms and parameters targeting E, M, N and S genes. The proposed siRNA molecules possessed sufficient nucleotide-based and other features for effective gene silencing and BLAST results revealed that siRNAs' targets have no significant matches across the whole human genome. Hence, siRNAs were found to have no off-target effects on the genome, ruling out the possibility of off-target silencing. Finally, out of 157 computationally identified siRNAs, only 4 effective siRNA molecules were selected for each target gene which is proposed to exert the best action based on GC content, free energy of folding, free energy of binding, melting temperature, heat capacity and molecular docking analysis with Human AGO2 protein. Our engineered siRNA candidates could be used as a genome-level therapeutic treatment against various sequenced SARS-CoV-2 strains in India. However, future applications will necessitate additional validations in vitro and in vivo animal models.
Collapse
|
5
|
Chen YH, Yu SJ, Wu KJ, Wang YS, Tsai HM, Liao LW, Chen S, Hsieh W, Chen H, Hsu SC, Chen ML, Hoffer BJ, Wang Y. Downregulation of α-Synuclein Protein Levels by an Intracellular Single-Chain Antibody. JOURNAL OF PARKINSONS DISEASE 2021; 10:573-590. [PMID: 32176654 DOI: 10.3233/jpd-191787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accumulation of α-synuclein (αSyn) in the dopaminergic neurons is a common pathology seen in patients with Parkinson's disease (PD). Overproduction of αSyn potentiates the formation of oligomeric αSyn aggregates and enhances dopaminergic neuron degeneration. Downregulating intracellular monomeric αSyn prevents the formation of αSyn oligomers and is a potential therapeutic strategy to attenuate the progression of PD. OBJECTIVE The purpose of this study is to investigate the efficacy of gene delivery of αSyn-specific single-chain antibodies in vitro and in vivo. METHODS AND RESULTS The plasmids for αSyn and selective antibodies (NAC32, D10, and VH14) were constructed and were transfected to HEK293 and SH-SY5Y cells. Co-expression of αSyn with NAC32, but not D10 or VH14, profoundly downregulated αSyn protein, but not αSyn mRNA levels in these cells. The interaction of αSyn and NAC32 antibody was next examined in vivo. Adeno-associated virus (AAV)-αSyn combined with AAV-NAC32 or AAV-sc6H4 (a negative control virus) were stereotactically injected into the substantia nigra of adult rats. AAV-NAC32 significantly reduced AAV-encoded αSyn levels in the substantia nigra and striatum and increased tyrosine hydroxylase immunoreactivity in the striatum. Also, in the animals injected with AAV-NAC32 alone, endogenous αSyn protein levels were significantly downregulated in the substantia nigra. CONCLUSION Our data suggest that AAV-mediated gene transfer of NAC32 is a feasible approach for reducing the expression of target αSyn protein in brain.
Collapse
Affiliation(s)
- Yun-Hsiang Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ho-Min Tsai
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Wen Liao
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shuchun Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wei Hsieh
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsi Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzy Chi Medical Foundation, New Taipei City, Taiwan
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
6
|
Shawan MMAK, Sharma AR, Bhattacharya M, Mallik B, Akhter F, Shakil MS, Hossain MM, Banik S, Lee SS, Hasan MA, Chakraborty C. Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. INFECTION GENETICS AND EVOLUTION 2021; 93:104951. [PMID: 34089909 PMCID: PMC8170914 DOI: 10.1016/j.meegid.2021.104951] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The devastating outbreak of COVID-19 has spread all over the world and has become a global health concern. There is no specific therapeutics to encounter the COVID-19. Small interfering RNA (siRNA)-based therapy is an efficient strategy to control human viral infections employing post-transcriptional gene silencing (PTGS) through neutralizing target complementary mRNA. RNA-dependent RNA polymerase (RdRp) encoded by the viral RdRp gene as a part of the replication-transcription complex can be adopted as an acceptable target for controlling SARS-CoV-2 mediated infection. Therefore, in the current study, accessible siRNA designing tools, including significant algorithms and parameters, were rationally used to design the candidate siRNAs against SARS-COV-2 encoded RdRp. The designed siRNA molecules possessed adequate nucleotide-based and other features for potent gene silencing. The targets of the designed siRNAs revealed no significant matches within the whole human genome, ruling out any possibilities for off-target silencing by the siRNAs. Characterization with different potential parameters of efficacy allowed selecting the finest siRNA among all the designed siRNA molecules. Further, validation assessment and target site accessibility prediction also rationalized the suitability of this siRNA molecule. Molecular docking study between the selected siRNA molecule and component of RNA interference (RNAi) pathway gave an excellent outcome. Molecular dynamics of two complexes: siRNA and argonaute complex, guide RNA, and target protein complex, have shown structural stability of these proteins. Therefore, the designed siRNA molecule might act as an effective therapeutic agent against the SARS-CoV-2 at the genome level and can prevent further outbreaks of COVID-19 in humans.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Bidyut Mallik
- Department of Applied Science, Galgotias College of Engineering and Technology, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Farhana Akhter
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; Government Unani and Ayurvedic Medical College Hospital, Mirpur-13, Dhaka 1221, Bangladesh
| | - Md Salman Shakil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand
| | - Md Mozammel Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Subrata Banik
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Jagannathpur, Kolkata, West Bengal 700126, India.
| |
Collapse
|
7
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
8
|
Shawan MMAK, Halder SK, Hasan MA. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:27. [PMID: 33495684 PMCID: PMC7816153 DOI: 10.1186/s42269-020-00479-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/27/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND At present, the entire world is in a war against COVID-19 pandemic which has gradually led us toward a more compromised "new normal" life. SARS-CoV-2, the pathogenic microorganism liable for the recent COVID-19 outbreak, is extremely contagious in nature resulting in an unusual number of infections and death globally. The lack of clinically proven therapeutic intervention for COVID-19 has dragged the world's healthcare system into the biggest challenge. Therefore, development of an efficient treatment scheme is now in great demand. Screening of different biologically active plant-based natural compounds could be a useful strategy for combating this pandemic. In the present research, a collection of 43 flavonoids of 7 different classes with previously recorded antiviral activity was evaluated via computational and bioinformatics tools for their impeding capacity against SARS-CoV-2. In silico drug likeness, pharmacophore and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile analysis of the finest ligands were carried out using DataWarrior, DruLiTo and admetSAR programs, respectively. Molecular docking was executed by AutoDock Vina, while molecular dynamics simulation of the target protein-ligand bound complexes was done using nanoscalable molecular dynamics and visual molecular dynamics software package. Finally, the molecular target analysis of the selected ligands within Homo sapiens was conducted with SwissTargetPredcition web server. RESULTS Out of the forty-three flavonoids, luteolin and abyssinone II were found to develop successful docked complex within the binding sites of target proteins in terms of lowest binding free energy and inhibition constant. The root mean square deviation and root mean square fluctuation values of the docked complex displayed stable interaction and efficient binding between the ligands and target proteins. Both of the flavonoids were found to be safe for human use and possessed good drug likeness properties and target accuracy. CONCLUSIONS Conclusively, the current study proposes that luteolin and abyssinone II might act as potential therapeutic candidates for SARS-CoV-2 infection. In vivo and in vitro experiments, however, should be taken under consideration to determine the efficiency and to demonstrate the mechanism of action.
Collapse
Affiliation(s)
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Md. Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| |
Collapse
|
9
|
Guo T, Ma S. Recent Advances in the Discovery of Multitargeted Tyrosine Kinase Inhibitors as Anticancer Agents. ChemMedChem 2020; 16:600-620. [PMID: 33179854 DOI: 10.1002/cmdc.202000658] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The treatment of cancer has been one of the most significant challenges for the medical field. Further research on the signal transduction pathway of tumor cells is driving the rapid development of antitumor agents targeting tyrosine kinases. However, most of the currently approved tyrosine kinase inhibitors based on the "single target/single drug" design are becoming less and less effective in the treatment of complex, heterogeneous, and multigenic cancers; this also results in resistance to chemotherapy. In contrast, multitargeted tyrosine kinase inhibitors (MT-TKIs) can effectively block multiple pathways of intracellular signal transduction. Therefore, they have therapeutic advantages over single-targeted inhibitors and have become a hotspot in antitumor drug research in recent years. This minireview summarizes recent advances in the discovery of MT-TKIs based on their chemical structures. In particular, we describe the kinase inhibitory and antitumor activity of promising compounds, as well as their structure - activity relationships (SARs).
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| |
Collapse
|
10
|
Kim B, Park JH, Sailor MJ. Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903637. [PMID: 31566258 PMCID: PMC6891135 DOI: 10.1002/adma.201903637] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/12/2019] [Indexed: 05/07/2023]
Abstract
With the recent FDA approval of the first siRNA-derived therapeutic, RNA interference (RNAi)-mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA-mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
11
|
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol Diagn Ther 2019; 22:551-569. [PMID: 29926308 DOI: 10.1007/s40291-018-0338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) are an attractive new agent with potential as a therapeutic tool because of its ability to inhibit specific genes for many conditions, including viral infections and cancers. However, despite this potential, many challenges remain, including off-target effects, difficulties with delivery, immune responses, and toxicity. Traditional genetic vectors do not guarantee that siRNAs will silence genes in vivo. Rational design strategies, such as chemical modification, viral vectors, and non-viral vectors, including cationic liposomes, polymers, nanocarriers, and bioconjugated siRNAs, provide important opportunities to overcome these challenges. We summarize the results of research into vector delivery of siRNAs as a therapeutic agent from their design to clinical trials in ophthalmic diseases, cancers, respiratory diseases, and liver virus infections. Finally, we discuss the current state of siRNA delivery methods and the need for greater understanding of the requirements.
Collapse
|
12
|
Aznan AN, Abdul Karim N, Wan Ngah WZ, Jubri Z. Critical factors for lentivirus-mediated PRDX4 gene transfer in the HepG2 cell line. Oncol Lett 2018; 16:73-82. [PMID: 29930713 PMCID: PMC6006497 DOI: 10.3892/ol.2018.8650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Optimization of critical factors affects transduction efficiency and is able to reduce reagent consumption. The present study aimed to determine the optimum transduction conditions of small hairpin (sh)RNA against peroxiredoxin 4 (PRDX4) in the HepG2 cell line. Cell viability assays were conducted based on serum condition, incubation time, polybrene concentration and antibiotic dose selection. Non-targeting control shRNA was transduced into HepG2 cells in a 5-fold serial dilution, and colonies positive for green fluorescent protein were counted using ImageJ software. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to validate PRDX4 expression. The optimum cell density for transduction was 5.0×103 cells/well in 96-well plates to achieve 40 to 50% confluency the following day. The transduction media consisted of 10% fetal bovine serum (FBS) and 12 µg/ml polybrene, and was used to dilute lentiviral particles at a functional titer of 4.9×105 TU/ml for multiplicity of infection (MOI) of 20, 15 and 10, for 24 h of incubation. Selection with 7 µg/ml puromycin was performed in transduced cells. shRNA 3 was revealed to inhibit PRDX4 mRNA and protein expression. In conclusion, PRDX4 was successfully silenced in 5.0×103 HepG2 cells cultured with 10% FBS and 12 µg/ml polybrene, at a 4.9×105 TU/ml functional titer for MOI of 20, 15 and 10.
Collapse
Affiliation(s)
- Afiah Nasuha Aznan
- Department of Biochemistry, National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Norwahidah Abdul Karim
- Department of Biochemistry, National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Stem Cell Rev Rep 2018; 13:611-630. [PMID: 28597211 DOI: 10.1007/s12015-017-9748-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-β1) and siRNA to knockdown collagen I and HtrA1. Horse BM-MSCs were characterized before being cultured in chondrogenic conditions to find the best combination to enhance, stabilize, the chondrocyte phenotype. Our results show a very high proliferation of MSCs and these cells satisfy the criteria defining stem cells (pluripotency-surface markers expression). The combination of BMP-2 + TGF-β1 strongly induces the chondrogenic differentiation of MSCs and prevents HtrA1 expression. siRNAs targeting Col1a1 and Htra1 were functionally validated. Ultimately, the combined use of specific culture conditions defined here with specific growth factors and a Col1a1 siRNAs (50 nM) association leads to the in vitro synthesis of a hyaline-type neocartilage whose chondrocytes present an optimal phenotypic index similar to that of healthy, differentiated chondrocytes. Our results lead the way to setting up pre-clinical trials in horses to better understand the reaction of neocartilage substitute and to carry out a proof-of-concept of this therapeutic strategy on a large animal model.
Collapse
|
14
|
Wu SJ, Niknafs YS, Kim SH, Oravecz-Wilson K, Zajac C, Toubai T, Sun Y, Prasad J, Peltier D, Fujiwara H, Hedig I, Mathewson ND, Khoriaty R, Ginsburg D, Reddy P. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation. Cell Rep 2018; 19:2645-2656. [PMID: 28658614 DOI: 10.1016/j.celrep.2017.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/05/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Cross-presentation initiates immune responses against tumors and viral infections by presenting extracellular antigen on MHC I to activate CD8+ T cell-mediated cytotoxicity. In vitro studies in dendritic cells (DCs) established SNARE protein SEC22B as a specific regulator of cross-presentation. However, the in vivo contribution of SEC22B to cross-presentation has not been tested. To address this, we generated DC-specific Sec22b knockout (CD11c-Cre Sec22bfl/fl) mice. Contrary to the paradigm, SEC22B-deficient DCs efficiently cross-present both in vivo and in vitro. Although in vitro small hairpin RNA (shRNA)-mediated Sec22b silencing in bone-marrow-derived dendritic cells (BMDCs) reduced cross-presentation, treatment of SEC22B-deficient BMDCs with the same shRNA produced a similar defect, suggesting the Sec22b shRNA modulates cross-presentation through off-target effects. RNA sequencing of Sec22b shRNA-treated SEC22B-deficient BMDCs demonstrated several changes in the transcriptome. Our data demonstrate that contrary to the accepted model, SEC22B is not necessary for cross-presentation, cautioning against extrapolating phenotypes from knockdown studies alone.
Collapse
Affiliation(s)
- S Julia Wu
- Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yashar S Niknafs
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie H Kim
- Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine Oravecz-Wilson
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Cynthia Zajac
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Tomomi Toubai
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Yaping Sun
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Jayendra Prasad
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel Peltier
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Communicable Diseases, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Hideaki Fujiwara
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Israel Hedig
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Nathan D Mathewson
- Dana Farber Cancer Institute, Harvard University, Cambridge, MA 02215, USA
| | - Rami Khoriaty
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - David Ginsburg
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavan Reddy
- Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Artigas F, Celada P, Bortolozzi A. Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. Eur Neuropsychopharmacol 2018. [PMID: 29525411 DOI: 10.1016/j.euroneuro.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the second part we focus on two treatment strategies that may overcome the main limitations of current antidepressant drugs. First, we review the experimental and clinical evidence supporting the use of glutamatergic drugs as fast-acting antidepressants. Secondly, we review the involvement of microRNAs (miRNAs) in the pathophysiology of major depressive disorder (MDD) and the use of small RNAs (e.g.., small interfering RNAs or siRNAs) to knockdown genes in monoaminergic and non-monoaminergic neurons and induce antidepressant-like responses in experimental animals. The development of glutamatergic agents is a promising venue for antidepressant drug development, given the antidepressant properties of the non-competitive NMDA receptor antagonist ketamine. Its unique properties appear to result from the activation of AMPA receptors by a metabolite [(2S,6S;2R,6R)-hydroxynorketamine (HNK)] and mTOR signaling. These effects increase synaptogenesis in prefrontal cortical pyramidal neurons and enhance serotonergic neurotransmission via descending inputs to the raphe nuclei. This view is supported by the cancellation of ketamine's antidepressant-like effects by inhibition of serotonin synthesis. We also review existing evidence supporting the involvement of miRNAs in MDD and the preclinical use of RNA interference (RNAi) strategies to target genes involved in antidepressant response. Many miRNAs have been associated to MDD, some of which e.g., miR-135 targets genes involved in antidepressant actions. Likewise, SSRI-conjugated siRNA evokes faster and/or more effective antidepressant-like responses. Intranasal application of sertraline-conjugated siRNAs directed to 5-HT1A receptors and SERT evoked much faster changes of pre- and postsynaptic antidepressant markers than those produced by fluoxetine.
Collapse
Affiliation(s)
- F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain.
| | - P Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - A Bortolozzi
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| |
Collapse
|
16
|
Nikam RR, Gore KR. Journey of siRNA: Clinical Developments and Targeted Delivery. Nucleic Acid Ther 2018; 28:209-224. [PMID: 29584585 DOI: 10.1089/nat.2017.0715] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the evolutionary discovery of RNA interference and its utilization for gene knockdown in mammalian cell, a remarkable progress has been achieved in small interfering RNA (siRNA) therapeutics. siRNA is a promising tool, utilized as therapeutic agent against various diseases. Despite its significant potential benefits, safe, efficient, and target oriented delivery of siRNA is one of the major challenges in siRNA therapeutics. This review covers major achievements in clinical trials and targeted delivery of siRNAs using various targeting ligand-receptor pair. Local and systemically administered siRNA drug candidates at various phases in clinical trials are described in this review. This review also provides a deep insight in development of targeted delivery of siRNA. Various targeting ligand-siRNA pair with complexation and conjugation approaches are discussed in this review. This will help to achieve further optimization and development in targeted delivery of siRNAs to achieve higher gene silencing efficiency with lowest siRNA dose availability.
Collapse
Affiliation(s)
| | - Kiran R Gore
- Department of Chemistry, University of Mumbai , Mumbai, India
| |
Collapse
|
17
|
Domenger C, Allais M, François V, Léger A, Lecomte E, Montus M, Servais L, Voit T, Moullier P, Audic Y, Le Guiner C. RNA-Seq Analysis of an Antisense Sequence Optimized for Exon Skipping in Duchenne Patients Reveals No Off-Target Effect. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:277-291. [PMID: 29499940 PMCID: PMC5785776 DOI: 10.1016/j.omtn.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 01/16/2023]
Abstract
Non-coding uridine-rich small nuclear RNAs (UsnRNAs) have emerged in recent years as effective tools for exon skipping for the treatment of Duchenne muscular dystrophy (DMD), a degenerative muscular genetic disorder. We recently showed the high capacity of a recombinant adeno-associated virus (rAAV)-U7snRNA vector to restore the reading frame of the DMD mRNA in the muscles of DMD dogs. We are now moving toward a phase I/II clinical trial with an rAAV-U7snRNA-E53, carrying an antisense sequence designed to hybridize exon 53 of the human DMD messenger. As observed for genome-editing tools, antisense sequences present a risk of off-target effects, reflecting partial hybridization onto unintended transcripts. To characterize the clinical antisense sequence, we studied its expression and explored the occurrence of its off-target effects in human in vitro models of skeletal muscle and liver. We presented a comprehensive methodology combining RNA sequencing and in silico filtering to analyze off-targets. We showed that U7snRNA-E53 induced the effective exon skipping of the DMD transcript without inducing the notable deregulation of transcripts in human cells, neither at gene expression nor at the mRNA splicing level. Altogether, these results suggest that the use of the rAAV-U7snRNA-E53 vector for exon skipping could be safe in eligible DMD patients.
Collapse
Affiliation(s)
- Claire Domenger
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France.
| | - Marine Allais
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Virginie François
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Adrien Léger
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Emilie Lecomte
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | | | - Laurent Servais
- Institute I-Motion, Hôpital Armand Trousseau, 75012 Paris, France
| | - Thomas Voit
- NIHR Biomedical Research Centre, UCL Institute of Child Health/Great Ormond Street Hospital NHS Trust, WC1N 1EH London, UK
| | - Philippe Moullier
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France
| | - Yann Audic
- CNRS, UMR 6290 Institut Génétique et Développement de Rennes, Université de Rennes 1, 35000 Rennes, France
| | - Caroline Le Guiner
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, 44200 Nantes, France.
| |
Collapse
|
18
|
Makita Y, Murata S, Katou Y, Kikuchi K, Uejima H, Teratani M, Hoashi Y, Kenjo E, Matsumoto S, Nogami M, Otake K, Kawamata Y. Anti-tumor activity of KNTC2 siRNA in orthotopic tumor model mice of hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 493:800-806. [PMID: 28843857 DOI: 10.1016/j.bbrc.2017.08.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is still one of the major causes of cancer-related death. Kinetochore-associated protein 2 (KNTC2) is specifically upregulated in tumor tissues of HCC patients and recognized as a potential candidate target for the treatment of HCC. However, the relationship between KNTC2 and in vivo tumor growth of HCC is not yet fully understood. Here we encapsulated KNTC2 siRNAs into a lipid nanoparticle (LNP) and investigated their knockdown activity, target engagement marker, anti-tumor activity and hepatotoxicity in an orthotopic HCC model mice of Hep3B-luc cells. Single i.v. administration of KNTC2 siRNA-LNP specifically suppressed the expression levels of both human KNTC2 mRNA and mouse Kntc2 mRNA in tumor tissues. Phosphorylation levels of histone H3 (HH3) at serine 10 in tumor tissues were increased by KNTC2 siRNA-LNP. Repeated administration of KNTC2 siRNA-LNP (twice a week) specifically inhibited the growth of tumor tissues without increasing the plasma AST and ALT levels. Their growth inhibitory activities were consistent with knockdown activities. These data strongly indicated that KNTC2 is a promising target for the treatment of HCC and that phosphorylated HH3 at serine 10 is one of the target engagement markers for KNTC2.
Collapse
Affiliation(s)
- Yukimasa Makita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan.
| | - Shumpei Murata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yoshiki Katou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kuniko Kikuchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Hiroshi Uejima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Mika Teratani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yasutaka Hoashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Eriya Kenjo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Satoru Matsumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Masahiro Nogami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kentaro Otake
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yuji Kawamata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
19
|
Oligonucleotide-targeting periostin ameliorates pulmonary fibrosis. Gene Ther 2017; 24:706-716. [PMID: 28820502 DOI: 10.1038/gt.2017.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/30/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with a median survival of 3-4 years after diagnosis. It is the most frequent form of a group of interstitial pneumonias of unknown etiology. Current available therapies prevent deterioration of lung function but no therapy has shown to improve survival. Periostin is a matricellular protein of the fasciclin 1 family. There is increased deposition of periostin in lung fibrotic tissues. Here we evaluated whether small interfering RNA or antisense oligonucleotide against periostin inhibits lung fibrosis by direct administration into the lung by intranasal route. Pulmonary fibrosis was induced with bleomycin and RNA therapeutics was administered during both acute and chronic phases of the disease. The levels of periostin and transforming growth factor-β1 in airway fluid and lung tissue, the deposition of collagen in lung tissue and the lung fibrosis score were significantly reduced in mice treated with siRNA and antisense against periostin compared to control mice. These findings suggest that direct administration of siRNA or antisense oligonucleotides against periostin into the lungs is a promising alternative therapeutic approach for the management of pulmonary fibrosis.
Collapse
|
20
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
21
|
Abstract
Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy.
Collapse
|
22
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
23
|
Abstract
RNA therapeutics refers to the use of oligonucleotides to target primarily ribonucleic acids (RNA) for therapeutic efforts or in research studies to elucidate functions of genes. Oligonucleotides are distinct from other pharmacological modalities, such as small molecules and antibodies that target mainly proteins, due to their mechanisms of action and chemical properties. Nucleic acids come in two forms: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). Although DNA is more stable, RNA offers more structural variety ranging from messenger RNA (mRNA) that codes for protein to non-coding RNAs, microRNA (miRNA), transfer RNA (tRNA), short interfering RNAs (siRNAs), ribosomal RNA (rRNA), and long-noncoding RNAs (lncRNAs). As our understanding of the wide variety of RNAs deepens, researchers have sought to target RNA since >80% of the genome is estimated to be transcribed. These transcripts include non-coding RNAs such as miRNAs and siRNAs that function in gene regulation by playing key roles in the transfer of genetic information from DNA to protein, the final product of the central dogma in biology1. Currently there are two main approaches used to target RNA: double stranded RNA-mediated interference (RNAi) and antisense oligonucleotides (ASO). Both approaches are currently in clinical trials for targeting of RNAs involved in various diseases, such as cancer and neurodegeneration. In fact, ASOs targeting spinal muscular atrophy and amyotrophic lateral sclerosis have shown positive results in clinical trials2. Advantages of ASOs include higher affinity due to the development of chemical modifications that increase affinity, selectivity while decreasing toxicity due to off-target effects. This review will highlight the major therapeutic approaches of RNA medicine currently being applied with a focus on RNAi and ASOs.
Collapse
Affiliation(s)
- Jessica Chery
- Harvard Medical School, Department of Cell Biology, Massachusetts General Hospital Cancer Center Boston, MA 02129
| |
Collapse
|
24
|
Martineau HM, Pyrah IT. Review of the Application of RNA Interference Technology in the Pharmaceutical Industry. Toxicol Pathol 2016; 35:327-36. [PMID: 17455080 DOI: 10.1080/01926230701197107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ribonucleic acid (RNA) interference (RNAi) is a recently discovered phenomenon whereby the introduction of double stranded (ds) RNA into the cytoplasm of the cell results in the specific and efficient degradation of complementary messenger (m) RNA and, therefore, reduced protein production. It was discovered by chance during attempts to develop flowers with increased colour intensity. The specific nature of the inhibition of protein production of cells has resulted in an explosion of research to understand and exploit RNAi. The technique is now established in in vitro systems, and much work is focussed in adapting RNAi for in vivo application. The potential of the technology in understanding physiological and pathological processes is significant, while its development as a therapeutic agent holds much promise as targeted agents. This review will describe the basic biological processes that drive RNAi, indicate current areas of areas research, and forecast future areas of development.
Collapse
Affiliation(s)
- Henny M Martineau
- Scottish Agricultural College, Allan Watt Building, Bush Estate, Penicuik, EH26 0QE, United Kingdom
| | | |
Collapse
|
25
|
Liu Y, Wang J. Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of ncRNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:429-58. [PMID: 27376745 DOI: 10.1007/978-981-10-1498-7_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge of multiple actions of short noncoding RNAs (ncRNAs) has truly allowed for viewing DNA, RNA, and protein in novel ways. The ncRNAs are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of ncRNAs in cancer therapy, many challenges remain, including rapid degradation and clearance, poor cellular uptake, off-target effects, and immunogenicity. Rational design, chemical modifications, and delivery carriers offer significant opportunities to overcome these challenges. In this chapter, the development of ncRNAs as cancer therapeutics from early stages to clinical trials and strategies for ncRNA-targeted delivery to cancer cells will be introduced.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China.
| |
Collapse
|
26
|
Recent Advances with ER Targeted Intrabodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:77-93. [DOI: 10.1007/978-3-319-32805-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
28
|
siRNA Versus miRNA as Therapeutics for Gene Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e252. [PMID: 26372022 PMCID: PMC4877448 DOI: 10.1038/mtna.2015.23] [Citation(s) in RCA: 716] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023]
Abstract
Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.
Collapse
|
29
|
Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7:1010-35. [PMID: 26252565 PMCID: PMC4966517 DOI: 10.1080/19420862.2015.1076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/02/2023] Open
Abstract
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.
Collapse
Affiliation(s)
- Andrea LJ Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Recombinant Protein Expression/Intrabody Unit, Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
30
|
Masanga JO, Matheka JM, Omer RA, Ommeh SC, Monda EO, Alakonya AE. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. PLANT CELL REPORTS 2015; 34:1379-1387. [PMID: 25895735 DOI: 10.1007/s00299-015-1794-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/20/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.
Collapse
Affiliation(s)
- Joel Okoyo Masanga
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | | | | | | | | | | |
Collapse
|
31
|
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 2015; 87:108-19. [PMID: 25666164 DOI: 10.1016/j.addr.2015.01.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/23/2022]
Abstract
The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment.
Collapse
|
32
|
Sándor N, Schilling-Tóth B, Kis E, Benedek A, Lumniczky K, Sáfrány G, Hegyesi H. Growth Differentiation Factor-15 (GDF-15) is a potential marker of radiation response and radiation sensitivity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:142-9. [PMID: 26520384 DOI: 10.1016/j.mrgentox.2015.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/28/2022]
Abstract
We have investigated the importance of GDF-15 (secreted cytokine belonging to the TGF-β superfamily) in low and high dose radiation-induced cellular responses. A telomerase immortalized human fibroblast cell line (F11hT) was used in the experiments. A lentiviral system encoding small hairpin RNAs (shRNA) was used to establish GDF-15 silenced cells. Secreted GDF-15 levels were measured in culture medium by ELISA. Cell cycle analysis was performed by flow cytometry. The experiments demonstrated that in irradiated human fibroblasts GDF-15 expression increased with dose starting from 100mGy. Elevated GDF-15 expression was not detected in bystander cells. The potential role of GDF-15 in radiation response was investigated by silencing GDF-15 in immortalized human fibroblasts with five different shRNA encoded in lentiviral vectors. Cell lines with considerably reduced GDF-15 levels presented increased radiation sensitivity, while a cell line with elevated GDF-15 was more radiation resistant than wild type cells. We have investigated how the reduced GDF-15 levels alter the response of several known radiation inducible genes. In F11hT-shGDF-15 cells the basal expression level of CDKN1A was unaltered relative to F11hT cells, while GADD45A and TGF-β1 mRNA levels were slightly higher, and TP53INP1 was considerably reduced. The radiation-induced expression of TP53INP1 was lower in the silenced than in wild type fibroblast cells. Cell cycle analysis indicated that radiation-induced early G2/M arrest was abrogated in GDF-15 silenced cells. Moreover, radiation-induced bystander effect was less pronounced in GDF-15 silenced fibroblasts. In conclusion, the results suggest that GDF-15 works as a radiation inducible radiation resistance increasing factor in normal human fibroblast cells, acts by regulating the radiation-induced transcription of several genes and might serve as a radiation-induced early biomarker in exposed cells.
Collapse
Affiliation(s)
- Nikolett Sándor
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Boglárka Schilling-Tóth
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Enikő Kis
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Anett Benedek
- Division of Cellular and Immune-radiobiology, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Katalin Lumniczky
- Division of Cellular and Immune-radiobiology, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary
| | - Géza Sáfrány
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary.
| | - Hargita Hegyesi
- Division of Molecular Radiobiology and Biodosimetry, F. Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Anna 5., Budapest, Hungary; Department of Morphology and Physiology, College of Health Care, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Lee HS, Lee HY, Kim YJ, Jung HD, Choi KJ, Yang JM, Kim SS, Kim K. Small interfering (Si) RNA mediated baculovirus replication reduction without affecting target gene expression. Virus Res 2015; 199:68-76. [PMID: 25630059 DOI: 10.1016/j.virusres.2015.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/26/2022]
Abstract
The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant protein with posttranslational modification. Recombinant baculoviruses (such as Autographa californica multiple nuclear polyhedrosis virus) are especially useful in producing recombinant proteins and virus-like particles (VLPs) as biodrugs or candidate vaccines for the prevention of serious infectious diseases. However, during the bioprocessing of recombinant proteins in insect cells, baculovirus replication and viral budding are coincident. In some cases, residual baculovirus contaminants remain in the recombinant protein products, even though various purification processes are applied such as ion-exchange chromatography, ultracentrifugation, or gel filtration. To reduce unexpected contamination caused by replication and budding-out of the baculovirus, we designed short interfering (si) RNAs targeting glycoprotein 64 (GP64) or single-stranded DNA-binding protein (DBP) to inhibit baculovirus replication during overexpression of recombinant foreign genes. GP64 is known to be critical both for the entry of virions into cells and for the assembly of the budded virion at the cell surface. DBP is also essential for virus assembly by regulation of the capsid protein P39 and the polyhedrin protein. This study showed that GP64 expression was suppressed by GP64 siRNAs in Western blot experiments, while the expression of recombinant proteins was unaffected. In addition, transfection of GP64 siRNAs and DBP siRNAs reduced the level of baculovirus replication, compared with the treatment with scrambled siRNAs. However, DBP siRNA also suppressed the expression of recombinant proteins. In conclusion, our GP64 siRNAs showed that an interfering RNA system, such as siRNAs and short hairpin (sh) RNAs, can be applicable to reduce baculovirus contaminants during the bioprocessing of recombinant proteins in insect cells. Further investigation should be carried out to establish transformed insect cell lines with stable expression of corresponding interfering RNAs.
Collapse
Affiliation(s)
- Han Saem Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Ho Yeon Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - You-Jin Kim
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Hee-Dong Jung
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Ki Ju Choi
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Jai Myung Yang
- Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Sung Soon Kim
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Kisoon Kim
- Division of Influenza Virus, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea.
| |
Collapse
|
34
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
35
|
Horii T, Hatada I. Genome engineering using the CRISPR/Cas system. World J Med Genet 2014; 4:69-76. [DOI: 10.5496/wjmg.v4.i3.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/12/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Recently, an epoch-making genome engineering technology using clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR associated (Cas) nucleases, was developed. Previous technologies for genome manipulation require the time-consuming design and construction of genome-engineered nucleases for each target and have, therefore, not been widely used in mouse research where standard techniques based on homologous recombination are commonly used. The CRISPR/Cas system only requires the design of sequences complementary to a target locus, making this technology fast and straightforward. In addition, CRISPR/Cas can be used to generate mice carrying mutations in multiple genes in a single step, an achievement not possible using other methods. Here, we review the uses of this technology in genetic analysis and manipulation, including achievements made possible to date and the prospects for future therapeutic applications.
Collapse
|
36
|
Bhinder B, Shum D, Li M, Ibáñez G, Vlassov AV, Magdaleno S, Djaballah H. Discovery of a dicer-independent, cell-type dependent alternate targeting sequence generator: implications in gene silencing & pooled RNAi screens. PLoS One 2014; 9:e100676. [PMID: 24987961 PMCID: PMC4079264 DOI: 10.1371/journal.pone.0100676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
There is an acceptance that plasmid-based delivery of interfering RNA always generates the intended targeting sequences in cells, making it as specific as its synthetic counterpart. However, recent studies have reported on cellular inefficiencies of the former, especially in light of emerging gene discordance at inter-screen level and across formats. Focusing primarily on the TRC plasmid-based shRNA hairpins, we reasoned that alleged specificities were perhaps compromised due to altered processing; resulting in a multitude of random interfering sequences. For this purpose, we opted to study the processing of hairpin TRCN#40273 targeting CTTN; which showed activity in a miRNA-21 gain-of-function shRNA screen, but inactive when used as an siRNA duplex. Using a previously described walk-through method, we identified 36 theoretical cleavage variants resulting in 78 potential siRNA duplexes targeting 53 genes. We synthesized and tested all of them. Surprisingly, six duplexes targeting ASH1L, DROSHA, GNG7, PRKCH, THEM4, and WDR92 scored as active. QRT-PCR analysis on hairpin transduced reporter cells confirmed knockdown of all six genes, besides CTTN; revealing a surprising 7 gene-signature perturbation by this one single hairpin. We expanded our qRT-PCR studies to 26 additional cell lines and observed unique knockdown profiles associated with each cell line tested; even for those lacking functional DICER1 gene suggesting no obvious dependence on dicer for shRNA hairpin processing; contrary to published models. Taken together, we report on a novel dicer independent, cell-type dependent mechanism for non-specific RNAi gene silencing we coin Alternate Targeting Sequence Generator (ATSG). In summary, ATSG adds another dimension to the already complex interpretation of RNAi screening data, and provides for the first time strong evidence in support of arrayed screening, and questions the scientific merits of performing pooled RNAi screens, where deconvolution of up to genome-scale pools is indispensable for target identification.
Collapse
Affiliation(s)
- Bhavneet Bhinder
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David Shum
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mu Li
- Thermo Fisher Scientific, Austin, Texas, United States of America
| | - Glorymar Ibáñez
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | | | - Susan Magdaleno
- Thermo Fisher Scientific, Austin, Texas, United States of America
| | - Hakim Djaballah
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Angart P, Vocelle D, Chan C, Walton SP. Design of siRNA Therapeutics from the Molecular Scale. Pharmaceuticals (Basel) 2013; 6:440-68. [PMID: 23976875 PMCID: PMC3749788 DOI: 10.3390/ph6040440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics.
Collapse
Affiliation(s)
- Phillip Angart
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2527, East Lansing, MI 48824, USA; (P.A.); (D.V.); (C.C.)
| | | | | | | |
Collapse
|
38
|
Zare-Shahabadi A, Renaudineau Y, Rezaei N. MicroRNAs and multiple sclerosis: from physiopathology toward therapy. Expert Opin Ther Targets 2013; 17:1497-507. [PMID: 24053428 DOI: 10.1517/14728222.2013.838219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are an emerging group of small noncoding RNAs that regulate gene expression posttranscriptionally, by targeting messenger RNAs (mRNAs) for translational repression or degradation. They have roles in multiple facets of immunity, from regulation of cell development to activation and function in immune responses. Recent evidence underlines an involvement of miRNAs in the pathogenesis of autoimmune diseases as well as multiple sclerosis (MS). AREAS COVERED In this review, the current knowledge of miRNA biogenesis, diverse roles of miRNAs in different cells that could be involved in the process of the disease, and their potential therapeutic applications are summarized. The authors searched MEDLINE and Science direct databases. EXPERT OPINION The miRNAs in central nervous system lesions and peripheral blood are potential biomarkers for diagnostic and prognostic use. Also, miRNA mimics, small-molecule inhibitors of specific miRNAs, and antisense oligonucleotides could be therapeutic weapons that facilitate us to combat the disease.
Collapse
Affiliation(s)
- Ameneh Zare-Shahabadi
- Tehran University of Medical Sciences, School of Medicine, Molecular Immunology Research Center, Department of Immunology , Tehran , Iran
| | | | | |
Collapse
|
39
|
Hashimoto T, Yamada M, Iwai T, Saitoh A, Hashimoto E, Ukai W, Saito T, Yamada M. Plasticity-related gene 1 is important for survival of neurons derived from rat neural stem cells. J Neurosci Res 2013; 91:1402-7. [PMID: 24038138 DOI: 10.1002/jnr.23269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/24/2013] [Accepted: 06/01/2013] [Indexed: 01/21/2023]
Abstract
Plasticity-related gene 1 (Prg1) is a membrane-associated lipid phosphate phosphatase. In this study, we first investigated the role of Prg1 in the survival of neurons derived from rat neural stem cells (NSCs) using small interfering RNA (siRNA). Prg1 knock-down decreased the cell number. Interestingly, Prg1 knock-down increased genomic DNA fragmentation, suggesting the possible induction of apoptosis. Exogenously expressed Prg1 rescued the cells from death and restored the loss of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) activity induced with Prg1 siRNA. However, exogenously expressed mutated-Prg1 (the 253rd amino acid, histidine253, had been changed to alanine) did not rescue the cell death or restore the MTT activity. Histidine253 of Prg1 has been reported to be important for lipid phosphate phosphatase activity. These results suggest that Prg1 is important for survival of neurons through its dephosphorylation activity.
Collapse
Affiliation(s)
- Tomio Hashimoto
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Assessing unintended hybridization-induced biological effects of oligonucleotides. Nat Biotechnol 2013; 30:920-3. [PMID: 23051805 DOI: 10.1038/nbt.2376] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Nejepinska J, Flemr M, Svoboda P. Control of the interferon response in RNAi experiments. Methods Mol Biol 2012; 820:133-61. [PMID: 22131030 DOI: 10.1007/978-1-61779-439-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA interference (RNAi) and interferons have been an uneasy marriage. Ever since the discovery of RNAi in mammals, the interferon response has been a feared problem. While RNAi became an efficient and widespread method for gene silencing in mammals, numerous studies recognized several obstacles, including undesirable activation of the interferon response, which need to be overcome to achieve a specific and robust RNAi effect. The aim of this text is to provide theoretical and practical information for scientists who want to control interferon response and other adverse effects in their RNAi experiments.
Collapse
Affiliation(s)
- Jana Nejepinska
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
42
|
Teng X, Liu JY, Li D, Fang Y, Wang XY, Ma YX, Chen SJ, Zhao YX, Xu WZ, Gu HX. Application of allele-specific RNAi in hepatitis B virus lamivudine resistance. J Viral Hepat 2011; 18:e491-8. [PMID: 21914068 DOI: 10.1111/j.1365-2893.2011.01483.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Understanding the consequences of mutation in the tyrosine-methionine-aspartate-aspartate (YMDD) motif of hepatitis B virus (HBV) genome on replication is critical for treating chronic hepatitis B with lamivudine. Allele-specific gene silencing by RNAi (allele-specific RNAi: ASP-RNAi) is an advanced application of RNAi techniques. Use of this strategy as a means for specifically inhibiting an allele expression of interest suggested that it can specifically suppress the expression of alleles causing disease without inhibiting the expression of corresponding wild-type alleles. However, no studies have used ASP-RNAi to address the issue of HBV lamivudine resistance. In this study, we applied ASP-RNAi into two long-term eukaryotic cell lines of full-length HBV containing either lamivudine-resistant mutants (HBV-YIDD) or wild type (HBV-WT) which we generated in previously. The designed siRNAs were also used in this eukaryotic expression system together with lamivudine. ELISA and real-time PCR were performed to monitor virus-specific protein synthesis and viral DNA replication. The results showed that the base substitutions conferring marked ASP-RNAi appeared to be largely present in positions 1, 3, 6, 11, 12, 15 and 19 of the sense strand of siRNAs which were different from the most sensitive positions of this application in eukaryotes. In addition, siRNA-lamivudine combinations did not possess the prominent anti-HBV activity we expected because of some unknown mechanisms. These findings recapitulated many of the features of ASP-RNAi in hepadnaviruses which provided a new insight into the development of a potent strategy against HBV drug resistance.
Collapse
Affiliation(s)
- X Teng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guest ST, Yu J, Liu D, Hines JA, Kashat MA, Finley RL. A protein network-guided screen for cell cycle regulators in Drosophila. BMC SYSTEMS BIOLOGY 2011; 5:65. [PMID: 21548953 PMCID: PMC3113730 DOI: 10.1186/1752-0509-5-65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/06/2011] [Indexed: 11/15/2022]
Abstract
Background Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. Results We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. Conclusions Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival.
Collapse
Affiliation(s)
- Stephen T Guest
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | |
Collapse
|
44
|
A liposome-based platform, VacciMax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine 2010; 28:6176-82. [PMID: 20656034 DOI: 10.1016/j.vaccine.2010.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 06/10/2010] [Accepted: 07/08/2010] [Indexed: 11/24/2022]
Abstract
Nucleic acid vaccines represent a promising alternative to killed bacterial antigen, recombinant protein or peptide vaccines for infectious diseases and cancer immunotherapy. Although significant advances are made with DNA vaccines in animal studies, there are severe limitations to deliver these vaccines effectively and considerable reservations exist about current methods used. In this study, a liposome-based vaccine platform, VacciMax (VM), and its modified water-free version, DepoVax (DPX), were tested for their ability to improve in vivo delivery of plasmid DNA (pDNA), mRNA and siRNA. Subcutaneously injected pDNA for IL12 and pDNA as well as mRNA for green fluorescent protein (GFP) in VM/DPX significantly enhanced their in vivo expression. Enhanced IL12 secretion and GFP expression was restricted to CD11b(+) and CD11c(+) antigen-presenting cells, but not B cells. Further, significant inhibition of plasmid/antigen-induced IL12 secretion was seen after injection of IL12-siRNA in VM. These findings suggest VM and DPX to be promising means of delivering nucleic acid vaccines in vivo, and warrant further studies on their role in inducing effective immune responses.
Collapse
|
45
|
Ui-Tei K, Naito Y, Saigo K. Essential notes regarding the design of functional siRNAs for efficient mammalian RNAi. J Biomed Biotechnol 2010; 2006:65052. [PMID: 17057367 PMCID: PMC1559925 DOI: 10.1155/jbb/2006/65052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Short interfering RNAs (siRNAs) are widely used to bring about RNA
interference (RNAi) in mammalian cells. Numerous siRNAs may be
designed for any target gene though most of which would be
incapable of efficiently inducing mammalian RNAi. Certain highly
functional siRNAs designed for knockout of a particular gene may
render unrelated endogenous genes nonfunctional. These major
bottlenecks should be properly eliminated when RNAi technologies
are employed for any experiment in mammalian functional genomics.
This paper thus presents essential notes and findings regarding
the proper choice of siRNA-sequence selection algorithms and
web-based online software systems.
Collapse
Affiliation(s)
- Kumiko Ui-Tei
- Department of Biophysics and Biochemistry, Graduate
School of Science and Undergraduate Program for
Bioinformatics and Systems Biology, School of
Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Naito
- Department of Biophysics and Biochemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- *Kaoru Saigo:
| |
Collapse
|
46
|
Huang H, Qiao R, Zhao D, Zhang T, Li Y, Yi F, Lai F, Hong J, Ding X, Yang Z, Zhang L, Du Q, Liang Z. Profiling of mismatch discrimination in RNAi enabled rational design of allele-specific siRNAs. Nucleic Acids Res 2010; 37:7560-9. [PMID: 19815667 PMCID: PMC2794185 DOI: 10.1093/nar/gkp835] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Silencing specificity is a critical issue in the therapeutic applications of siRNA, particularly in the treatment of single nucleotide polymorphism (SNP) diseases where discrimination against single nucleotide variation is demanded. However, no generally applicable guidelines are available for the design of such allele-specific siRNAs. In this paper, the issue was approached by using a reporter-based assay. With a panel of 20 siRNAs and 240 variously mismatched target reporters, we first demonstrated that the mismatches were discriminated in a position-dependent order, which was however independent of their sequence contexts using position 4th, 12th and 17th as examples. A general model was further built for mismatch discrimination at all positions using 230 additional reporter constructs specifically designed to contain mismatches distributed evenly along the target regions of different siRNAs. This model was successfully employed to design allele-specific siRNAs targeting disease-causing mutations of PIK3CA gene at two SNP sites. Furthermore, conformational distortion of siRNA-target duplex was observed to correlate with the compromise of gene silencing. In summary, these findings could dramatically simplify the design of allele-specific siRNAs and might also provide guide to increase the specificity of therapeutic siRNAs.
Collapse
Affiliation(s)
- Huang Huang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T. Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 2010; 123:723-35. [PMID: 20144992 DOI: 10.1242/jcs.062497] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The v-SNARE TI-VAMP (VAMP7) mediates exocytosis during neuritogenesis, phagocytosis and lysosomal secretion. It localizes to endosomes and lysosomes but also to the trans-Golgi network. Here we show that depletion of TI-VAMP enhances the endocytosis of activated EGF receptor (EGFR) without affecting constitutive endocytosis of EGFR, or transferrin uptake. This increased EGFR internalization is mainly clathrin dependent. Searching for defects in EGFR regulators, we found that TI-VAMP depletion reduces the cell surface amount of CD82, a tetraspanin known to control EGFR localization in microdomains. We further show that TI-VAMP is required for secretion from the Golgi apparatus to the cell surface, and that TI-VAMP-positive vesicles transport CD82. Quantum dots video-microscopy indicates that depletion of TI-VAMP, or its cargo CD82, restrains EGFR diffusion and the area explored by EGFR at the cell surface. Both depletions also impair MAPK signaling and enhance endocytosis of activated EGFR by increased recruitment of AP-2. These results highlight the role of TI-VAMP in the secretory pathway of a tetraspanin, and support a model in which CD82 allows EGFR entry in microdomains that control its clathrin-dependent endocytosis and signaling.
Collapse
Affiliation(s)
- Lydia Danglot
- INSERM U950, Membrane Traffic in Neuronal & Epithelial Morphogenesis, Paris, F-75013, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Nemunaitis J, Roth J. Gene-Based Therapies for Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
López-Fraga M, Martínez T, Jiménez A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs 2009; 23:305-32. [PMID: 19754220 PMCID: PMC7099360 DOI: 10.2165/11318190-000000000-00000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that regulates gene expression by a highly precise mechanism of sequence-directed gene silencing at the stage of translation by degrading specific messenger RNAs or blocking translation. In recent years, the use of RNAi for therapeutic applications has gained considerable momentum. It has been suggested that most of the novel disease-associated targets that have been identified are not ‘druggable’ with conventional approaches. However, any disease-causing gene and any cell type or tissue can potentially be targeted with RNAi. This review focuses on the current knowledge of RNAi mechanisms and the safety issues associated with its potential use in a therapeutic setting. Some of the most important aspects to consider when working towards the application of RNAi-based products in a clinical setting have been related to achieving high efficacies and enhanced stability profiles through a careful design of the nucleic acid sequence and the introduction of chemical modifications, but most of all, to developing improved delivery systems, both viral and non-viral. These new delivery systems allow for these products to reach the desired target cells, tissues or organs in a highly specific manner and after administration of the lowest possible doses. Various routes of application and target locations are currently being addressed in order to develop effective delivery systems for different targets and pathologies, including infectious pathologies, genetic pathologies and diseases associated with dysregulation of endogenous microRNAs. As with any new technology, several challenges and important aspects to be considered have risen on the road to clinical intervention, e.g. correct design of preclinical toxicology studies, regulatory concerns, and intellectual property protection. The main advantages related to the use of RNAi-based products in a clinical setting, and the latest clinical and preclinical studies using these compounds, are reviewed.
Collapse
|
50
|
Vidal-Cardenas SL, Greider CW. Comparing effects of mTR and mTERT deletion on gene expression and DNA damage response: a critical examination of telomere length maintenance-independent roles of telomerase. Nucleic Acids Res 2009; 38:60-71. [PMID: 19850716 PMCID: PMC2800220 DOI: 10.1093/nar/gkp855] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase, the essential enzyme that maintains telomere length, contains two core components, TERT and TR. Early studies in yeast and mouse showed that loss of telomerase leads to phenotypes only after several generations, due to telomere shortening. However, recent studies have suggested additional roles for telomerase components in transcription and the response to DNA damage. To examine these potential telomere length maintenance-independent roles of telomerase components, we examined first generation mTR(-/-) and mTERT(-/-) mice with long telomeres. We used gene expression profiling and found no genes that were differentially expressed in mTR(-/-) G1 mice and mTERT(-/-) G1 mice compared with wild-type mice. We also compared the response to DNA damage in mTR(-/-)G1 and mTERT(-/-) G1 mouse embryonic fibroblasts, and found no increase in the response to DNA damage in the absence of either telomerase component compared to wild-type. We conclude that, under physiologic conditions, neither mTR nor mTERT acts as a transcription factor or plays a role in the DNA damage response.
Collapse
Affiliation(s)
- Sofia L Vidal-Cardenas
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|