1
|
Felice F, De Falco P, Milani M, Castelli S, Ragnini-Wilson A, Lazzarino G, D'Ambrosi N, Ciccarone F, Ciriolo MR. N-acetylaspartate mitigates pro-inflammatory responses in microglial cells by intersecting lipid metabolism and acetylation processes. Cell Commun Signal 2024; 22:564. [PMID: 39587614 PMCID: PMC11587775 DOI: 10.1186/s12964-024-01947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Microglia play a crucial role in brain development and repair by facilitating processes such as synaptic pruning and debris clearance. They can be activated in response to various stimuli, leading to either pro-inflammatory or anti-inflammatory responses associated with specific metabolic alterations. The imbalances between microglia activation states contribute to chronic neuroinflammation, a hallmark of neurodegenerative diseases. N-acetylaspartate (NAA) is a brain metabolite predominantly produced by neurons and is crucial for central nervous system health. Alterations in NAA metabolism are observed in disorders such as Multiple Sclerosis and Canavan disease. While NAA's role in oligodendrocytes and astrocytes has been investigated, its impact on microglial function remains less understood. METHODS The murine BV2 microglial cell line and primary microglia were used as experimental models. Cells were treated with exogenous NAA and stimulated with LPS/IFN-γ to reproduce the pro-inflammatory phenomenon. HPLC and immunofluorescence analysis were used to study lipid metabolism following NAA treatment. Automated fluorescence microscopy was used to analyze phagocytic activity. The effects on the pro-inflammatory response were evaluated by analysis of protein/mRNA expression and ChIP assay of typical inflammatory markers. RESULTS NAA treatment promotes an increase in both lipid synthesis and degradation, and enhances the phagocytic activity of BV2 cells, thus fostering surveillant microglia characteristics. Importantly, NAA decreases the pro-inflammatory state induced by LPS/IFN-γ via the activation of histone deacetylases (HDACs). These findings were validated in primary microglial cells, highlighting the impact on cellular metabolism and inflammatory responses. CONCLUSIONS The study highlighted the role of NAA in reinforcing the oxidative metabolism of surveillant microglial cells and, most importantly, in buffering the inflammatory processes characterizing reactive microglia. These results suggest that the decreased levels of NAA observed in neurodegenerative disorders can contribute to chronic neuroinflammation.
Collapse
Affiliation(s)
- Federica Felice
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Pamela De Falco
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Martina Milani
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Serena Castelli
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | | | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy.
- IRCCS San Raffaele Roma, Rome, 00166, Italy.
| |
Collapse
|
2
|
Khan T, Waseem R, Shahid M, Ansari J, Hassan MI, Shamsi A, Islam A. Understanding the Modulation of α-Synuclein Fibrillation by N-Acetyl Aspartate: A Brain Metabolite. ACS OMEGA 2024; 9:12262-12271. [PMID: 38496993 PMCID: PMC10938311 DOI: 10.1021/acsomega.4c00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
α-Synuclein (α-Syn) fibrillation is a prominent contributor to neuronal deterioration and plays a significant role in the advancement of Parkinson's Disease (PD). Considering this, the exploration of novel compounds that can inhibit or modulate the aggregation of α-Syn is a topic of significant research. This study, for the first time, elucidated the effect of N-acetyl aspartate (NAA), a brain osmolyte, on α-Syn aggregation using spectroscopic and microscopic approaches. Thioflavin T (ThT) assay revealed that a lower concentration of NAA inhibits α-Syn aggregation, whereas higher concentrations of NAA accelerate the aggregation. Further, this paradoxical effect of NAA was complemented by ANS, RLS, and the turbidity assay. The secondary structure transition was more pronounced at higher concentrations of NAA by circular dichroism, corroborating the fluorescence spectroscopic observations. Confocal microscopy also confirmed the paradoxical effect of NAA on α-Syn aggregation. Interaction studies including fluorescence quenching and molecular docking were employed to determine the binding affinity and critical residues involved in the α-Syn-NAA interaction. The explanation for this paradoxical nature of NAA could be a solvophobic effect. The results offer a profound understanding of the modulatory mechanism of α-Syn aggregation by NAA, thereby suggesting the potential role of NAA at lower concentrations in therapeutics against α-Syn aggregation-related disorders.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department
of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman346, United Arab
Emirates
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
3
|
Ban W, Jiang X, Lv L, Jiao Y, Huang J, Yang Z, You Y. Illustrate the distribution and metabolic regulatory effects of pterostilbene in cerebral ischemia-reperfusion rat brain by mass spectrometry imaging and spatial metabolomics. Talanta 2024; 266:125060. [PMID: 37598445 DOI: 10.1016/j.talanta.2023.125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Pterostilbene is a promising molecule with superior pharmacological activities and pharmacokinetic characteristics compared to its structural analogue resveratrol, which could be used to treat ischemic stroke. However, its mechanism is still unclear. The cutting-edge air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and spatial metabolomics analysis were applied to investigate the distribution of pterostilbene in ischemic rat brain and the changes of related small molecule metabolic pathways to further explore the potential mechanisms of pterostilbene against cerebral ischemia-reperfusion injury. This research found that pterostilbene could significantly restore cerebral microcirculation blood flow, reduce infarct volume, improve neurological function and ameliorate neuronal damage in ischemic rats. Moreover, pterostilbene was widely and abundantly distributed in ischemic brain tissue, laying a solid foundation for the rescue of ischemic penumbra. Further study revealed that pterostilbene played a therapeutic role in restoring energy supply, rebalancing neurotransmitters, reducing abnormal polyamine accumulation and phospholipid metabolism. These findings offer an opportunity to illustrate novel mechanisms of pterostilbene in the treatment of cerebral ischemia/reperfusion injury resulting from ischemic stroke.
Collapse
Affiliation(s)
- Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Xinyi Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lingjuan Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianpeng Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Meng Q, Lin M, Song W, Wu J, Cao G, Huang P, Su Z, Gu W, Deng X, Xu P, Yang Y, Li H, Liu H, Zhang F. The gut-joint axis mediates the TNF-induced RA process and PBMT therapeutic effects through the metabolites of gut microbiota. Gut Microbes 2023; 15:2281382. [PMID: 38017660 PMCID: PMC10730145 DOI: 10.1080/19490976.2023.2281382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
The gut-joint axis, one of the mechanisms that mediates the onset and progression of joint and related diseases through gut microbiota, and shows the potential as therapeutic target. A variety of drugs exert therapeutic effects on rheumatoid arthritis (RA) through the gut-joint axis. However, the anti-inflammatory and immunomodulatory effect of novel photobiomodulatory therapy (PBMT) on RA need further validation and the involvement of gut-joint axis in this process remains unknown. The present study demonstrated the beneficial effects of PBMT on RA, where we found the restoration of gut microbiota homeostasis, and the related key pathways and metabolites after PBMT. We also discovered that the therapeutic effects of PBMT on RA mainly through the gut-joint axis, in which the amino acid metabolites (Alanine and N-acetyl aspartate) play the key role and rely on the activity of metabolic enzymes in the target organs. Together, the results prove that the metabolites of amino acid from gut microbiota mediate the regulation effect on the gut-joint axis and the therapeutic effect on rheumatoid arthritis of PBMT.
Collapse
Affiliation(s)
- Qingtai Meng
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Monan Lin
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Wuqi Song
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Jiahui Wu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Guoding Cao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Ping Huang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zaiyu Su
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Wei Gu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Xueqing Deng
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Peng Xu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yi Yang
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hui Li
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hailiang Liu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
O'Neill J, Diaz MP, Alger JR, Pochon JB, Ghahremani D, Dean AC, Tyndale RF, Petersen N, Marohnic S, Karaiskaki A, London ED. Smoking, tobacco dependence, and neurometabolites in the dorsal anterior cingulate cortex. Mol Psychiatry 2023; 28:4756-4765. [PMID: 37749232 PMCID: PMC10914613 DOI: 10.1038/s41380-023-02247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Cigarette smoking has a major impact on global health and morbidity, and positron emission tomographic research has provided evidence for reduced inflammation in the human brain associated with cigarette smoking. Given the consequences of inflammatory dysfunction for health, the question of whether cigarette smoking affects neuroinflammation warrants further investigation. The goal of this project therefore was to validate and extend evidence of hypoinflammation related to smoking, and to examine the potential contribution of inflammation to clinical features of smoking. Using magnetic resonance spectroscopy, we measured levels of neurometabolites that are putative neuroinflammatory markers. N-acetyl compounds (N-acetylaspartate + N-acetylaspartylglutamate), glutamate, creatine, choline-compounds (phosphocholine + glycerophosphocholine), and myo-inositol, have all been linked to neuroinflammation, but they have not been examined as such with respect to smoking. We tested whether people who smoke cigarettes have brain levels of these metabolites consistent with decreased neuroinflammation, and whether clinical features of smoking are associated with levels of these metabolites. The dorsal anterior cingulate cortex was chosen as the region-of-interest because of previous evidence linking it to smoking and related states. Fifty-four adults who smoked daily maintained overnight smoking abstinence before testing and were compared with 37 nonsmoking participants. Among the smoking participants, we tested for associations of metabolite levels with tobacco dependence, smoking history, craving, and withdrawal. Levels of N-acetyl compounds and glutamate were higher, whereas levels of creatine and choline compounds were lower in the smoking group as compared with the nonsmoking group. In the smoking group, glutamate and creatine levels correlated negatively with tobacco dependence, and creatine correlated negatively with lifetime smoking, but none of the metabolite levels correlated with craving or withdrawal. The findings indicate a link between smoking and a hypoinflammatory state in the brain, specifically in the dorsal anterior cingulate cortex. Smoking may thereby increase vulnerability to infection and brain injury.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Maylen Perez Diaz
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
- Biogen, Inc., Nashville, TN, USA
| | - Jeffry R Alger
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jean-Baptiste Pochon
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dara Ghahremani
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrew C Dean
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, and Department of Psychiatry, University of Toronto, and Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Nicole Petersen
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shane Marohnic
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrea Karaiskaki
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Grodin EN, Nieto SJ, Meredith LR, Burnette E, O’Neill J, Alger J, London ED, Miotto K, Evans CJ, Irwin MR, Ray LA. Effects of ibudilast on central and peripheral markers of inflammation in alcohol use disorder: A randomized clinical trial. Addict Biol 2022; 27:e13182. [PMID: 35754106 PMCID: PMC9888600 DOI: 10.1111/adb.13182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 02/02/2023]
Abstract
Ibudilast, a neuroimmune modulator, shows promise as a pharmacotherapy for alcohol use disorder (AUD). In vivo administration of ibudilast reduces the expression of pro-inflammatory cytokines in animal models, but its effects on markers of inflammation in humans are unknown. This preliminary study examined the effect of ibudilast on peripheral and potential central markers of inflammation in individuals with AUD. This study also explored the predictive relationship of neurometabolite markers with subsequent drinking in the trial. Non-treatment-seeking individuals with an AUD (n = 52) were randomized to receive oral ibudilast (n = 24) or placebo (n = 28) for 2 weeks. Plasma levels of peripheral inflammatory markers were measured at baseline and after 1 and 2 weeks of medication. At study mid-point, proton magnetic resonance spectroscopy was performed to measure potential neurometabolite markers of inflammation: choline-compounds (Cho), myo-inositol (MI) and creatine + phosphocreatine (Cr) in frontal and cingulate cortices from 43 participants (ibudilast: n = 20; placebo: n = 23). The treatment groups were compared on peripheral and central markers. Ibudilast-treated participants had lower Cho in superior frontal white matter and nominally lower MI in pregenual anterior cingulate cortex. Ibudilast-treated participants had nominally lower C-reactive protein levels at visit 2 and nominally lower TNF-α/IL-10 ratios, relative to placebo. C-reactive protein and Cho levels were correlated, controlling for medication. Superior frontal white matter Cho predicted drinking in the following week. Micro-longitudinal ibudilast treatment may induce peripheral and putative central anti-inflammatory responses in patients with AUD. The neurometabolite responses may be associated with reduction in drinking, suggesting an anti-inflammatory component to the therapeutic action of ibudilast.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Steven J. Nieto
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Lindsay R. Meredith
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Elizabeth Burnette
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA
| | - Joseph O’Neill
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
| | - Jeffry Alger
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA
| | - Edythe D. London
- Brain Research Institute, University of California, Los Angeles, CA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA
| | - Karen Miotto
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
| | - Christopher J. Evans
- Brain Research Institute, University of California, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
| | - Michael R. Irwin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
| | - Lara A. Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Donahue EK, Bui V, Foreman RP, Duran JJ, Venkadesh S, Choupan J, Van Horn JD, Alger JR, Jakowec MW, Petzinger GM, O'Neill J. Magnetic resonance spectroscopy shows associations between neurometabolite levels and perivascular space volume in Parkinson's disease: a pilot and feasibility study. Neuroreport 2022; 33:291-296. [PMID: 35594442 DOI: 10.1097/wnr.0000000000001781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Higher volume fraction of perivascular space (PVS) has recently been reported in Parkinson's disease (PD) and related disorders. Both elevated PVS and altered levels of neurometabolites, assayed by proton magnetic resonance spectroscopy (MRS), are suspected indicators of neuroinflammation, but no published reports have concurrently examined PVS and MRS neurometabolites. METHODS In an exploratory pilot study, we acquired multivoxel 3-T MRS using a semi-Localization by Adiabatic SElective Refocusing (sLASER) pulse-sequence (repetition time/echo time = 2810/60 ms, voxels 10 × 10 × 10 mm3) from a 2D slab sampling bilateral frontal white matter (FWM) and anterior middle cingulate cortex (aMCC). PVS maps obtained from high-resolution (0.8 × 0.8 × 0.8 mm3) T1-weighted MRI were co-registered with MRS. In each MRS voxel, PVS volume and neurometabolite levels were measured. RESULTS Linear regression accounting for age, sex, and BMI found greater PVS volume for higher levels of choline-containing compounds (Cho; P = 0.047) in FWM and lower PVS volume for higher levels of N-acetyl compounds (NAA; P = 0.012) in aMCC. Since (putatively) higher Cho is associated with inflammation while NAA has anti-inflammatory properties, these observations add to evidence that higher PVS load is a sign of inflammation. Additionally, lower Montreal Cognitive Assessment scores were associated with lower NAA in aMCC (P = 0.002), suggesting that local neuronal dysfunction and inflammation contribute to cognitive impairment in PD. CONCLUSION These exploratory findings indicate that co-analysis of PVS and MRS is feasible and may help elucidate the cellular and metabolic substrates of glymphatic and inflammatory processes in PD.
Collapse
Affiliation(s)
- Erin K Donahue
- Department of Neurology, University of Southern California
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Vy Bui
- Department of Neurology, University of Southern California
| | - Ryan P Foreman
- Department of Neurology, University of Southern California
| | - Jared J Duran
- Department of Neurology, University of Southern California
| | - Siva Venkadesh
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Jeiran Choupan
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - John D Van Horn
- Department of Psychology, University of Virginia, Charlottesville, Virginia
- School of Data Science, University of Virginia, Charlottesville, Virginia
| | - Jeffry R Alger
- Department of Neurology, University of California, Los Angeles
| | | | | | - Joseph O'Neill
- Division of Child Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, California, USA
| |
Collapse
|
8
|
Effects of 'Healthy' Fecal Microbiota Transplantation against the Deterioration of Depression in Fawn-Hooded Rats. mSystems 2022; 7:e0021822. [PMID: 35481347 PMCID: PMC9239139 DOI: 10.1128/msystems.00218-22] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depression is a recurrent, heterogeneous mood disorder occurring in more than 260 million people worldwide. Gut microbiome dysbiosis is associated with the development of depressive-like behaviors by modulating neuro-biochemical metabolism through the microbiome-gut-brain (MGB) axis. Fecal microbiota transplantation (FMT) has been proposed as a potential therapeutic solution for depression, but the therapeutic efficiency and mechanism are unknown. Here, we performed an FMT from Sprague-Dawley (SD) rats (‘healthy’ controls) to Fawn-hooded (FH) rats (depression model). Pre-FMT, the FH rats exhibited significantly elevated depressive-like behaviors and distinct neurotransmitter and cytokine levels compared with SD rats. Post-FMT, FH recipients receiving FH fecal microbiota (FH-FH rats) showed aggravated depressive-like behaviors, while the ones receiving SD microbiota (FH-SD rats) had significantly alleviated depressive symptoms, a significant increase in hippocampal neurotransmitters, and a significant decrease of some hippocampal cytokines than FH-FH rats. SD-FMT resulted in the FH-SD rats’ gut microbiome resembling the SD donors, and a significant shift in the serum metabolome but not the hippocampal metabolome. Co-occurrence analysis suggests that SD-FMT prevented recipients’ depression development via the significant decrease of gut microbial species such as Dialister sp., which led to the recipients’ metabolic modulation in serum and hippocampus through the enteric nervous system, the intestinal barrier, and the blood-brain barrier. Our results provided new data pointing to multiple mechanisms of interaction for the impact of gut microbiome modulation on depression therapy. IMPORTANCE Depression is a chronic, recurrent mental disease, which could make the patients commit suicide in severe cases. Considering that gut microbiome dysbiosis could cause depressive symptoms in animals through the MGB axis, the modification of gut microbiota is expected to be a potential therapy for depression, but the daily administration of probiotics is invalid or transient. In this study, we demonstrated that the gut microbiome transferred from a healthy rat model to a depressive rat model could regulate the recipient’s neurobiology and behavior via the systematic alternation of the depressive gut microbiota followed by the serum and hippocampal metabolism. These results underline the significance of understanding the impact of gut microbiota on mental disorders and suggest that ‘healthy’ microbiota transplantation with the function to solve the host’s cerebral inflammation may serve as a novel therapeutic strategy for depression.
Collapse
|
9
|
Warepam M, Mishra AK, Sharma GS, Kumari K, Krishna S, Khan MSA, Rahman H, Singh LR. Brain Metabolite, N-Acetylaspartate Is a Potent Protein Aggregation Inhibitor. Front Cell Neurosci 2021; 15:617308. [PMID: 33613199 PMCID: PMC7894078 DOI: 10.3389/fncel.2021.617308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Deposition of toxic protein inclusions is a common hallmark of many neurodegenerative disorders including Alzheimer's disease, Parkinson disease etc. N-acetylaspartate (NAA) is an important brain metabolite whose levels got altered under various neurodegenerative conditions. Indeed, NAA has been a widely accepted biological marker for various neurological disorders. We have also reported that NAA is a protein stabilizer. In the present communication, we investigated the role of NAA in modulating the aggregation propensity on two model proteins (carbonic anhydrase and catalase). We discovered that NAA suppresses protein aggregation and could solubilize preformed aggregates.
Collapse
Affiliation(s)
- Marina Warepam
- Department of Biotechnology, Manipur University, Manipur, India
| | | | - Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamidur Rahman
- Department of Biotechnology, Manipur University, Manipur, India
| | | |
Collapse
|
10
|
Zhu T, Wang L, Tian F, Zhao X, Pu XP, Sun GB, Sun XB. Anti-ischemia/reperfusion injury effects of notoginsenoside R1 on small molecule metabolism in rat brain after ischemic stroke as visualized by MALDI-MS imaging. Biomed Pharmacother 2020; 129:110470. [PMID: 32768957 DOI: 10.1016/j.biopha.2020.110470] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 02/09/2023] Open
Abstract
Ischemic stroke is a syndrome of severe neurological responses that cause neuronal death, damage to the neurovascular unit and inflammation. Notoginsenoside R1 (NG-R1) is a neuroprotective drug that is commonly used to treat neurodegenerative and cerebrovascular diseases. However, its potential mechanisms on the regulation of small molecule metabolism in ischemic stroke are largely unknown. The aim of this study was to explore the potential mechanisms of NG-R1 on the regulation of small molecule metabolism after ischemic stroke. Here, we found that NG-R1 reduced infarct size and improved neurological deficits by ameliorating neuronal damage and inhibiting glial activation in MCAO/R rats. Furthermore, using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we clarified that NG-R1 regulated ATP metabolism, the tricarboxylic acid (TCA) cycle, the malate-aspartate shuttle, antioxidant activity, and the homeostasis of iron and phospholipids in the striatum and hippocampus of middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In general, NG-R1 is a promising compound for brain protection from ischemic/reperfusion injury, possibly through the regulation of brain small molecule metabolism.
Collapse
Affiliation(s)
- Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Lei Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China; Harbin University of Commerce, Harbin, Heilongjiang, 150000, China.
| | - Fang Tian
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Warepam M, Ahmad K, Rahman S, Rahaman H, Kumari K, Singh LR. N-Acetylaspartate Is an Important Brain Osmolyte. Biomolecules 2020; 10:biom10020286. [PMID: 32059525 PMCID: PMC7072545 DOI: 10.3390/biom10020286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/08/2020] [Indexed: 01/11/2023] Open
Abstract
Most of the human diseases related to various proteopathies are confined to the brain, which leads to the development of various forms of neurological disorders. The human brain consists of several osmolytic compounds, such as N-Acetylaspartate (NAA), myo-inositol (mI), glutamate (Glu), glutamine (Gln), creatine (Cr), and choline-containing compounds (Cho). Among these osmolytes, the level of NAA drastically decreases under neurological conditions, and, hence, NAA is considered to be one of the most widely accepted neuronal biomarkers in several human brain disorders. To date, no data are available regarding the effect of NAA on protein stability, and, therefore, the possible effect of NAA under proteopathic conditions has not been fully uncovered. To gain an insight into the effect of NAA on protein stability, thermal denaturation and structural measurements were carried out using two model proteins at different pH values. The results indicate that NAA increases the protein stability with an enhancement of structure formation. We also observed that the stabilizing ability of NAA decreases in a pH-dependent manner. Our study indicates that NAA is an efficient protein stabilizer at a physiological pH.
Collapse
Affiliation(s)
- Marina Warepam
- Department of Biotechnology, Manipur University, Manipur 795003, India; (M.W.); (H.R.)
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 845401, India;
| | - Hamidur Rahaman
- Department of Biotechnology, Manipur University, Manipur 795003, India; (M.W.); (H.R.)
| | - Kritika Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India;
| | - Laishram Rajendrakumar Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India;
- Correspondence: ; Tel.: +91-9811630757; Fax: +91-11-27666248
| |
Collapse
|
12
|
Osorio D, Pinzón A, Martín-Jiménez C, Barreto GE, González J. Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach. Front Neurosci 2020; 13:1410. [PMID: 32076395 PMCID: PMC7006434 DOI: 10.3389/fnins.2019.01410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023] Open
Abstract
Inflammation is a complex biological response to injuries, metabolic disorders or infections. In the brain, astrocytes play an important role in the inflammatory processes during neurodegenerative diseases. Recent studies have shown that the increase of free saturated fatty acids such as palmitic acid produces a metabolic inflammatory response in astrocytes generally associated with damaging mechanisms such as oxidative stress, endoplasmic reticulum stress, and autophagic defects. In this aspect, the synthetic neurosteroid tibolone has shown to exert protective functions against inflammation in neuronal experimental models without the tumorigenic effects exerted by sexual hormones such as estradiol and progesterone. However, there is little information regarding the specific mechanisms of tibolone in astrocytes during inflammatory insults. In the present study, we performed a genome-scale metabolic reconstruction of astrocytes that was used to study astrocytic response during an inflammatory insult by palmitate through Flux Balance Analysis methods and data mining. In this aspect, we assessed the metabolic fluxes of human astrocytes under three different scenarios: healthy (normal conditions), induced inflammation by palmitate, and tibolone treatment under palmitate inflammation. Our results suggest that tibolone reduces the L-glutamate-mediated neurotoxicity in astrocytes through the modulation of several metabolic pathways involved in glutamate uptake. We also identified a set of reactions associated with the protective effects of tibolone, including the upregulation of taurine metabolism, gluconeogenesis, cPPAR and the modulation of calcium signaling pathways. In conclusion, the different scenarios studied in our model allowed us to identify several metabolic fluxes perturbed under an inflammatory response and the protective mechanisms exerted by tibolone.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cynthia Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
13
|
Poletti S, Mazza MG, Vai B, Lorenzi C, Colombo C, Benedetti F. Proinflammatory Cytokines Predict Brain Metabolite Concentrations in the Anterior Cingulate Cortex of Patients With Bipolar Disorder. Front Psychiatry 2020; 11:590095. [PMID: 33363485 PMCID: PMC7753118 DOI: 10.3389/fpsyt.2020.590095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness characterized by abnormalities in the immune/inflammatory function and in brain metabolism. Evidences suggest that inflammation may affect the levels of brain metabolites as measured by single-proton magnetic resonance spectroscopy (1H-MRS). The aim of the study was to investigate whether a wide panel of inflammatory markers (i.e., cytokines, chemokines, and growth factors) can predict brain metabolite concentrations of glutamate, myo-inositol, N-acetylaspartate, and glutathione in a sample of 63 bipolar patients and 49 healthy controls. Three cytokines influenced brain metabolite concentrations: IL-9 positively predicts glutamate, IL-1β positively predicts Myo-inositol, and CCL5 positively predicts N-acetylaspartate concentrations. Furthermore, patients showed higher concentrations of glutamate, Myo-inositol, and glutathione and lower concentrations of N-acetylaspartate in respect to healthy controls. Our results confirm that inflammation in BD alters brain metabolism, through mechanisms possibly including the production of reactive oxygen species and glia activation.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Mario Gennaro Mazza
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Tang J, O’Neill J, Alger JR, Shen Z, Johnson MC, London ED. N-Acetyl and Glutamatergic Neurometabolites in Perisylvian Brain Regions of Methamphetamine Users. Int J Neuropsychopharmacol 2019; 22:1-9. [PMID: 29788422 PMCID: PMC6313110 DOI: 10.1093/ijnp/pyy042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/21/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Background Methamphetamine induces neuronal N-acetyl-aspartate synthesis in preclinical studies. In a preliminary human proton magnetic resonance spectroscopic imaging investigation, we also observed that N-acetyl-aspartate+N-acetyl-aspartyl-glutamate in right inferior frontal cortex correlated with years of heavy methamphetamine abuse. In the same brain region, glutamate+glutamine is lower in methamphetamine users than in controls and is negatively correlated with depression. N-acetyl and glutamatergic neurochemistries therefore merit further investigation in methamphetamine abuse and the associated mood symptoms. Methods Magnetic resonance spectroscopic imaging was used to measure N-acetyl-aspartate+N-acetyl-aspartyl-glutamate and glutamate+glutamine in bilateral inferior frontal cortex and insula, a neighboring perisylvian region affected by methamphetamine, of 45 abstinent methamphetamine-dependent and 45 healthy control participants. Regional neurometabolite levels were tested for group differences and associations with duration of heavy methamphetamine use, depressive symptoms, and state anxiety. Results In right inferior frontal cortex, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate correlated with years of heavy methamphetamine use (r = +0.45); glutamate+glutamine was lower in methamphetamine users than in controls (9.3%) and correlated negatively with depressive symptoms (r = -0.44). In left insula, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate was 9.1% higher in methamphetamine users than controls. In right insula, glutamate+glutamine was 12.3% lower in methamphetamine users than controls and correlated negatively with depressive symptoms (r = -0.51) and state anxiety (r = -0.47). Conclusions The inferior frontal cortex and insula show methamphetamine-related abnormalities, consistent with prior observations of increased cortical N-acetyl-aspartate in methamphetamine-exposed animal models and associations between cortical glutamate and mood in human methamphetamine users.
Collapse
Affiliation(s)
- Jinsong Tang
- Laboratory of Molecular Neuroimaging, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Joseph O’Neill
- Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | | | - Zhiwei Shen
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maritza C Johnson
- Laboratory of Molecular Neuroimaging, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | - Edythe D London
- Laboratory of Molecular Neuroimaging, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
15
|
Duan DD, Wang KX, Zhou YZ, Qin XM, Gao L, Du GH. Baicalein Exerts Beneficial Effects in d-Galactose-Induced Aging Rats Through Attenuation of Inflammation and Metabolic Dysfunction. Rejuvenation Res 2017; 20:506-516. [PMID: 28548620 DOI: 10.1089/rej.2017.1919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Baicalein is a flavonoid isolated from the roots of Scutellaria baicalensis Georgi. This study aimed to ascertain the effects and potential underlying mechanisms of baicalein in d-galactose (d-gal)-induced aging rat model by integration of behavior examination, biochemical detection, and 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Our findings suggest that baicalein significantly attenuated memory decline in d-gal-induced aging model, as manifested by increasing recognition index in novel object recognition test, shortening latency time, and increasing platform crossings in Morris water maze test. Baicalein significantly inhibited the releases of inflammatory mediators such as nitric oxide, interleukin-6, interleukin-1 beta, and tumor necrosis factor-α in d-gal-induced aging model. Metabolomic study revealed that 10 endogenous metabolites in cerebral cortex were considered as potential biomarkers of baicalein for its protective effect. Further metabolic pathway analysis showed that the metabolic alterations were associated with alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, inositol phosphate metabolism, and energy metabolism. These data indicate that baicalein improves learning and memory dysfunction in d-gal-induced aging rats. This might be achieved through attenuation of inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Dan-Dan Duan
- 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University , Taiyuan, PR China .,2 College of Chemistry and Chemical Engineering, Shanxi University , Taiyuan, PR China
| | - Ke-Xin Wang
- 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University , Taiyuan, PR China .,2 College of Chemistry and Chemical Engineering, Shanxi University , Taiyuan, PR China
| | - Yu-Zhi Zhou
- 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University , Taiyuan, PR China
| | - Xue-Mei Qin
- 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University , Taiyuan, PR China
| | - Li Gao
- 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University , Taiyuan, PR China
| | - Guan-Hua Du
- 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University , Taiyuan, PR China .,3 Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, PR China
| |
Collapse
|
16
|
Appu AP, Moffett JR, Arun P, Moran S, Nambiar V, Krishnan JKS, Puthillathu N, Namboodiri AMA. Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease. Front Mol Neurosci 2017; 10:161. [PMID: 28626388 PMCID: PMC5454052 DOI: 10.3389/fnmol.2017.00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023] Open
Abstract
Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA), a deacetylase that catabolizes N-acetylaspartate (NAA). The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic methyl ester of NAA (M-NAA) twice daily starting on day 7 after birth. This treatment increased NAA levels in the brain to those observed in the brains of Nur7 mice, an established model of Canavan disease. We evaluated various serological parameters, oxidative stress, inflammatory and neurodegeneration markers and the results showed that there were no pathological alterations in any measure with increased brain NAA levels. We examined oxidative stress markers, malondialdehyde content (indicator of lipid peroxidation), expression of NADPH oxidase and nuclear translocation of the stress-responsive transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF-2) in brain. We also examined additional pathological markers by immunohistochemistry and the expression of activated caspase-3 and interleukin-6 by Western blot. None of the markers were increased in the brains of M-NAA treated mice, and no vacuoles were observed in any brain region. These results show that ASPA expression prevents the pathologies associated with excessive NAA concentrations in the brain during postnatal myelination. We hypothesize that the pathogenesis of Canavan disease involves not only disrupted NAA metabolism, but also excessive NAA related signaling processes in oligodendrocytes that have not been fully determined and we discuss some of the potential mechanisms.
Collapse
Affiliation(s)
- Abhilash P. Appu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Sean Moran
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Vikram Nambiar
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Jishnu K. S. Krishnan
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| |
Collapse
|
17
|
Story L, Damodaram MS, Allsop JM, McGuinness A, Patel A, Wylezinska M, Hagberg H, Kumar S, Rutherford MA. Brain metabolism in fetal intrauterine growth restriction: a proton magnetic resonance spectroscopy study. Am J Obstet Gynecol 2011; 205:483.e1-8. [PMID: 21861969 DOI: 10.1016/j.ajog.2011.06.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/13/2011] [Accepted: 06/07/2011] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate alterations in brain metabolism in fetuses with intrauterine growth restriction (IUGR) and evidence of cerebral redistribution of blood flow. STUDY DESIGN Biometry and Doppler assessment of blood flow was assessed with ultrasound in 28 fetuses with IUGR and cerebral redistribution and in 41 appropriately grown control subjects. Proton magnetic resonance spectroscopy of the fetal brain was then performed to determine the presence of choline (Cho), creatine (Cr), N-acetylaspartate (NAA), and lactate and to generate ratios for NAA:Cho, NAA:Cr, and Cho:Cr. RESULTS Sixty-five percent of spectra were interpretable: N-acetylaspartate, choline, and creatine peaks were identified in all these spectra; lactate was present in 5 IUGR fetuses and in 3 appropriately grown fetuses. NAA:Cr and NAA:Cho ratios were significantly lower in IUGR fetuses with cerebral redistribution. CONCLUSION Cerebral redistribution is associated with altered brain metabolism that is evidenced by a reduction in NAA:Cho and NAA:Cr ratios.
Collapse
Affiliation(s)
- Lisa Story
- Robert Steiner MRI Unit, Imperial College London, London, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hale DM, Ray S, Leung JY, Holloway AF, Chung RS, West AK, Chuah MI. Olfactory ensheathing cells moderate nuclear factor kappaB translocation in astrocytes. Mol Cell Neurosci 2010; 46:213-21. [PMID: 20840869 DOI: 10.1016/j.mcn.2010.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 08/10/2010] [Accepted: 09/03/2010] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor kappaB (NFκB) is a key transcriptional regulator of inflammatory genes. We investigated the modulatory effects of olfactory ensheathing cells (OECs), microglia and meningeal fibroblasts on translocation of NFκB to astrocyte nuclei. The percentage of activated astrocytes in co-cultures with OECs was significantly less than for co-cultures with microglia (p<0.001) and fibroblasts (p<0.05). Phorbol myristate acetate (PMA) and calcium ionophore stimulation of p65 NFκB translocation to nuclei provided an in vitro model of astrocyte inflammatory activation. Soluble factors released by OECs significantly moderated the astrocytic NFκB translocation induced by either PMA/calcium ionophore or microglia-derived factors (p<0.001). Insulin-like growth factor-1 may contribute to these effects, since it is expressed by OECs and also significantly moderated the astrocytic NFκB translocation (p<0.05), albeit insufficiently to fully account for the OEC-induced moderation (p<0.01). Olfactory ensheathing cells significantly moderated the increased transcription of the pro-inflammatory cytokine, granulocyte macrophage-colony stimulating factor in the activated astrocytes (p<0.01). These results suggest that transplanted OECs could improve neural repair after CNS injury by moderating astrocyte activation.
Collapse
Affiliation(s)
- David M Hale
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Paban V, Fauvelle F, Alescio-Lautier B. Age-related changes in metabolic profiles of rat hippocampus and cortices. Eur J Neurosci 2010; 31:1063-73. [DOI: 10.1111/j.1460-9568.2010.07126.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Jung RE, Gasparovic C, Chavez RS, Caprihan A, Barrow R, Yeo RA. Imaging intelligence with proton magnetic resonance spectroscopy. INTELLIGENCE 2009; 37:192-198. [PMID: 19936275 DOI: 10.1016/j.intell.2008.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) is a technique for the assay of brain neurochemistry in vivo. N-acetylaspartate (NAA), the most prominent metabolite visible within the (1)H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition relationships, particularly whether such relationships are moderated by sex, or tissue type (gray or white matter). We administered standard measures of intelligence to 63 young, healthy subjects and obtained spectroscopic imaging data within a slab of tissue superior to the lateral ventricles. We found that lower NAA within right anterior gray matter predicted better performance VIQ (F=6.83, p=.011, r(2)=.10), while higher NAA within the right posterior gray matter region predicted better PIQ (F=8.175, p=.006, r(2)=.12). These findings add to the small but growing body of literature linking brain biochemistry to intelligence in normal healthy subjects using (1)H-MRSI.
Collapse
Affiliation(s)
- Rex E Jung
- The Mental Illness and Neuroscience Discovery (MIND) Research Network, Albuquerque, New Mexico, USA
| | | | | | | | | | | |
Collapse
|
21
|
Blamire AM, Cader S, Lee M, Palace J, Matthews PM. Axonal damage in the spinal cord of multiple sclerosis patients detected by magnetic resonance spectroscopy. Magn Reson Med 2007; 58:880-5. [PMID: 17969113 DOI: 10.1002/mrm.21382] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/13/2007] [Indexed: 11/09/2022]
Abstract
Axonal damage is a major factor contributing to permanent disability in patients with multiple sclerosis (MS); it has been extensively investigated in the brain using magnetic resonance spectroscopy (MRS). In this study, MRS was used to investigate the degree of neuronal damage in the cervical spinal cord in MS. Spectra were acquired from spinal cord and brain in 11 patients with MS (expanded disability status score [EDSS], range 2.5-7.0) and 11 controls. Brain lesion volume and spinal cord cross-sectional area were measured. Concentration of the neuronal metabolite N-acetyl-aspartate ([NAA]) was reduced in the spinal cord in MS patients relative to controls (reduced by 32%, P < 0.05), indicating significant neuronal damage. Additionally, the spinal cord was significantly atrophied in MS patients (15%, P < 0.001). No significant reduction in brain [NAA] was seen in the MS group. There were no correlations between clinical measures and cord atrophy or brain lesion volume on MRI; however, spinal cord [NAA] correlated with the cerebellar subscore of the neurological assessment (P < 0.005), while brain [NAA] correlated with disease duration (P < 0.05). MRS demonstrated cellular damage within the cord over and above the tissue atrophy seen by MRI. Combining MRI and MRS may therefore give a more complete picture of neurodegeneration in the spinal cord.
Collapse
Affiliation(s)
- Andrew M Blamire
- Newcastle Magnetic Resonance Centre, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
22
|
Reynolds GP, Harte MK. The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans 2007; 35:433-6. [PMID: 17371293 DOI: 10.1042/bst0350433] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an accumulation of evidence for abnormalities in schizophrenia of both the major neurotransmitter systems of the brain – those of GABA (γ-aminobutyric acid) and glutamate. Initial studies have found deficits in the putative neuronal marker, N-acetylaspartate, in a number of brain regions in schizophrenia. The animal models have provided some interesting correlates and discrepancies with these findings. The deficit in inhibitory interneurons within structures implicated in schizophrenic symptomatology may well have direct functional relevance, and can be induced by animal models of the disease such as subchronic phencyclidine administration or social isolation. Their association with these animal models suggests an environmental involvement. A loss of glutamatergic function in schizophrenia is supported by decreases in markers for the neuronal glutamate transporter in striatal structures that receive cortical glutamatergic projections. Deficits in the VGluT1 (vesicular glutamate transporter-1) in both striatal and hippocampal regions support this observation, and the association of VGluT1 density with a genetic risk factor for schizophrenia points to genetic influences on these glutamatergic deficits. Further studies differentiating neuronal loss from diminished activity and improved models allowing us to determine the temporal and causal relationships between GABAergic and glutamatergic deficits will lead to a better understanding of the processes underlying the neuronal pathology of schizophrenia.
Collapse
Affiliation(s)
- G P Reynolds
- Division of Psychiatry and Neuroscience, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | | |
Collapse
|
23
|
Tranberg M, Sandberg M. N-acetylaspartate monomethyl ester increases N-acetylaspartate concentration in cultured rat hippocampal slices: effects on excitotoxicity and levels of amino acids and chloride. J Neurosci Methods 2007; 163:105-10. [PMID: 17386946 DOI: 10.1016/j.jneumeth.2007.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/22/2007] [Accepted: 02/18/2007] [Indexed: 11/17/2022]
Abstract
N-acetylaspartate (NAA) was discovered in mammalian brain 50 years ago but its functions remain debated. One reason for the relatively slow progress of NAA research is the paucity of tools to specifically modify NAA concentrations. In this work we evaluated the use of the monomethyl ester of NAA (NAA MME) to increase the relatively low level of NAA in cultured hippocampal slices. When slices were treated with 30 mM NAA MME for 3 days the NAA concentration increased from 31.6 to 185.3 nmol/mg protein. Incubation with NAA alone increased the NAA concentration non-significantly to 65.6 nmol/mg protein. NAA MME treatment increased NAA in neurons and the increase was non-toxic as determined by the low uptake of propidium iodide, a dye that only enters damaged cells. NMDA-mediated excitotoxicity which is initiated by influx of Ca(2+) was unaltered by increased NAA levels indicating poor intracellular Ca(2+)-chelation by NAA.
Collapse
Affiliation(s)
- Mattias Tranberg
- Institute of Neuroscience and Physiology, Department of Physiology, Göteborg University, Göteborg, Sweden.
| | | |
Collapse
|
24
|
Harte MK, Bachus SB, Reynolds GP. Increased N-acetylaspartate in rat striatum following long-term administration of haloperidol. Schizophr Res 2005; 75:303-8. [PMID: 15885521 DOI: 10.1016/j.schres.2004.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 10/25/2004] [Accepted: 11/03/2004] [Indexed: 11/25/2022]
Abstract
N-acetylaspartate (NAA) is present in high concentrations in the CNS and is found primarily in neurons. NAA is considered to be a marker of neuronal viability. Numerous magnetic resonance spectroscopy (MRS) and postmortem studies have shown reductions of NAA in different brain regions in schizophrenia. Most of these studies involved patients chronically treated with antipsychotic drugs. However, the effect of chronic antipsychotic treatment on NAA remains unclear. In the present study, we measured NAA in brain tissue taken from 43 male Long-Evans rats receiving 28.5 mg/kg haloperidol decanoate i.m. every 3 weeks for 24 weeks and from 21 controls administered with vehicle. Determination of tissue concentrations of NAA was achieved by HPLC of sections of frozen tissue from several brain regions with relevance to schizophrenia. Chronic administration of haloperidol was associated with a significant increase (+23%) in NAA in the striatum (p<0.05) when compared to controls, with no significant changes in the other regions investigated (frontal and temporal cortex, thalamus, hippocampus, amygdala, and nucleus accumbens). NAA appears to be selectively increased in the striatum of rats chronically receiving haloperidol. This increase may reflect a hyperfunction of striatal neurons and relate to the reported increase in somal size of these cells and/or the increase in synaptic density seen in this region following antipsychotic administration. The lack of effect in other regions indicates that the well-documented NAA deficits seen in chronically treated schizophrenia patients is not an effect of antipsychotic medication and may in fact be related to the disease process.
Collapse
Affiliation(s)
- M K Harte
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
25
|
Jung RE, Haier RJ, Yeo RA, Rowland LM, Petropoulos H, Levine AS, Sibbitt WL, Brooks WM. Sex differences in N-acetylaspartate correlates of general intelligence: an 1H-MRS study of normal human brain. Neuroimage 2005; 26:965-72. [PMID: 15955507 DOI: 10.1016/j.neuroimage.2005.02.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/08/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022] Open
Abstract
Researchers have long attempted to determine brain correlates of intelligence using available neuroimaging technology including CT, MRI, PET, and fMRI. Although structural and functional imaging techniques are well suited to assess gross cortical regions associated with intelligence, the integrity and functioning of underlying white matter networks critical to coordinated cortical integration remain comparatively understudied. A relatively recent neuroimaging advance is magnetic resonance spectroscopy (MRS) which allows for interrogation of biochemical substrates of brain structure and function in vivo. In this study, we examined twenty-seven normal control subjects (17 male, 10 female) to determine whether N-acetylaspartate (NAA), a metabolite found primarily within neurons, is related to intelligence as assessed by the Wechsler Adult Intelligence Scale-III. Of the three white matter regions studied (i.e., left frontal, right frontal, left occipito-parietal), we found that a model including only left occipito-parietal white matter predicted intellectual performance [F(1,25) = 8.65, P = .007; r2 = .26], providing regional specificity to our previous findings of NAA-IQ relationships. Moreover, we found that a complex combination of left frontal and left occipito-parietal NAA strongly predicted performance in women, but not men [F(2,7) = 21.84, P < .001; adjusted r2 = .82]. Our results highlight a biochemical substrate of normal intellectual performance, mediated by sex, within white matter association fibers linking posterior to frontal brain regions.
Collapse
Affiliation(s)
- Rex E Jung
- Department of Neurology, University of New Mexico, Albuquerque, NM 87151, USA.
| | | | | | | | | | | | | | | |
Collapse
|