1
|
Kim D, Kim JE, Lee SB, Lee NY, Park SY. Gulp1 regulates chondrocyte growth arrest and differentiation via the TGF-β/SMAD2/3 pathway. FEBS Lett 2024; 598:935-944. [PMID: 38553249 DOI: 10.1002/1873-3468.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 04/23/2024]
Abstract
Chondrocyte differentiation is crucial for cartilage formation. However, the complex processes and mechanisms coordinating chondrocyte proliferation and differentiation remain incompletely understood. Here, we report a novel function of the adaptor protein Gulp1 in chondrocyte differentiation. Gulp1 expression is upregulated during chondrogenic differentiation. Gulp1 knockdown in chondrogenic ATDC5 cells reduces the expression of chondrogenic and hypertrophic marker genes during differentiation. Furthermore, Gulp1 knockdown impairs cell growth arrest during chondrocyte differentiation and reduces the expression of the cyclin-dependent kinase inhibitor p21. The activation of the TGF-β/SMAD2/3 pathway, which is associated with p21 expression in chondrocytes, is impaired in Gulp1 knockdown cells. Collectively, these results demonstrate that Gulp1 contributes to cell growth arrest and chondrocyte differentiation by modulating the TGF-β/SMAD2/3 pathway.
Collapse
Affiliation(s)
- Dough Kim
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seon Bhin Lee
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Na Yeon Lee
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| |
Collapse
|
2
|
Griffiths R, Woods S, Cheng A, Wang P, Griffiths-Jones S, Ronshaugen M, Kimber SJ. The Transcription Factor-microRNA Regulatory Network during hESC-chondrogenesis. Sci Rep 2020; 10:4744. [PMID: 32179818 PMCID: PMC7075910 DOI: 10.1038/s41598-020-61734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cells (ESCs) offer a promising therapeutic approach for osteoarthritis (OA). The unlimited source of cells capable of differentiating to chondrocytes has potential for repairing damaged cartilage or to generate disease models via gene editing. However their use is limited by the efficiency of chondrogenic differentiation. An improved understanding of the transcriptional and post-transcriptional regulation of chondrogenesis will enable us to improve hESC chondrogenic differentiation protocols. Small RNA-seq and whole transcriptome sequencing was performed on distinct stages of hESC-directed chondrogenesis. This revealed significant changes in the expression of several microRNAs including upregulation of known cartilage associated microRNAs and those transcribed from the Hox complexes, and the downregulation of pluripotency associated microRNAs. Integration of miRomes and transcriptomes generated during hESC-directed chondrogenesis identified key functionally related clusters of co-expressed microRNAs and protein coding genes, associated with pluripotency, primitive streak, limb development and extracellular matrix. Analysis identified regulators of hESC-directed chondrogenesis such as miR-29c-3p with 10 of its established targets identified as co-regulated 'ECM organisation' genes and miR-22-3p which is highly co-expressed with ECM genes and may regulate these genes indirectly by targeting the chondrogenic regulators SP1 and HDAC4. We identified several upregulated transcription factors including HOXA9/A10/D13 involved in limb patterning and RELA, JUN and NFAT5, which have targets enriched with ECM associated genes. We have developed an unbiased approach for integrating transcriptome and miRome using protein-protein interactions, transcription factor regulation and miRNA target interactions and identified key regulatory networks prominent in hESC chondrogenesis.
Collapse
Affiliation(s)
- Rosie Griffiths
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Steven Woods
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Aixin Cheng
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Salford Royal NHS Foundation Trust, Department of Trauma and Orthopaedic, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Ping Wang
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Sam Griffiths-Jones
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Matthew Ronshaugen
- Developmental Biology and Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Saiyin W, Li L, Zhang H, Lu Y, Qin C. Inactivation of FAM20B causes cell fate changes in annulus fibrosus of mouse intervertebral disc and disc defects via the alterations of TGF-β and MAPK signaling pathways. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165555. [PMID: 31513834 PMCID: PMC7194007 DOI: 10.1016/j.bbadis.2019.165555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/30/2023]
Abstract
Intervertebral disc (IVD) disorder is often caused by the defect of annulus fibrosus (AF), especially that of the outer AF. Studies about the mechanisms governing the development of the outer AF are needed for a better understanding of pathogenesis of IVD defects. Glycosaminoglycans (GAGs) are essential components of extracellular matrix (ECM) in AF. FAM20B is a newly identified xylose kinase that catalyzes the biosynthesis of GAGs. In this study, we created Fam20B conditional knockout (cKO) mice in which FAM20B was inactivated in type I collagen-expressing cells, the main type of cells in the outer AF of IVD. The cKO mice showed severe spine deformity and remarkable IVD defects associated with AF malformation. The AF of cKO mice had a lower level of chondroitin sulfate and heparan sulfate, and the outer AF cells lost their normal fibroblast-like morphology and acquired chondrocyte phenotypes, expressing a higher level of Sox 9 and type II collagen along with a reduced level of type I collagen. The level of phospho-Smad 2 and phospho-Smad 3, and that of scleraxis, a downstream target molecule of canonical TGF-β signaling pathway were significantly lower in the AF of cKO mice. The AF in cKO mice also manifested altered levels in the molecules associated with the activations of MAPK pathway; the changes included the increase of phospho-P38 and phospho-ERK and a decrease of phospho-JNK. These results indicate that FAM20B plays an essential role in the development of AF by regulating the TGF-β signaling and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wuliji Saiyin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Lili Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
4
|
Ning T, Guo J, Zhang K, Li K, Zhang J, Yang Z, Ge Z. Nanosecond pulsed electric fields enhanced chondrogenic potential of mesenchymal stem cells via JNK/CREB-STAT3 signaling pathway. Stem Cell Res Ther 2019; 10:45. [PMID: 30678730 PMCID: PMC6346554 DOI: 10.1186/s13287-019-1133-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background Nanosecond pulsed electric fields (nsPEFs) can produce more significant biological effects than traditional electric fields and have thus attracted rising attention in developing medical applications based on short pulse duration and high field strength, such as effective cancer therapy. However, little is known about their effects on the differentiation of stem cells. Furthermore, mechanisms of electric fields on chondrogenic differentiation of mesenchymal stem cells (MSCs) remain elusive, and effects of electric fields on cartilage regeneration need to be verified in vivo. Here, we aimed to study the effects of nsPEFs on chondrogenic differentiation of MSCs in vitro and in vivo and further to explore the mechanisms behind the phenomenon. Methods The effects of nsPEF-preconditioning on chondrogenic differentiation of mesenchymal stem cells (MSCs) in vitro were evaluated using cell viability, gene expression, glycosaminoglycan (sGAG) content, and histological staining, as well as in vivo cartilage regeneration in osteochondral defects of rats. Signaling pathways were investigated with protein expression and gene expression, respectively. Results nsPEF-preconditioning with proper parameters (10 ns at 20 kV/cm, 100 ns at 10 kV/cm) significantly potentiated chondrogenic differentiation capacity of MSCs with upregulated cartilaginous gene expression and increased matrix deposition through activation of C-Jun NH2-terminal kinase (JNK) and cAMP-response element binding protein (CREB), followed by activation of downstream signal transducer and activator of transcription (STAT3). Implantation of nsPEF-preconditioned MSCs significantly enhanced cartilage regeneration in vivo, compared with implantation of non-nsPEF-preconditioned MSCs. Conclusion This study demonstrates a unique approach of nsPEF treatment to potentiate the chondrogenic ability of MSCs through activation of JNK/CREB-STAT3 that could have translational potential for MSC-based cartilage regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-019-1133-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Ning
- , Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jinsong Guo
- Institute of Biomechanics and Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kun Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kejia Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jue Zhang
- Institute of Biomechanics and Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Zheng Yang
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore, 117510, Singapore
| | - Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Wang R, Zheng C, Jiang W, Xie X, Liao R, Zhou G. Neuropeptide W regulates proliferation and differentiation of ATDC5: Possible involvement of GPR7 activation, PKA and PKC-dependent signalling cascades. J Cell Mol Med 2019; 23:2093-2102. [PMID: 30609248 PMCID: PMC6378237 DOI: 10.1111/jcmm.14118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Various neuropeptides related to the energy equilibrium affect bone growth in humans and animals. Neuropeptides W (NPW) are identical in the internal ligands of the two G‐protein receptors (GPRs) included in subtypes 7 and 8. Neuropeptides W inhibits proliferation in the cultivated rat calvarial osteoblast‐like (ROB) cells. This study examines the expression of NPW and GPR7 in murine chondrocyte and their function. An immunohistochemical analysis showed that NPW and GPR7 were expressed in the proliferative chondrocytes of the growth plates in the hind limbs of mice. The NPW mRNA quickly elevated in the early differentiation (7‐14 days) of ATDC5 cells, while NPW and GPR7 mRNA were reduced during the late stage (14‐21 days) of differentiation. Neuropeptide W‐23 (NPW‐23) promoted the proliferation of ATDC5 cells, which was attenuated by inhibiting the GPR7, protein kinase A (PKA), protein kinase C (PKC) and ERK1/2 pathways. Neuropeptide W‐23 enhanced the early cell differentiation, as evaluated by collagen type II and the aggrecan gene expression, which was unaffected by inhibiting the ERK1/2 pathway, but significantly decreased by inhibiting the PKA, PKC and p38 MAPK pathways. In contrast, NPW‐23 was not involved in the terminal differentiation of the chondrocytes, as evaluated by the mineralization of the chondrocytes and the activity of the alkaline phosphatase. Neuropeptides W stimulated the PKA, PKC, p38 MAPK and ERK1/2 activities in a dose‐ and time‐dependent manner in the ATDC5 cells. These results show that NPW promotes the proliferation and early differentiation of murine chondrocyte via GPR7 activation, as well as PKA and PKC‐dependent signalling cascades, which may be involved in endochondral bone formation.
Collapse
Affiliation(s)
- RiKang Wang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China.,National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chaojun Zheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenyu Jiang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rifang Liao
- Department of pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
6
|
Shimo T, Koyama E, Okui T, Masui M, Kunisada Y, Ibaragi S, Yoshioka N, Kurio N, Yoshida S, Sasaki A, Iwamoto M. Retinoic Receptor Signaling Regulates Hypertrophic Chondrocyte-specific Gene Expression. In Vivo 2019; 33:85-91. [PMID: 30587607 PMCID: PMC6364088 DOI: 10.21873/invivo.11443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIM Retinoid signaling is important for the maturation of growth-plate chondrocytes. The effect of retinoid receptor gamma (RARγ) signaling on the expression of genes in hypertrophic chondrocytes is unclear. This study investigated the role of RARγ signaling in regulation of hypertrophic chondrocyte-specific genes. MATERIALS AND METHODS The gene expression in mouse E17.5 tibial cartilage was examined by in situ hybridization analysis. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting were used for analysis of mRNA and phosphorylated mitogen-activated protein kinase (MAPK). RESULTS mRNA expression of Rarg and connective tissue growth factor (Ccn2) was detected in maturing chondrocytes throughout the cartilaginous skeletal elements. In chondrogenic ATDC5 cells, an RARγ agonist induced the gene expression of type-X collagen (Col10A1), transglutaminase-2 (Tg2), matrix metalloproteinase-13 (Mmp13), and Ccn2 mRNA, whereas a retinoic acid pan-agonist suppressed RARγ agonist-stimulated gene expression. Phosphorylated extracellular signal regulated-kinases (pERK1/2), p-p38, and phosphorylated c-Jun N-terminal kinase (pJNK) MAPK were time-dependently increased by RARγ agonist treatment. Experimental p38 inhibition led to a severe drop in the RARγ agonist-stimulated expressions of Col10A1, Tg2, Mmp13, and Ccn2 mRNA. CONCLUSION RARγ signaling is required for the differentiation of hypertrophic chondrocytes, with differential cooperation with p38 MAPK.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Norie Yoshioka
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Naito Kurio
- Department of Oral Surgery, Tokushima University Graduate School, Tokushima, Japan
| | - Shoko Yoshida
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
7
|
Meo Burt P, Xiao L, Hurley MM. FGF23 Regulates Wnt/β-Catenin Signaling-Mediated Osteoarthritis in Mice Overexpressing High-Molecular-Weight FGF2. Endocrinology 2018; 159:2386-2396. [PMID: 29718273 PMCID: PMC6457004 DOI: 10.1210/en.2018-00184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/23/2022]
Abstract
Although humans with X-linked hypophosphatemia (XLH) and the Hyp mouse, a murine homolog of XLH, are known to develop degenerative joint disease, the exact mechanism that drives the osteoarthritis (OA) phenotype remains unclear. Mice that overexpress high-molecular-weight fibroblast growth factor (FGF) 2 isoforms (HMWTg mice) phenocopy both XLH and Hyp, including OA with increased FGF23 production in bone and serum. Because HMWTg cartilage also has increased FGF23 and there is cross-talk between FGF23-Wnt/β-catenin signaling, the purpose of this study was to determine if OA observed in HMWTg mice is due to FGF23-mediated canonical Wnt signaling in chondrocytes, given that both pathways are implicated in OA pathogenesis. HMWTg OA joints had decreased Dkk1, Sost, and Lrp6 expression with increased Wnt5a, Wnt7b, Lrp5, Axin2, phospho-GSK3β, Lef1, and nuclear β-catenin, as indicated by immunohistochemistry or quantitative PCR analysis. Chondrocytes from HMWTg mice had enhanced alcian blue and alkaline phosphatase staining as well as increased FGF23, Adamts5, Il-1β, Wnt7b, Wnt16, and Wisp1 gene expression and phospho-GSK3β protein expression as indicated by Western blot, compared with chondrocytes of vector control and chondrocytes from mice overexpressing the low-molecular-weight isoform, which were protected from OA. Canonical Wnt inhibitor treatment rescued some of those parameters in HMWTg chondrocytes, seemingly delaying the initially accelerated chondrogenic differentiation. FGF23 neutralizing antibody treatment was able to partly ameliorate OA abnormalities in subchondral bone and reduce degradative/hypertrophic chondrogenic marker expression in HMWTg joints in vivo. These results demonstrate that osteoarthropathy of HMWTg is at least partially due to FGF23-modulated Wnt/β-catenin signaling in chondrocytes.
Collapse
Affiliation(s)
- Patience Meo Burt
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
| | - Liping Xiao
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
| | - Marja M Hurley
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
- Correspondence: Marja M. Hurley, MD, Department of Medicine MC-3023, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030. E-mail:
| |
Collapse
|
8
|
Xu W, Wang Y, Zhao H, Fan B, Guo K, Cai M, Zhang S. Delta-like 2 negatively regulates chondrogenic differentiation. J Cell Physiol 2017; 233:6574-6582. [PMID: 29057471 DOI: 10.1002/jcp.26244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023]
Abstract
Delta-like 2 (Dlk2), a glycoprotein highly homologous to Dlk1, belongs to the Notch/Delta/Serrata family. Dlk2 has been shown to be an important regulator of adipogenesis; however, its role in other cellular differentiation processes is still unknown. Therefore, in this study, we aimed to determine the role of Dlk2 in chondrogenic differentiation. We found that Dlk2 overexpression promoted the growth of ATDC5 cells but inhibited insulin-induced ATDC5 chondrogenic differentiation, as supported by the reduction in cartilage matrix formation and gene expression of aggrecan (acan), collagentype II (col2a1) and X (col10a1). In contrast, Dlk2 silencing inhibited the proliferation of ATDC5 cells but enhanced their chondrogenic differentiation. We then evaluated the roles of mitogen-activated protein kinases (MAPKs), which are activated by insulin during the chondrogenesis of ATDC5 cells. Overexpression of Dlk2 protein strongly promoted the activation of p38, but not extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). Moreover, as expected, Dlk2 silencing inhibited the activation of p38, but had no effect on the ERK1/2 and JNK pathways. Finally, we also detected the expression of Dlk2 in mouse epiphyseal cartilage during embryo development. The expression of the Dlk2 protein in the limb bud could be detected at embryonic day 11.5; additionally, it was found to decrease in the superficial zones, but remained unchanged in the deep/hypertrophic zones. In conclusion, our results suggested that Dlk2 acted as an important regulator of chondrogenesis through the p38 pathway. These findings may lead to strategies for the treatment of cartilage-related diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Weifeng Xu
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yexin Wang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haoming Zhao
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Baotin Fan
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ke Guo
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ming Cai
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Craniomaxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shanyong Zhang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
9
|
Scioli MG, Bielli A, Gentile P, Cervelli V, Orlandi A. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med 2017; 11:2398-2410. [PMID: 27074878 DOI: 10.1002/term.2139] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
Osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis and progressive joint destruction. Bioengineered scaffolds are widely studied for regenerative surgery strategies in osteochondral defect management, also combining the use of stem cells, growth factors and hormones. The utility in tissue engineering of human adipose-derived stem cells (ASCs) isolated from adipose tissue has been widely noted. Autologous platelet-rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of endogenous growth factors and hormones. Here we compared the effects of three-dimensional (3D) collagen type I scaffold culture and combined treatment with PRP and human recombinant insulin on the chondro-/osteogenic differentiation of ASCs. Histochemical and biomolecular analyses demonstrated that chondro-/osteogenic differentiation was increased in ASC-populated 3D collagen scaffolds compared with two-dimensional (2D) plastic dish culture. Chondro-/osteogenic differentiation was further enhanced in the presence of combined PRP (5% v/v) and insulin (100 nm) treatment. In addition, chondro-/osteogenic differentiation associated with the contraction of ASC-populated 3D collagen scaffold and increased β1/β3-integrin expression. Inhibition studies demonstrated that PRP/insulin-induced chondro-/osteogenic differentiation is independent of insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) signalling; IGF-R1/mTOR inhibition even enhanced ASC chondro-/osteogenic differentiation. Our findings underline that 3D collagen scaffold culture in association with platelet-derived growth factors and insulin favour the chondro-/osteogenic differentiation of ASCs, suggesting new translational applications in regenerative medicine for the management of osteochondral defects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Alessandra Bielli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Augusto Orlandi
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
10
|
Chinzei N, Hayashi S, Hashimoto S, Kanzaki N, Iwasa K, Sakata S, Kihara S, Fujishiro T, Kuroda R, Kurosaka M. Cyclin‑dependent kinase inhibitor p21 does not impact embryonic endochondral ossification in mice. Mol Med Rep 2014; 11:1601-8. [PMID: 25376471 PMCID: PMC4270329 DOI: 10.3892/mmr.2014.2889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022] Open
Abstract
Endochondral ossification at the growth plate is regulated by a number of factors and hormones. The cyclin-dependent kinase inhibitor p21 has been identified as a cell cycle regulator and its expression has been reported to be essential for endochondral ossification in vitro. However, to the best of our knowledge, the function of p21 in endochondral ossification has not been evaluated in vivo. Therefore, the aim of this study was to investigate the function of p21 in embryonic endochondral ossification in vivo. Wild-type (WT) and p21 knockout (KO) pregnant heterozygous mice were sacrificed on embryonic days E13.5, E15.5 and E18.5. Sagittal histological sections of the forearms of the embryos were collected and stained with Safranin O and 5-bromo-2′-deoxyuridine (BrdU). Additionally, the expression levels of cyclin D1, type II collagen, type X collagen, Sox9, and p16 were examined using immunohistochemistry, and the expression levels of p27 were examined using immunofluorescence. Safranin O staining revealed no structural change between the cartilage tissues of the WT and p21KO mice at any time point. Type II collagen was expressed ubiquitously, while type X collagen was only expressed in the hypertrophic zone of the cartilage tissues. No differences in the levels of Sox9 expression were observed between the two groups at any time point. The levels of cyclin D1 expression and BrdU uptake were higher in the E13.5 cartilage tissue compared with those observed in the embryonic cartilage tissue at subsequent time points. Expression of p16 and p27 was ubiquitous throughout the tissue sections. These results indicate that p21 may not be essential for embryonic endochondral ossification in articular cartilage of mice and that other signaling networks may compensate for p21 deletion.
Collapse
Affiliation(s)
- Nobuaki Chinzei
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Shingo Hashimoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Noriyuki Kanzaki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Kenjiro Iwasa
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Shuhei Sakata
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Shinsuke Kihara
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Takaaki Fujishiro
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650‑0017, Japan
| |
Collapse
|
11
|
Nepal M, Li L, Cho HK, Park JK, Soh Y. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway. Food Chem Toxicol 2013; 62:238-45. [DOI: 10.1016/j.fct.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/31/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
|
12
|
|
13
|
Wang SJ, Li XF, Jiang LS, Dai LY. Estrogen stimulates leptin receptor expression in ATDC5 cells via the estrogen receptor and extracellular signal-regulated kinase pathways. J Endocrinol 2012; 213:163-72. [PMID: 22396455 DOI: 10.1530/joe-11-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulation of the physiological processes of endochondral bone formation during long bone growth is controlled by various factors including the hormones estrogen and leptin. The effects of estrogen are mediated not only through the direct activity of estrogen receptors (ERs) but also through cross talk with other signaling systems implicated in chondrogenesis. The receptors of both estrogen and leptin (OBR (LEPR)) are detectable in growth plate chondrocytes of all zones. In this study, the expression of mRNA and protein of OBR in chondrogenic ATDC5 cells and the effect of 17β-estradiol (E(2)) stimulation were assessed using quantitative PCR and western blotting. We have found that the mRNA of Obr was dynamically expressed during the differentiation of ATDC5 cells over 21 days. Application of E(2) (10(-7) M) at day 14 for 48 h significantly upregulated OBR mRNA and protein levels (P<0.05). The upregulation of Obr mRNA by E(2) was shown to take place in a concentration-dependent manner, with a concentration of 10(-7) M E(2) having the greatest effect. Furthermore, we have confirmed that E(2) affected the phosphorylation of ERK1/2 (MAPK1/MAPK3) in a time-dependent manner where a maximal fourfold change was observed at 10 min following application of E(2). Finally, pretreatment of the cells with either U0126 (ERK1/2 inhibitor) or ICI 182 780 (ER antagonist) blocked the upregulation of OBR by E(2) and prevented the E(2)-induced phosphorylation of ERK. These data demonstrate, for the first time, the existence of cross talk between estrogen and OBR in the regulation of bone growth whereby estrogen regulates the expression of Obr in growth plate chondrocytes via ERs and the activation of ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Shan-Jin Wang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | | | |
Collapse
|
14
|
Kim D, Song J, Kim S, Park HM, Chun CH, Sonn J, Jin EJ. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 cross-talk in chondroblasts. J Biol Chem 2012; 287:12501-9. [PMID: 22351754 DOI: 10.1074/jbc.m111.264382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) have been implicated in various cellular processes, such as cell fate determination, cell death, and tumorigenesis. In the present study, we investigated the role of miRNA-34a (miR-34a) in the reorganization of the actin cytoskeleton, which is essential for chondrocyte differentiation. miRNA arrays to identify genes that appeared to be up-regulated or down-regulated during chondrogenesis were applied with chondrogenic progenitors treated with JNK inhibitor. PNA-based antisense oligonucleotides and miRNA precursor were used for investigation of the functional roles of miR-34a. We found that, in chick chondroprogenitors treated with JNK inhibitor, which suppresses chondrogenic differentiation, the expression levels of miR-34a and RhoA1 are up-regulated through modulation of Rac1 expression. Blockade of miR-34a via the use of PNA-based antisense oligonucleotides was associated with decreased protein expression of RhoA (a known modulator of stress fiber expression), down-regulation of stress fibers, up-regulation of Rac1, and recovery of protein level of type II collagen. miR-34a regulates RhoA/Rac1 cross-talk and negatively modulates reorganization of the actin cytoskeleton, which is one of the essential processes for establishing chondrocyte-specific morphology.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim D, Song J, Kim S, Chun CH, Jin EJ. MicroRNA-34a regulates migration of chondroblast and IL-1β-induced degeneration of chondrocytes by targeting EphA5. Biochem Biophys Res Commun 2011; 415:551-7. [DOI: 10.1016/j.bbrc.2011.10.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 12/31/2022]
|
16
|
Yoon HE, Kim KS, Kim IY. 14-3-3η inhibits chondrogenic differentiation of ATDC5 cell. Biochem Biophys Res Commun 2011; 406:59-63. [DOI: 10.1016/j.bbrc.2011.01.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
|
17
|
Choi HJ, Nepal M, Park YR, Lee HK, Oh SR, Soh Y. Stimulation of chondrogenesis in ATDC5 chondroprogenitor cells and hypertrophy in mouse by Genkwadaphnin. Eur J Pharmacol 2011; 655:9-15. [DOI: 10.1016/j.ejphar.2011.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 12/10/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
|
18
|
Temu TM, Wu KY, Gruppuso PA, Phornphutkul C. The mechanism of ascorbic acid-induced differentiation of ATDC5 chondrogenic cells. Am J Physiol Endocrinol Metab 2010; 299:E325-34. [PMID: 20530736 PMCID: PMC2928517 DOI: 10.1152/ajpendo.00145.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATDC5 cell line exhibits a multistep process of chondrogenic differentiation analogous to that observed during endochondral bone formation. Previous investigators have induced ATDC5 cells to differentiate by exposing them to insulin at high concentrations. We have observed spontaneous differentiation of ATDC5 cells maintained in ascorbic acid-containing alpha-MEM. A comparison of the differentiation events in response to high-dose insulin vs. ascorbic acid showed similar expression patterns of key genes, including collagen II, Runx2, Sox9, Indian hedgehog, and collagen X. We took advantage of the action of ascorbic acid to examine signaling events associated with differentiation. In contrast to high-dose insulin, which downregulates both IGF-I and insulin receptors, there were only minimal changes in the abundance of these receptors during ascorbic acid-induced differentiation. Furthermore, ascorbic acid exposure was associated with ERK activation, and ERK inhibition attenuated ascorbic acid-induced differentiation. This was in contrast to the inhibitory effect of ERK activation during IGF-I-induced differentiation. Inhibition of collagen formation with a proline analog markedly attenuated the differentiating effect of ascorbic acid on ATDC5 cells. When plates were conditioned with ATDC5 cells exposed to ascorbic acid, ATDC5 cells were able to differentiate in the absence of ascorbic acid. Our results indicate that matrix formation early in the differentiation process is essential for ascorbic acid-induced ATDC5 differentiation. We conclude that ascorbic acid can promote the differentiation of ATDC5 cells by promoting the formation of collagenous matrix and that matrix formation mediates activation of the ERK signaling pathway, which promotes the differentiation program.
Collapse
Affiliation(s)
- Tecla M Temu
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
19
|
Challa TD, Rais Y, Ornan EM. Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol Cell Endocrinol 2010; 323:282-91. [PMID: 20380870 DOI: 10.1016/j.mce.2010.03.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 12/18/2022]
Abstract
Adiponectin, an adipose-secreted adipocytokine, exhibits various metabolic functions but has no known effect on bone development through the growth plate and specifically, in chondrocytes. Using the mouse ATDC5 cell line, a widely used in vitro model of chondrogenesis, we demonstrated the expression of adiponectin and its receptors during chondrogenic differentiation. Adiponectin at 0.5mug/ml increased chondrocyte proliferation, proteoglycan synthesis and matrix mineralization, as reflected by upregulation of the expression of type II collagen, aggrecan, Runx2 and type X collagen, and of alkaline phosphatase activity. Quantitative RT-PCR and gelatin zymography showed a significant increase in the matrix metalloproteinase MMP9's expression and activity following adiponectin treatment. We therefore concluded that adiponectin can directly stimulate chondrocyte proliferation and differentiation. To evaluate the underlying mechanisms, we examined the effect of adiponectin on the expression of chondrogenic signaling molecules: Ihh, PTHrP, Ptc1, FGF18, BMP7, IGF1 and p21 were all upregulated while FGF9 was downregulated. This study reveals novel and direct activity of adiponectin in chondrocytes, suggesting its positive effects on bone development.
Collapse
Affiliation(s)
- T Delessa Challa
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Israel
| | | | | |
Collapse
|
20
|
Kim D, Song J, Jin EJ. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 2010; 285:26900-26907. [PMID: 20576614 DOI: 10.1074/jbc.m110.115105] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that fulfill diverse functions by negatively regulating gene expression. Here, we investigated the involvement of miRNAs in the chondrogenic differentiation of chick limb mesenchymal cells and found that the expression of miR-221 increased upon chondrogenic inhibition. Blockade of miR-221 via peanut agglutinin-based antisense oligonucleotides reversed the chondro-inhibitory actions of a JNK inhibitor on the proliferation and migration of chondrogenic progenitors as well as the formation of precartilage condensations. We determined that mdm2 is a relevant target of miR-221 during chondrogenesis. miR-221 was necessary and sufficient to down-regulate Mdm2 expression, and this down-modulation of Mdm2 by miR-221 prevented the degradation of (and consequently up-regulated) the Slug protein, which negatively regulates the proliferation of chondroprogenitors. These results indicate that miR-221 contributes to the regulation of cell proliferation by negatively regulating Mdm2 and thereby inhibiting Slug degradation during the chondrogenesis of chick limb mesenchymal cells.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea
| | - Jinsoo Song
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea.
| |
Collapse
|
21
|
Wuelling M, Vortkamp A. Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatr Nephrol 2010; 25:625-31. [PMID: 19949815 DOI: 10.1007/s00467-009-1368-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/23/2009] [Accepted: 10/28/2009] [Indexed: 12/11/2022]
Abstract
During endochondral ossification bones are formed as cartilage templates in which chondrocytes proliferate, differentiate into hypertrophic chondrocytes and are gradually replaced by bone. Postnatally, remnants of embryonic chondrocytes remain in a restricted domain between the ossified regions of the bones forming the growth plate. The coordinated proliferation and differentiation of chondrocytes ensures the continuous elongation of the epiphyseal growth plates. The sequential changes between proliferation and differentiation are tightly regulated by secreted growth factors, which activate chondrocyte-specific transcription factors. Transcription factors that play critical roles in regulating cell-type-specific gene expression include Sox9, Gli2/3, and Runx2. The interaction of these transcription factors with general transcriptional regulators like histone-modifying enzymes provides an additional level of regulation to fine-tune the expression of target genes in different chondrocyte populations. This review will outline recent advances in the analysis of the complex transcriptional network that regulates the distinct steps of chondrocyte differentiation.
Collapse
Affiliation(s)
- Manuela Wuelling
- Department of Developmental Biology, Center for Medical Biotechnology, University Duisburg-Essen, 45117 Essen, Germany
| | | |
Collapse
|
22
|
Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. ACTA ACUST UNITED AC 2010; 87:351-71. [PMID: 19960542 DOI: 10.1002/bdrc.20167] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, there has been a great deal of interest in the development of regenerative approaches to produce hyaline cartilage ex vivo that can be utilized for the repair or replacement of damaged or diseased tissue. It is clinically imperative that cartilage engineered in vitro mimics the molecular composition and organization of and exhibits biomechanical properties similar to persistent hyaline cartilage in vivo. Experimentally, much of our current knowledge pertaining to the regulation of cartilage formation, or chondrogenesis, has been acquired in vitro utilizing high-density cultures of undifferentiated chondroprogenitor cells stimulated to differentiate into chondrocytes. In this review, we describe the extracellular matrix molecules, nuclear transcription factors, cytoplasmic protein kinases, cytoskeletal components, and plasma membrane receptors that characterize cells undergoing chondrogenesis in vitro and regulate the progression of these cells through the chondrogenic differentiation program. We also provide an extensive list of growth factors and other extracellular signaling molecules, as well as chromatin remodeling proteins such as histone deacetylases, known to regulate chondrogenic differentiation in culture. In addition, we selectively highlight experiments that demonstrate how an understanding of normal hyaline cartilage formation can lead to the development of novel cartilage tissue engineering strategies. Finally, we present directions for future studies that may yield information applicable to the in vitro generation of hyaline cartilage that more closely resembles native tissue.
Collapse
Affiliation(s)
- Brent E Bobick
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
23
|
Owen HC, Ahmed SF, Farquharson C. Chondrocyte p21(WAF1/CIP1) expression is increased by dexamethasone but does not contribute to dexamethasone-induced growth retardation in vivo. Calcif Tissue Int 2009; 85:326-34. [PMID: 19727539 DOI: 10.1007/s00223-009-9276-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/29/2009] [Indexed: 01/03/2023]
Abstract
It has been shown that cell cycle genes play an important role in the coordination of chondrocyte proliferation and differentiation. The inhibitory effects of glucocorticoids (GCs) on chondrocyte proliferation are consistent with GCs disrupting cell cycle progression and promoting cell cycle exit. Cyclin-dependent kinase inhibitors (CDKIs) force cells to exit the cell cycle and differentiate, and studies have shown that expression of the CDKI p21(CIP1/WAF1) is increased in terminally differentiated cells. In this study, p21 mRNA and protein expression was increased during chondrocyte differentiation and after exposure to dexamethasone (Dex, 10(-6 )M) in murine chondrogenic ATDC5 cells. In 4-week-old mice lacking a functional p21 gene, Dex caused a reduction in body weight compared to saline control null mice, but this was consistent with the reduction in body weight observed in Dex-treated wild-type littermates. In addition, p21 ablation had no effect on the reduction in width of the growth plate or reduced mineral apposition rate in Dex-treated mice. However, an alteration in growth rate and epiphyseal structure is evident when comparing p21(-/-) and wild-type mice. These findings suggest that p21 does not directly contribute to GC-induced growth retardation in vivo but is involved in the maintenance of the growth plate.
Collapse
Affiliation(s)
- H C Owen
- Bone Biology Group, Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Edinburgh, Midlothian, EH25 9PS, UK
| | | | | |
Collapse
|
24
|
Abstract
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.
Collapse
|
25
|
Bobick BE, Kulyk WM. Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. ACTA ACUST UNITED AC 2008; 84:131-54. [PMID: 18546337 DOI: 10.1002/bdrc.20126] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The majority of bones comprising the adult vertebrate skeleton are generated from hyaline cartilage templates that form during embryonic development. A process known as endochondral ossification is responsible for the conversion of these transient cartilage anlagen into mature, calcified bone. Endochondral ossification is a highly regulated, multistep cell specification program involving the initial differentiation of prechondrogenic mesenchymal cells into hyaline chondrocytes, terminal differentiation of hyaline chondrocytes into hypertrophic chondrocytes, and finally, apoptosis of hypertrophic chondrocytes followed by bone matrix deposition. Recently, extensive research has been carried out describing roles for the three major mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-jun N-terminal kinase (JNK) pathways, in the successive stages of chondrogenic differentiation. In this review, we survey this research examining the involvement of ERK1/2, p38, and JNK pathway signaling in all aspects of the chondrogenic differentiation program from embryonic through postnatal stages of development. In addition, we summarize evidence from in vitro studies examining MAPK function in immortalized chondrogenic cell lines and adult mesenchymal stem cells. We also provide suggestions for future studies that may help ameliorate existing confusion concerning the specific roles of MAPK signaling at different stages of chondrogenesis.
Collapse
Affiliation(s)
- Brent E Bobick
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
26
|
McMahon LA, Prendergast PJ, Campbell VA. A comparison of the involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2008; 368:990-5. [PMID: 18267113 DOI: 10.1016/j.bbrc.2008.01.160] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/28/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are under investigation as an alternative cell source for the engineering of cartilage tissue in three-dimensional (3D) scaffolds. However, little is known about the intracellular mechanisms involved in the chondrogenic differentiation of MSCs. This study investigated the signaling pathways evoked by TGF-beta1 and IGF-1 that mediated chondrogenic differentiation in adult rat bone-marrow derived MSCs in (i) monolayer on plastic and (ii) a 3D collagen-GAG scaffold. The data demonstrated involvement of the p38 pathway, but not ERK1/2 or PI3K in TGF-beta1-induced chondrogenic differentiation in monolayer. Similarly, when the MSCs were seeded onto a collagen-GAG scaffold and treated with TGF-beta1, the chondrogenic differentiation was dependent upon p38. In contrast, IGF-1-induced chondrogenic differentiation in monolayer involved p38, ERK1/2, as well as PI3K. The phosphorylation of Akt occurred downstream of PI3K and phospho-Akt was found to accumulate in the nucleus of IGF-1-treated cells. When MSCs were seeded onto the collagen-GAG scaffold and exposed to IGF-1, PI3K was required for chondrogenesis. These findings highlight the respective and differential involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenesis of MSCs and demonstrates that intracellular signaling pathways are similar when differentiation is stimulated in a 2D or 3D environment.
Collapse
Affiliation(s)
- Louise A McMahon
- Trinity Centre for Bioengineering, School of Engineering, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
27
|
Ben-Eliezer M, Phillip M, Gat-Yablonski G. Leptin regulates chondrogenic differentiation in ATDC5 cell-line through JAK/STAT and MAPK pathways. Endocrine 2007; 32:235-44. [PMID: 18080100 DOI: 10.1007/s12020-007-9025-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/23/2007] [Accepted: 09/12/2007] [Indexed: 12/19/2022]
Abstract
Leptin, the satiety hormone, has been found to affect growth-plate cartilage development. In the present study, some of the signal transduction pathways that mediate leptin signaling in the ATDC5 chondrogenic cell-line, a model for endochondral ossification, were analyzed. For this purpose, real-time PCR, Western blots and immunofluorescence techniques were used. It was found that leptin increased phosphorylation of ERK1/2, p38, and STAT3 in a time- and dose-dependent manner. Specific inhibition of STAT3 or ERK1/2, but not of P38, blocked the stimulatory effect of leptin on type X collagen mRNA levels. Moreover, leptin induced the translocation of ERK1/2 into the nucleus, as well as c-fos expression, indicating full activation of this cascade. Leptin-induced JNK phosphorylation was not observed, although leptin significantly and rapidly increased JNK protein levels and c-jun mRNA levels. In addition, ERK5 was identified in these cells, but there was no apparent effect of leptin on either its phosphorylation or protein level. The study indicates that the effects of leptin on growth-plate chondrocytes are specifically mediated through ERK1/2 and STAT3, while P38 is not essential for leptin-induced type X collagen expression. This is the first demonstration that these pathways are involved in leptin-induced growth.
Collapse
Affiliation(s)
- Miri Ben-Eliezer
- Felsenstein Medical Research Center, 14 Kaplan Street, Petach Tikva, 49202, Israel
| | | | | |
Collapse
|
28
|
Nurminsky D, Magee C, Faverman L, Nurminskaya M. Regulation of chondrocyte differentiation by actin-severing protein adseverin. Dev Biol 2006; 302:427-37. [PMID: 17097081 PMCID: PMC3387683 DOI: 10.1016/j.ydbio.2006.09.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/25/2006] [Accepted: 09/29/2006] [Indexed: 11/28/2022]
Abstract
The importance of actin organization in controlling the chondrocyte phenotype is well established, but little is known about the cytoskeletal components regulating chondrocyte differentiation. Previously, we have observed up-regulation of an actin-binding gelsolin-like protein in hypertrophic chondrocytes. We have now identified it as adseverin (scinderin). Adseverin is drastically up-regulated during chondrocyte maturation, as shown by Northern blot analysis, in situ hybridization, and real-time RT-PCR. Its expression is positively regulated by PKC and MEK signaling as shown by inhibitory analyses. Over-expression of adseverin in non-hypertrophic chondrocytes causes rearrangement of the actin cytoskeleton, a change in cell morphology, a dramatic (3.5-fold) increase in cell volume, and up-regulation of Indian hedgehog (Ihh) and of collagen type X--all indicative of chondrocyte differentiation. These changes are mediated by ERK1/2 and p38 kinase pathways. Thus, adseverin-induced rearrangements of the actin cytoskeleton may mediate the PKC-dependent activation of p38 and Erk1/2 signaling pathways necessary for chondrocyte hypertrophy, as evidenced by changes in cell morphology, increase in cell size and expression of the chondrocyte maturation markers. These results demonstrate that interdependence of cytoskeletal organization and chondrogenic gene expression is regulated, at least in part, by actin-binding proteins such as adseverin.
Collapse
Affiliation(s)
- Dmitry Nurminsky
- Tufts University School of Medicine, Department of Anatomy and Cellular Biology, 136 Harrison Avenue Boston, MA 02111, USA
| | | | | | | |
Collapse
|
29
|
Lee B, Moon SK. Ras/ERK signaling pathway mediates activation of the p21WAF1 gene promoter in vascular smooth muscle cells by platelet-derived growth factor. Arch Biochem Biophys 2005; 443:113-9. [PMID: 16248979 DOI: 10.1016/j.abb.2005.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 08/30/2005] [Accepted: 09/03/2005] [Indexed: 10/25/2022]
Abstract
We previously demonstrated that platelet-derived growth factor (PDGF) induces the cyclin-dependent kinase inhibitor p21/WAF1 promoter in vascular smooth muscle cells (VSMC) via activation of a Sp1 site in VSMC. In this report, the role and relevance of the signaling pathway in the transcriptional regulation of p21WAF1 in VSMC was examined. PDGF stimulated the expression of p21WAF1 in VSMC, as evidenced by Immunoblot and Northern blot analyses. Treatment with PD98059, a specific MEK inhibitor, and the transient expression of VSMC with DN-MEK1 plasmid effectively down-regulated PDGF-induced p21WAF1 expression and promoter activity, respectively. Furthermore, the transactivation of PDGF-stimulated Sp1 was inhibited by treatment with PD98059 and the transient expression of VSMC with the DN-MEK1 plasmid. Finally, the transient transfection of VSMC with a dominant negative Ras (RasN17) suppressed PDGF-induced ERK activity, p21WAF1 expression, and promoter activity. The overexpression of RasN17 also abolished PDGF-stimulated Sp1 activity. In conclusion, the findings herein presented indicate that the activation of the Ras/ERK pathway contributes to the induction of p21WAF1 expression in VSMC. In addition, the transcription factor Sp1 that is involved in the Ras/ERK-mediated control of p21WAF1 regulation in VSMC in response to PDGF has now been identified.
Collapse
Affiliation(s)
- Beobyi Lee
- Department of Anatomy, College of Medicine, Konkuk University, Chungju City, Chungbuk 380-701, South Korea
| | | |
Collapse
|
30
|
Moro T, Ogasawara T, Chikuda H, Ikeda T, Ogata N, Maruyama Z, Komori T, Hoshi K, Chung UI, Nakamura K, Okayama H, Kawaguchi H. Inhibition of Cdk6 expression through p38 MAP kinase is involved in differentiation of mouse prechondrocyte ATDC5. J Cell Physiol 2005; 204:927-33. [PMID: 15795936 DOI: 10.1002/jcp.20350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because a temporal arrest in the G1-phase of the cell cycle is a prerequisite for cell differentiation, this study investigated the involvement of cell cycle factors in the differentiation of cultured mouse prechondrocyte cell line ATDC5. Among the G1 cell cycle factors examined, both protein and mRNA levels of cyclin-dependent kinase (Cdk6) were downregulated during the culture in a differentiation medium. The protein degradation of Cdk6 was not involved in this downregulation because proteasome inhibitors did not reverse the protein level. When inhibitors of p38 MAPK, ERK-1/2, and PI3K/Akt were added to the culture, only a p38 MAPK inhibitor SB203580 blocked the decrease in the Cdk6 protein level by the differentiation medium, indicating that the Cdk6 inhibition was mediated by p38 MAPK pathway. In fact, p38 MAPK was confirmed to be phosphorylated during differentiation of ATDC5 cells. Enforced expression of Cdk6 in ATDC5 cells blocked the chondrocyte differentiation and inhibited Sox5 and Sox6 expressions. However, the Cdk6 overexpression did not affect the proliferation or the cell cycle progression, suggesting that the inhibitory effect of Cdk6 on the differentiation was exerted by a mechanism largely independent of its cell cycle regulation. These results indicate that Cdk6 may be a regulator of chondrocyte differentiation and that its p38-mediated downregulation is involved in the efficient differentiation.
Collapse
Affiliation(s)
- Toru Moro
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|