1
|
Marminon C, Werner C, Gast A, Herfindal L, Charles J, Lindenblatt D, Aichele D, Mularoni A, Døskeland SO, Jose J, Niefind K, Le Borgne M. Exploring the biological potential of the brominated indenoindole MC11 and its interaction with protein kinase CK2. Biol Chem 2025:hsz-2024-0160. [PMID: 40116007 DOI: 10.1515/hsz-2024-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1H-benzotriazole (IC50 = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC50 = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1H-benzotriazole (IC50 = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-b]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4b, IC50 = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (MC11), with an IC50 of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and MC11 demonstrated strong in cellulo activity, particularly against leukemic cell lines like IPC-Bcl2.
Collapse
Affiliation(s)
- Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Christian Werner
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Lars Herfindal
- Department of Clinical Science, University of Bergen, N-5009 Bergen, Norway
| | - Johana Charles
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Dirk Lindenblatt
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Angélique Mularoni
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | | | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| |
Collapse
|
2
|
Dorin-Semblat D, Semblat JP, Hamelin R, Srivastava A, Tetard M, Matesic G, Doerig C, Gamain B. Casein Kinases 2-dependent phosphorylation of the placental ligand VAR2CSA regulates Plasmodium falciparum-infected erythrocytes cytoadhesion. PLoS Pathog 2025; 21:e1012861. [PMID: 39804934 PMCID: PMC11761665 DOI: 10.1371/journal.ppat.1012861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes. Here, we aimed to identify the kinases mediating this phosphorylation. We report that Human and Plasmodium falciparum Casein Kinase 2α are involved in the phosphorylation of the extracellular region of VAR2CSA. We notably show that both CK2α can phosphorylate the extracellular region of recombinant and immunoprecipitated VAR2CSA. Mass spectrometry analysis of recombinant VAR2CSA phosphorylated by recombinant Human and P. falciparum CK2α combined with site-directed mutagenesis led to the identification of residue S1068 in VAR2CSA, which is phosphorylated by both enzymes and is associated with CSA binding. Furthermore, using CRISPR/Cas9 we generated a parasite line in which phosphoresidue S1068 was changed to alanine. This mutation strongly impairs infected erythrocytes adhesion by abolishing VAR2CSA translocation to the surface of infected erythrocytes. We also report that two specific CK2 inhibitors reduce infected erythrocytes adhesion to CSA and decrease the phosphorylation of the recombinant extracellular region of VAR2CSA using either infected erythrocytes lysates as a source of kinases or recombinant Human and P. falciparum casein kinase 2. Taken together, these results undoubtedly demonstrate that host and P. falciparum CK2α phosphorylate the extracellular region of VAR2CSA and that this post-translational modification is important for VAR2CSA trafficking and for infected erythrocytes adhesion to CSA.
Collapse
Affiliation(s)
- Dominique Dorin-Semblat
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Jean-Philippe Semblat
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Romain Hamelin
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Marilou Tetard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Graziella Matesic
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Christian Doerig
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | - Benoit Gamain
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| |
Collapse
|
3
|
Winiewska-Szajewska M, Paprocki D, Marzec E, Poznański J. Effect of histidine protonation state on ligand binding at the ATP-binding site of human protein kinase CK2. Sci Rep 2024; 14:1463. [PMID: 38233478 PMCID: PMC10794401 DOI: 10.1038/s41598-024-51905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Histidine residues contribute to numerous molecular interactions, owing to their structure with the ionizable aromatic side chain with pKa close to the physiological pH. Herein, we studied how the two histidine residues, His115 and His160 of the catalytic subunit of human protein kinase CK2, affect the binding of the halogenated heterocyclic ligands at the ATP-binding site. Thermodynamic studies on the interaction between five variants of hCK2α (WT protein and four histidine mutants) and three ionizable bromo-benzotriazoles and their conditionally non-ionizable benzimidazole counterparts were performed with nanoDSF, MST, and ITC. The results allowed us to identify the contribution of interactions involving the particular histidine residues to ligand binding. We showed that despite the well-documented hydrogen bonding/salt bridge formation dragging the anionic ligands towards Lys68, the protonated His160 also contributes to the binding of such ligands by long-range electrostatic interactions. Simultaneously, His 115 indirectly affects ligand binding, placing the hinge region in open/closed conformations.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland.
| | - Daniel Paprocki
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Ewa Marzec
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Papp B, Le Borgne M, Perret F, Marminon C, Józsa L, Pető Á, Kósa D, Nagy L, Kéki S, Ujhelyi Z, Pallér Á, Budai I, Bácskay I, Fehér P. Formulation and Investigation of CK2 Inhibitor-Loaded Alginate Microbeads with Different Excipients. Pharmaceutics 2023; 15:2701. [PMID: 38140042 PMCID: PMC10748227 DOI: 10.3390/pharmaceutics15122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol® HP was added to the drug-sodium alginate mixture and polyvinylpyrrolidone (PVP) was added to the hardening solution, alone and in combination. To characterize the formulations, mean particle size, scanning electron microscopy analysis, encapsulation efficiency, swelling behavior, an enzymatic stability test and an in vitro dissolution study were performed. The cell viability assay and permeability test were also carried out on the Caco-2 cell line. The anti-oxidant and anti-inflammatory effects of the formulations were finally evaluated. The combination of Transcutol® HP and PVP in the formulation of sodium alginate microbeads could improve the stability, in vitro permeability, anti-oxidant and anti-inflammatory effects of the CK2 inhibitor.
Collapse
Affiliation(s)
- Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; (M.L.B.); (C.M.)
| | - Florent Perret
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE, ICBMS, 69622 Lyon, France;
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; (M.L.B.); (C.M.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (L.N.); (S.K.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (L.N.); (S.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ádám Pallér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Utca 2–4, H-4028 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
6
|
Patel S, Patel S, Tulsian K, Kumar P, Vyas VK, Ghate M. Design of 2-amino-6-methyl-pyrimidine benzoic acids as ATP competitive casein kinase-2 (CK2) inhibitors using structure- and fragment-based design, docking and molecular dynamic simulation studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:211-230. [PMID: 37051759 DOI: 10.1080/1062936x.2023.2196091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Overexpression of casein kinase-2 (CK2) has been implicated in several carcinomas, mainly lung, prostate and acute myeloid leukaemia. The smaller nucleotide pocket compared to related kinases provides a great opportunity to discover newer ATP-competitive CK2 inhibitors. In this study, we have employed an integrated structure- and fragment-based design strategy to design 2-amino-6-methyl-pyrimidine benzoic acids as ATP-competitive CK2 inhibitors. A statistically significant four features-based E-pharmacophore (ARRR) model was used to screen 780,092 molecules. Further, the retrieved hits were considered for molecular docking study to identify essential binding interactions. At the same time, fragment-based virtual screening was performed using a dataset of 1,542,397 fragments. The identified hits and fragments were used as structure templates to rationalize the design of 2-amino-6-methyl-pyrimidine benzoic acids as newer CK2 inhibitors. Finally, the binding interactions of the designed hits were identified using an induced fit docking (IFD) study, and their stability was estimated by a molecular dynamics (MD) simulation study of 100 ns.
Collapse
Affiliation(s)
- S Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - S Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - K Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - P Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - V K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - M Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, India
| |
Collapse
|
7
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Latosińska JN, Latosińska M, Orzeszko A, Maurin JK. Synthesis and Crystal Structure of Adamantylated 4,5,6,7-Tetrahalogeno-1 H-benzimidazoles Novel Multi-Target Ligands (Potential CK2, M2 and SARS-CoV-2 Inhibitors); X-ray/DFT/QTAIM/Hirshfeld Surfaces/Molecular Docking Study. Molecules 2022; 28:147. [PMID: 36615341 PMCID: PMC9822452 DOI: 10.3390/molecules28010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
A series of new congeners, 1-[2-(1-adamantyl)ethyl]-1H-benzimidazole (AB) and 1-[2-(1-adamantyl)ethyl]-4,5,6,7-tetrahalogeno-1H-benzimidazole (Hal=Cl, Br, I; tClAB, tBrAB, tIAB), have been synthesized and studied. These novel multi-target ligands combine a benzimidazole ring known to show antitumor activity and an adamantyl moiety showing anti-influenza activity. Their crystal structures were determined by X-ray, while intermolecular interactions were studied using topological Bader's Quantum Theory of Atoms in Molecules, Hirshfeld Surfaces, CLP and PIXEL approaches. The newly synthesized compounds crystallize within two different space groups, P-1 (AB and tIAB) and P21/c (tClAB and tBrAB). A number of intramolecular hydrogen bonds, C-H⋯Hal (Hal=Cl, Br, I), were found in all halogen-containing congeners studied, but the intermolecular C-H⋯N hydrogen bond was detected only in AB and tIAB, while C-Hal⋯π only in tClAB and tBrAB. The interplay between C-H⋯N and C-H⋯Hal hydrogen bonds and a shift from the strong (C-H⋯Cl) to the very weak (C-H⋯I) attractive interactions upon Hal exchange, supplemented with Hal⋯Hal overlapping, determines the differences in the symmetry of crystalline packing and is crucial from the biological point of view. The hypothesis about the potential dual inhibitor role of the newly synthesized congeners was verified using molecular docking and the congeners were found to be pharmaceutically attractive as Human Casein Kinase 2, CK2, inhibitors, Membrane Matrix 2 Protein, M2, blockers and Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, inhibitors. The addition of adamantyl moiety seems to broaden and modify the therapeutic indices of the 4,5,6,7-tetrahalogeno-1H-benzimidazoles.
Collapse
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Jan Krzysztof Maurin
- National Medicines Institute, Chełmska 30/34, 00-750 Warsaw, Poland
- National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
9
|
Winiewska-Szajewska M, Czapinska H, Kaus-Drobek M, Fricke A, Mieczkowska K, Dadlez M, Bochtler M, Poznański J. Competition between electrostatic interactions and halogen bonding in the protein-ligand system: structural and thermodynamic studies of 5,6-dibromobenzotriazole-hCK2α complexes. Sci Rep 2022; 12:18964. [PMID: 36347916 PMCID: PMC9641685 DOI: 10.1038/s41598-022-23611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.12847.380000 0004 1937 1290Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | - Honorata Czapinska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Magdalena Kaus-Drobek
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Fricke
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Kinga Mieczkowska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michał Dadlez
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Front Mol Biosci 2022; 9:909711. [PMID: 35755813 PMCID: PMC9225150 DOI: 10.3389/fmolb.2022.909711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward S Cruise
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Darren B Chai
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Flaviu Trifoi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sam R Fess
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paul J Desormeaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie A Zukowski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paula Pittock
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
11
|
Boewe AS, Wemmert S, Kulas P, Schick B, Götz C, Wrublewsky S, Montenarh M, Menger MD, Laschke MW, Ampofo E. Inhibition of CK2 Reduces NG2 Expression in Juvenile Angiofibroma. Biomedicines 2022; 10:biomedicines10050966. [PMID: 35625703 PMCID: PMC9138789 DOI: 10.3390/biomedicines10050966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Juvenile angiofibroma (JA) is a rare fibrovascular neoplasm predominately found within the posterior nasal cavity of adolescent males. JA expresses the proteoglycan nerve–glial antigen (NG)2, which crucially determines the migratory capacity of distinct cancer cells. Moreover, it is known that the protein kinase CK2 regulates NG2 gene expression. Therefore, in the present study, we analyzed whether the inhibition of CK2 suppresses NG2-dependent JA cell proliferation and migration. For this purpose, we assessed the expression of NG2 and CK2 in patient-derived JA tissue samples, as well as in patient-derived JA cell cultures by Western blot, immunohistochemistry, flow cytometry and quantitative real-time PCR. The mitochondrial activity, proliferation and migratory capacity of the JA cells were determined by water-soluble tetrazolium (WST)-1, 5-bromo-2′-deoxyuridine (BrdU) and collagen sprouting assays. We found that NG2 and CK2 were expressed in both the JA tissue samples and cell cultures. The treatment of the JA cells with the two CK2 inhibitors, CX-4945 and SGC-CK2-1, significantly reduced NG2 gene and protein expression when compared to the vehicle-treated cells. In addition, the loss of CK2 activity suppressed the JA cell proliferation and migration. These findings indicate that the inhibition of CK2 may represent a promising therapeutic approach for the treatment of NG2-expressing JA.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Silke Wemmert
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Philipp Kulas
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Bernhard Schick
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (C.G.); (M.M.)
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (C.G.); (M.M.)
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|
12
|
Pucko EB, Ostrowski RP. Inhibiting CK2 among Promising Therapeutic Strategies for Gliomas and Several Other Neoplasms. Pharmaceutics 2022; 14:331. [PMID: 35214064 PMCID: PMC8877581 DOI: 10.3390/pharmaceutics14020331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In gliomas, casein kinase 2 (CK2) plays a dominant role in cell survival and tumour invasiveness and is upregulated in many brain tumours. Among CK2 inhibitors, benzimidazole and isothiourea derivatives hold a dominant position. While targeting glioma tumour cells, they show limited toxicity towards normal cells. Research in recent years has shown that these compounds can be suitable as components of combined therapies with hyperbaric oxygenation. Such a combination increases the susceptibility of glioma tumour cells to cell death via apoptosis. Moreover, researchers planning on using any other antiglioma investigational pharmaceutics may want to consider using these agents in combination with CK2 inhibitors. However, different compounds are not equally effective when in such combination. More research is needed to elucidate the mechanism of treatment and optimize the treatment regimen. In addition, the role of CK2 in gliomagenesis and maintenance seems to have been challenged recently, as some compounds structurally similar to CK2 inhibitors do not inhibit CK2 while still being effective at reducing glioma viability and invasion. Furthermore, some newly developed inhibitors specific for CK2 do not appear to have strong anticancer properties. Further experimental and clinical studies of these inhibitors and combined therapies are warranted.
Collapse
Affiliation(s)
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
13
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
14
|
Sultan A, Ali R, Sultan T, Ali S, Khan NJ, Parganiha A. Circadian clock modulating small molecules repurposing as inhibitors of SARS-CoV-2 M pro for pharmacological interventions in COVID-19 pandemic. Chronobiol Int 2021; 38:971-985. [PMID: 33820462 PMCID: PMC8022342 DOI: 10.1080/07420528.2021.1903027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a global health emergency warranting the development of targeted treatment. The main protease Mpro is considered as a key drug target in coronavirus infections because of its vital role in the proteolytic processing of two essential polyproteins required for the replication and transcription of viral RNA. Targeting and inhibiting the Mpro activity represents a valid approach to prevent the SARS-CoV-2 replication and spread. Based on the structure-assisted drug designing, here we report a circadian clock-modulating small molecule “SRT2183” as a potent inhibitor of Mpro to block the replication of SARS-CoV-2. The findings are expected to pave the way for the development of therapeutics for COVID-19.
Collapse
Affiliation(s)
- Armiya Sultan
- Functional Genomics Laboratory, Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Chronobiology and Animal Behaviour Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Rafat Ali
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Tahira Sultan
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sher Ali
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Arti Parganiha
- Chronobiology and Animal Behaviour Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
15
|
Atkinson EL, Iegre J, Brear PD, Zhabina EA, Hyvönen M, Spring DR. Downfalls of Chemical Probes Acting at the Kinase ATP-Site: CK2 as a Case Study. Molecules 2021; 26:1977. [PMID: 33807474 PMCID: PMC8037657 DOI: 10.3390/molecules26071977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.
Collapse
Affiliation(s)
- Eleanor L. Atkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Paul D. Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Elizabeth A. Zhabina
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| |
Collapse
|
16
|
Bansal Y, Minhas R, Singhal A, Arora RK, Bansal G. Benzimidazole: A Multifacted Nucelus for Anticancer Agents. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208141107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by an uncontrolled proliferation of cells, dedifferentiation,
invasiveness and metastasis. Endothelial growth factor (eGF), insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), Fibroblast growth factor (FGF), Vascular endothelial
growth factor (VEGF), checkpoint kinase 1 & 2 ( Chk1 & Chk2), aurora kinases,
topoisomerases, histone deacetylators (HDAC), poly(ADP-Ribose)polymerase (PARP), farnesyl
transferases, RAS-MAPK pathway and PI3K-Akt-mTOR pathway, are some of the
prominent mediators implicated in the proliferation of tumor cells. Huge artillery of natural
and synthetic compounds as anticancer, which act by inhibiting one or more of the enzymes
and/or pathways responsible for the progression of tumor cells, is reported in the literature.
The major limitations of anticancer agents used in clinics as well as of those under development
in literature are normal cell toxicity and other side effects due to lack of specificity.
Hence, medicinal chemists across the globe have been working for decades to develop potent and safe anticancer
agents from natural sources as well as from different classes of heterocycles. Benzimidazole is one of the most important
and explored heteronucelus because of their versatility in biological actions as well as synthetic applications
in medicinal chemistry. The structural similarity of amino derivatives of benzimidazole with purines makes it a fascinating
nucleus for the development of anticancer, antimicrobial and anti-HIV agents. This review article is an attempt
to critically analyze various reports on benzimidazole derivatives acting on different targets to act as anticancer so as
to understand the structural requirements around benzimidazole nucleus for each target and enable medicinal chemists
to promote rational development of antitumor agents.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Ankit Singhal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Radhey Krishan Arora
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
17
|
Hitz E, Grüninger O, Passecker A, Wyss M, Scheurer C, Wittlin S, Beck HP, Brancucci NMB, Voss TS. The catalytic subunit of Plasmodium falciparum casein kinase 2 is essential for gametocytogenesis. Commun Biol 2021; 4:336. [PMID: 33712726 PMCID: PMC7954856 DOI: 10.1038/s42003-021-01873-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Casein kinase 2 (CK2) is a pleiotropic kinase phosphorylating substrates in different cellular compartments in eukaryotes. In the malaria parasite Plasmodium falciparum, PfCK2 is vital for asexual proliferation of blood-stage parasites. Here, we applied CRISPR/Cas9-based gene editing to investigate the function of the PfCK2α catalytic subunit in gametocytes, the sexual forms of the parasite that are essential for malaria transmission. We show that PfCK2α localizes to the nucleus and cytoplasm in asexual and sexual parasites alike. Conditional knockdown of PfCK2α expression prevented the transition of stage IV into transmission-competent stage V gametocytes, whereas the conditional knockout of pfck2a completely blocked gametocyte maturation already at an earlier stage of sexual differentiation. In summary, our results demonstrate that PfCK2α is not only essential for asexual but also sexual development of P. falciparum blood-stage parasites and encourage studies exploring PfCK2α as a potential target for dual-active antimalarial drugs.
Collapse
Affiliation(s)
- Eva Hitz
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Olivia Grüninger
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Armin Passecker
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Matthias Wyss
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Christian Scheurer
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Sergio Wittlin
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Hans-Peter Beck
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Nicolas M. B. Brancucci
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
18
|
Fuchs O, Bokorova R. Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovasc Hematol Disord Drug Targets 2021; 21:7-22. [PMID: 33687890 DOI: 10.2174/1871529x21666210308111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
Collapse
Affiliation(s)
- Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
19
|
The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci 2020; 265:118809. [PMID: 33249097 DOI: 10.1016/j.lfs.2020.118809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are responsible for regulating a number of physiological processes. The central oscillator is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and the SCN synchronises the circadian clocks that are found in our peripheral organs through neural and humoral signalling. At the molecular level, biological clocks consist of transcription-translation feedback loops (TTFLs) and these pathways are influenced by transcription factors, post-translational modifications, signalling pathways and epigenetic modifiers. When disruptions occur in the circadian machinery, the activities of the proteins implicated in this network and the expression of core clock or clock-controlled genes (CCGs) can be altered. Circadian misalignment can also arise when there is desychronisation between our internal clocks and environmental stimuli. There is evidence in the literature demonstrating that disturbances in the circadian rhythm contribute to the pathophysiology of several diseases and disorders. This includes the metabolic syndrome and recently, it has been suggested that the 'circadian syndrome' may be a more appropriate term to use to not only describe the cardio-metabolic risk factors but also the associated comorbidities. Here we overview the molecular architecture of circadian clocks in mammals and provide insight into the effects of shift work, exposure to artificial light, food intake and stress on the circadian rhythm. The relationship between circadian rhythms, metabolic disorders and depression is reviewed and this is a topic that requires further investigation. We also describe how particular proteins involved in the TTFLs can be potentially modulated by small molecules, including pharmacological interventions and dietary compounds.
Collapse
|
20
|
Krämer A, Kurz CG, Berger BT, Celik IE, Tjaden A, Greco FA, Knapp S, Hanke T. Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor. Eur J Med Chem 2020; 208:112770. [PMID: 32883634 DOI: 10.1016/j.ejmech.2020.112770] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Casein kinase 2 (CK2) is a constitutively expressed serine/threonine kinase that has a large diversity of cellular substrates. Thus, CK2 has been associated with a plethora of regulatory functions and dysregulation of CK2 has been linked to disease development in particular to cancer. The broad implications in disease pathology makes CK2 an attractive target. To date, the most advanced CK2 inhibitor is silmitasertib, which has been investigated in clinical trials for treatment of various cancers, albeit several off-targets for silmitasertib have been described. To ascertain the role of CK2 inhibition in cancer, other disease and normal physiology the development of a selective CK2 inhibitor would be highly desirable. In this study we explored the pyrazolo [1,5-a]pyrimidine hinge-binding moiety for the development of selective CK2 inhibitors. Optimization of this scaffold, which included macrocyclization, led to IC20 (31) a compound that displayed high in vitro potency for CK2 (KD = 12 nM) and exclusive selectivity for CK2. X-ray analysis revealed a canonical type-I binding mode for IC20 (31). However, the polar carboxylic acid moiety that is shared by many CK2 inhibitors including silmitasertib was required for potency but limits the cellular activity of IC20 (31) and the cellular IC50 dropped to the low micromolar range. In summary, IC20 (31) represents a highly selective and potent inhibitor of CK2, which can be used as a tool compound to study CK2 biology and potential new applications for the treatment of diseases.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany; Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt Am Main, Germany
| | - Christian Georg Kurz
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Ibrahim Ethem Celik
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Francesco Aleksy Greco
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany; German Translational Cancer Network (DKTK) Site Frankfurt/Mainz, Germany; Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt Am Main, Germany.
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany.
| |
Collapse
|
21
|
Ibrahim HA, Refaat HM. Versatile mechanisms of 2-substituted benzimidazoles in targeted cancer therapy. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00048-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
The aim of this review is to provide an overview on diverse anticancer activities of 2-substituted benzimidazole derivatives.
Main body
This review provides a correlation between the various mechanisms of action of benzimidazoles as anticancer and the substitution pattern around the nucleus.
Conclusion
The linker group and substitution at N-1, C-2, C-5, and C-6 positions have been found to be the most contributory factors for anticancer activity. This will help in the further design to afford more selective, potent, and multi-target anticancer of 2-substituted benzimidazole-based compounds.
Collapse
|
22
|
Schmitt BM, Boewe AS, Becker V, Nalbach L, Gu Y, Götz C, Menger MD, Laschke MW, Ampofo E. Protein Kinase CK2 Regulates Nerve/Glial Antigen (NG)2-Mediated Angiogenic Activity of Human Pericytes. Cells 2020; 9:cells9061546. [PMID: 32630438 PMCID: PMC7348826 DOI: 10.3390/cells9061546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 is a crucial regulator of endothelial cell proliferation, migration and sprouting during angiogenesis. However, it is still unknown whether this kinase additionally affects the angiogenic activity of other vessel-associated cells. In this study, we investigated the effect of CK2 inhibition on primary human pericytes. We found that CK2 inhibition reduces the expression of nerve/glial antigen (NG)2, a crucial factor which is involved in angiogenic processes. Reporter gene assays revealed a 114 bp transcriptional active region of the human NG2 promoter, whose activity was decreased after CK2 inhibition. Functional analyses demonstrated that the pharmacological inhibition of CK2 by CX-4945 suppresses pericyte proliferation, migration, spheroid sprouting and the stabilization of endothelial tubes. Moreover, aortic rings of NG2−/− mice showed a significantly reduced vascular sprouting when compared to rings of NG2+/+ mice, indicating that NG2 is an important regulator of the angiogenic activity of pericytes. In vivo, implanted Matrigel plugs containing CX-4945-treated pericytes exhibited a lower microvessel density when compared to controls. These findings demonstrate that CK2 regulates the angiogenic activity of pericytes through NG2 gene expression. Hence, the inhibition of CK2 represents a promising anti-angiogenic strategy, because it does not only target endothelial cells, but also vessel-associated pericytes.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|
23
|
Chang YC, Kim JY. Therapeutic implications of circadian clocks in neurodegenerative diseases. J Neurosci Res 2020; 98:1095-1113. [PMID: 31833091 DOI: 10.1002/jnr.24572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Circadian clocks, endogenous oscillators generating daily biological rhythms, have important roles in the nervous system to control diverse cellular processes-not only in the suprachiasmatic nucleus (SCN), where the master clocks reside to synchronize all circadian clocks in the body but also in other non-SCN areas. Accumulating evidence has shown relationships between circadian abnormalities (e.g., sleep disturbances and abnormal rest-activity rhythms) and disease progressions in various neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's (PD) disease. Although circadian abnormalities were frequently considered as consequences of disease onsets, recent studies suggest altered circadian clocks as risk factors to develop neurodegenerative diseases via altered production or clearance rates of toxic metabolites like amyloid β. In this review, we will summarize circadian clock-related pathologies in the most common neurodegenerative diseases in the central nervous system, AD and PD. Then, we will introduce the current clinical trials to rescue circadian abnormalities in AD and PD patients. Finally, a discussion about how to improve targeting circadian clocks to increase treatment efficiencies and specificities will be followed. This discussion will provide insight into circadian clocks as potential therapeutic targets to attenuate onsets and progressions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
24
|
Aroua LM. Novel Mixed Complexes Derived from Benzoimidazolphenylethanamine and
4-(Benzoimidazol-2-yl)aniline: Synthesis, Characterization, Antibacterial
Evaluation and Theoretical Prediction of Toxicity. ACTA ACUST UNITED AC 2020. [DOI: 10.14233/ajchem.2020.22472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Benzoimidazolphenylethanamine (BPE) has been synthesized using condensation reaction from
o-phenyldiamine and L-phenylalanine. Some metal complexes have been synthesized from
4-(benzoimidazol-2-yl)aniline, benzoimidazolylphenylethanamine and cadmium(II), tin(II), copper(II)
and nickel(II) metal in a molar ratio (1:1:1). All new metal complexes were characterized by
spectroscopic data of FTIR, UV-visible electronic absorption, X-ray powder diffraction and thermal
analysis. Spectra analysis of the mixed metal complexes showed the coordination of ligands to the
metal ions via nitrogen atoms. The XRD powder showed that metal complexes have a monoclinic
system. The preliminary tested in vitro antibacterial activities of Sn(II) complex was assayed against
four bacterial isolates namely Micrococcus luteus, Staphylococcus aureus as Gram-positive,
Pseudomonas aerugmosa and Escherichia coli.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- 1Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, P.O.Box: 6644, Buraydah, Qassim, Kingdom of Saudi Arabia 2Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar I 2092, Tunis, Tunisia
| |
Collapse
|
25
|
Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol 2020; 432:3498-3514. [DOI: 10.1016/j.jmb.2020.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|
26
|
El-Kardocy A, Mostafa YA, Mohamed NG, Abo-Zeid MN, Hassan NA, Hetta HF, Abdel-Aal ABM. CK2 inhibition, lipophilicity and anticancer activity of new N1versus N2-substituted tetrabromobenzotriazole regioisomers. NEW J CHEM 2020. [DOI: 10.1039/d0nj01194k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both the type and position of polar group substitutions in polybrominated benzotriazoles dramatically change their lipophilicity, kinase inhibition and anticancer activity.
Collapse
Affiliation(s)
- Ahmed El-Kardocy
- Student Research Unit
- Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Yaser A. Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Noha G. Mohamed
- Student Research Unit
- Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Mohammad Nabil Abo-Zeid
- Department of Pharmaceutical Analytical Chemistry
- Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Nivin A. Hassan
- Cancer Biology Department
- South Egypt Cancer Institute, Assiut University
- Assiut
- Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology
- Faculty of Medicine
- Assiut University
- Assiut
- Egypt
| | | |
Collapse
|
27
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
29
|
N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7081-E7090. [PMID: 29987005 DOI: 10.1073/pnas.1801772115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.
Collapse
|
30
|
Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: A peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. Semin Oncol 2018; 45:58-67. [PMID: 30318085 DOI: 10.1053/j.seminoncol.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
Protein kinase CK2, formerly referred to as casein kinase II, is a serine/threonine kinase often found overexpressed in solid tumors and hematologic malignancies that phosphorylates many substrates integral to the hallmarks of cancer. CK2 has emerged as a viable oncology target having been experimentally validated with different kinase inhibitors, including small molecule ATP-competitors, synthetic peptides, and antisense oligonucleotides. To date only two CK2 inhibitors, CIGB-300 and CX-4945, have entered the clinic in phase 1-2 trials. This review provides information on CIGB-300, a cell-permeable cyclic peptide that inhibits CK2-mediated phosphorylation by targeting the substrate phosphoacceptor domain. We review data that support the concept of CK2 as an anticancer target, address the mechanism of action, and summarize preclinical studies showing antiangiogenic and antimetastatic effects as well as synergism with anticancer drugs in preclinical models. We also summarize early clinical research (phase 1/2 trials) of CIGB-300 in cervical cancer, including data in combination with chemoradiotherapy. The clinical data demonstrate the safety, tolerability, and clinical effects of intratumoral injections of CIGB-300 and provide the foundation for future phase 3 clinical trials in locally advanced cervical cancer in combination with standard chemoradiotherapy.
Collapse
Affiliation(s)
- Silvio E Perea
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Idania Baladrón
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen Valenzuela
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
31
|
Deoxynucleosides with benzimidazoles as aglycone moiety are potent anticancer agents. Eur J Pharmacol 2018; 820:146-155. [DOI: 10.1016/j.ejphar.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
32
|
Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS One 2017; 12:e0188340. [PMID: 29261664 PMCID: PMC5737884 DOI: 10.1371/journal.pone.0188340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
Collapse
|
33
|
CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Sci Rep 2017; 7:17569. [PMID: 29242563 PMCID: PMC5730587 DOI: 10.1038/s41598-017-17809-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
Insulin plays a major role in glucose metabolism and insulin-signaling defects are present in obesity and diabetes. CK2 is a pleiotropic protein kinase implicated in fundamental cellular pathways and abnormally elevated in tumors. Here we report that in human and murine adipocytes CK2-inhibition decreases the insulin-induced glucose-uptake by counteracting Akt-signaling and GLUT4-translocation to the plasma membrane. In mice CK2 acts on insulin-signaling in adipose tissue, liver and skeletal muscle and its acute inhibition impairs glucose tolerance. Notably, CK2 protein-level and activity are greatly up-regulated in white adipose tissue from ob/ob and db/db mice as well as from obese patients, regardless the severity of their insulin-resistance and the presence of pre-diabetes or overt type 2 diabetes. Weight loss obtained by both bariatric surgery or hypocaloric diet reverts CK2 hyper-activation to normal level. Our data suggest a central role of CK2 in insulin-sensitivity, glucose homeostasis and adipose tissue remodeling. CK2 up-regulation is identified as a hallmark of adipose tissue pathological expansion, suggesting a new potential therapeutic target for human obesity.
Collapse
|
34
|
Leo L, Weissmann C, Burns M, Kang M, Song Y, Qiang L, Brady ST, Baas PW, Morfini G. Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Hum Mol Genet 2017; 26:2321-2334. [PMID: 28398512 DOI: 10.1093/hmg/ddx125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023] Open
Abstract
Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.
Collapse
Affiliation(s)
- Lanfranco Leo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Carina Weissmann
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Burns
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
35
|
Buontempo F, McCubrey JA, Orsini E, Ruzzene M, Cappellini A, Lonetti A, Evangelisti C, Chiarini F, Evangelisti C, Barata JT, Martelli AM. Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia 2017; 32:1-10. [PMID: 28951560 PMCID: PMC5770594 DOI: 10.1038/leu.2017.301] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022]
Abstract
CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients.
Collapse
Affiliation(s)
- F Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - E Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, Cassino, Italy
| | - A Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - C Evangelisti
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Chiarini
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - C Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - A M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Exploring the Pivotal Role of the CK2 Hinge Region Sub-Pocket in Binding with Tricyclic Quinolone Analogues by Computational Analysis. Molecules 2017; 22:molecules22050840. [PMID: 28534839 PMCID: PMC6154313 DOI: 10.3390/molecules22050840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022] Open
Abstract
Protein kinase CK2 has been considered as an attractive therapeutic target of cancer therapy. The tricyclic quinoline compound CX-4945 is the first representative of CK2 inhibitors used in human clinical trials. The binding of non-2,6-naphtyridine substituted compounds 27e (IC50 > 500 nM) and 27h (IC50 > 1000 nM) to CK2 is abolished. However, the unbinding mechanisms due to the key pharmacophore group replacement of compounds 27e and 27h are unveiled. In the present work, combined computational analysis was performed to investigate the underlying structural basis of the low-affinity of two systems. As indicated in the results, the loss of hydrogen bonds between the non-2,6-naphtyridine and the hinge region destroyed the proper recognition of the two complexes. Besides, the allosteric mechanisms between the deviated ligands and the changed regions (G-loop, C-loop and β4/β5 loop) are proposed. Furthermore, energetic analysis was evaluated by detailed energy calculation and residue-based energy decomposition. More importantly, the summary of known polar pharmacophore groups elucidates the pivotal roles of hinge region sub-pocket in the binding of CK2 inhibitors. These results provide rational clues to the fragment-based design of more potent CK2 inhibitors.
Collapse
|
37
|
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design. Pharmaceuticals (Basel) 2017; 10:ph10010026. [PMID: 28230762 PMCID: PMC5374430 DOI: 10.3390/ph10010026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.
Collapse
|
38
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
39
|
Kubiński K, Masłyk M, Orzeszko A. Benzimidazole inhibitors of protein kinase CK2 potently inhibit the activity of atypical protein kinase Rio1. Mol Cell Biochem 2016; 426:195-203. [PMID: 27909846 PMCID: PMC5290066 DOI: 10.1007/s11010-016-2892-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/25/2016] [Indexed: 11/24/2022]
Abstract
Benzimidazole derivatives of 5,6-dichlorobenzimidazole 1-β-d-ribofuranoside (DRB) comprise the important class of protein kinase CK2 inhibitors. Depending on the structure, benzimidazoles inhibit CK2 with different selectivity and potency. Besides CK2, the compounds can inhibit, with similar activity, other classical eukaryotic protein kinases (e.g. PIM, DYRK, and PKD). The present results show that a majority of the most common CK2 inhibitors can affect the atypical kinase Rio1 in a nanomolar range. Kinetic data confirmed the mode of action of benzimidazoles as typical ATP-competitive inhibitors. In contrast to toyocamycin—the first discovered small-molecule inhibitor of Rio1—the most potent representative of benzimidazoles TIBI (IC50 = 0.09 µM, Ki = 0.05 µM) does not influence the oligomeric state of the Rio1 kinase. Docking studies revealed that TIBI can occupy the ATP-binding site of Rio1 in a manner similar to toyocamycin, and enhances the thermostability of the enzyme.
Collapse
Affiliation(s)
- Konrad Kubiński
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland.
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw Life Sciences University, ul. Nowoursynowska 159c, 02-787, Warsaw, Poland
| |
Collapse
|
40
|
Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development. Proc Natl Acad Sci U S A 2016; 113:10145-50. [PMID: 27555590 DOI: 10.1073/pnas.1523869113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T helper 17 (TH17) cells represent a discrete TH cell subset instrumental in the immune response to extracellular bacteria and fungi. However, TH17 cells are considered to be detrimentally involved in autoimmune diseases like multiple sclerosis (MS). In contrast to TH17 cells, regulatory T (Treg) cells were shown to be pivotal in the maintenance of peripheral tolerance. Thus, the balance between Treg cells and TH17 cells determines the severity of a TH17 cell-driven disease and therefore is a promising target for treating autoimmune diseases. However, the molecular mechanisms controlling this balance are still unclear. Here, we report that pharmacological inhibition as well as genetic ablation of the protein kinase CK2 (CK2) ameliorates experimental autoimmune encephalomyelitis (EAE) severity and relapse incidence. Furthermore, CK2 inhibition or genetic ablation prevents TH17 cell development and promotes the generation of Treg cells. Molecularly, inhibition of CK2 leads to reduced STAT3 phosphorylation and strongly attenuated expression of the IL-23 receptor, IL-17, and GM-CSF. Thus, these results identify CK2 as a nodal point in TH17 cell development and suggest this kinase as a potential therapeutic target to treat TH17 cell-driven autoimmune responses.
Collapse
|
41
|
Łukowska-Chojnacka E, Wińska P, Wielechowska M, Poprzeczko M, Bretner M. Synthesis of novel polybrominated benzimidazole derivatives-potential CK2 inhibitors with anticancer and proapoptotic activity. Bioorg Med Chem 2015; 24:735-41. [PMID: 26778657 DOI: 10.1016/j.bmc.2015.12.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 11/29/2022]
Abstract
The efficient method for the synthesis of novel cell permeable inhibitors of protein kinase CK2 with anticancer and proapoptotic activity has been developed. A series of polybrominated benzimiadazole derivatives substituted by various cyanoalkyl groups have been synthesized. Cyanoethyl derivatives were obtained by Michael type addition of 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole to acrylonitrile, whilst cyanomethyl, cyanopropyl and cyanobutyl analogs by N-alkylation of 4,5,6,7-tetrabromo-1H-benzimidazole and 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole with appropriate cyanoalkyl halides. The inhibitory activity against protein kinase rhCK2α catalytic subunit and cytotoxicity against two human cancer cell lines: acute lymphocytic leukemia (CCRF-CEM) and breast (MCF-7) were evaluated for all newly synthesized compounds. Additionally, the proapoptotic activity toward leukemia cells and intracellular inhibition of CK2 for the most cytotoxic derivatives have been performed, demonstrating 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole as a new selective inhibitor of rhCK2 with twenty-fold better proapoptotic activity than parental compound (TBBi).
Collapse
Affiliation(s)
- Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - Patrycja Wińska
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Martyna Poprzeczko
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Institute of Biotechnology, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
42
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
43
|
Ampofo E, Rudzitis-Auth J, Dahmke IN, Rössler OG, Thiel G, Montenarh M, Menger MD, Laschke MW. Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte–endothelial cell interaction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2123-36. [DOI: 10.1016/j.bbadis.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
|
44
|
Guerra B, Bischoff N, Bdzhola VG, Yarmoluk SM, Issinger OG, Golub AG, Niefind K. A Note of Caution on the Role of Halogen Bonds for Protein Kinase/Inhibitor Recognition Suggested by High- And Low-Salt CK2α Complex Structures. ACS Chem Biol 2015; 10:1654-60. [PMID: 25961323 DOI: 10.1021/acschembio.5b00235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CK2 is a Ser/Thr kinase recruited by tumor cells to avoid cell death. 4'-Carboxy-6,8-dibromo-flavonol (FLC26) is a nanomolar CK2 inhibitor reducing the physiological phosphorylation of CK2 biomarkers and inducing cell death. Its binding mode to the ATP site was predicted to depend primarily on noncovalent interactions not comprising halogen bonds. We confirm this by two independent cocrystal structures which additionally show that FLC26 is selective for an open, protein kinase-untypical conformation of the hinge/helix αD region. The structures suggest how the bromo substituents, found previously in lead optimization studies, contribute to the inhibitory efficacy. In this context, one of the complex structures, obtained by crystallization with the kosmotropic salt NaCl, revealed an unconventional π-halogen bond between the 8-bromo substituent of FLC26 and an aromatic side chain which is absent under low-salt conditions. The kosmotropic salt sensitivity of π-halogen bonds is a novel feature which requires attention in structural comparisons and halogen-bond-based explanations.
Collapse
Affiliation(s)
- Barbara Guerra
- University of Southern Denmark, Department of Biochemistry
and Molecular Biology, Campusvej 55, DK-5230 Odense, Denmark
| | - Nils Bischoff
- University of Cologne, Institute of Biochemistry, Otto-Fischer-Str. 12-14, D-50674 Cologne, Germany
| | - Volodymyr G. Bdzhola
- Department
of Medicinal Chemistry, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Sergiy M. Yarmoluk
- Department
of Medicinal Chemistry, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Olaf-Georg Issinger
- University of Southern Denmark, Department of Biochemistry
and Molecular Biology, Campusvej 55, DK-5230 Odense, Denmark
| | - Andriy G. Golub
- Department
of Medicinal Chemistry, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Karsten Niefind
- University of Cologne, Institute of Biochemistry, Otto-Fischer-Str. 12-14, D-50674 Cologne, Germany
| |
Collapse
|
45
|
Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry 2014; 54:47-59. [PMID: 25379648 DOI: 10.1021/bi500959t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quinone reductase 2 (NQO2) exhibits off-target interactions with two protein kinase CK2 inhibitors, 4,5,6,7-1H-tetrabromobenzimidazole (TBBz) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). TBBz and DMAT induce apoptosis in cells expressing an inhibitor-resistant CK2, suggesting that the interaction with NQO2 may mediate some of their pharmacological effects. In this study, we have fully characterized the binding of TBBz and DMAT to NQO2. Fluorescence titrations showed that TBBz and DMAT bind oxidized NQO2 in the low nanomolar range; in the case of TBBz, the affinity for NQO2 was 40-fold greater than its affinity for CK2. A related CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB), which failed to cause apoptosis in cells expressing inhibitor-resistant CK2, binds NQO2 with an affinity 1000-fold lower than those of TBBz and DMAT. Kinetic analysis indicated that DMAT inhibits NQO2 by binding with similar affinities to the oxidized and reduced forms. Crystal structure analysis showed that DMAT binds reduced NQO2 in a manner different from that in the oxidized state. In oxidized NQO2, TBBz and DMAT are deeply buried in the active site and make direct hydrogen and halogen bonds to the enzyme. In reduced NQO2, DMAT occupies a more peripheral region and hydrogen and halogen bonds with the enzyme are mediated through three water molecules. Therefore, although TBB, TBBz, and DMAT are all potent inhibitors of CK2, they exhibit different activity profiles toward NQO2. We conclude that the active site of NQO2 is fundamentally different from the ATP binding site of CK2 and the inhibition of NQO2 by CK2 inhibitors is adventitious.
Collapse
Affiliation(s)
- Kevin K K Leung
- Department of Biochemistry, University of Western Ontario , London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
46
|
Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature 2014; 516:267-71. [PMID: 25252977 PMCID: PMC4461219 DOI: 10.1038/nature13736] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 08/05/2014] [Indexed: 01/08/2023]
Abstract
Post-translational histone modifications play critical roles in regulating transcription, the cell cycle, DNA replication and DNA damage repair1. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation, or termination is of particular interest. Here, we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals, based on a phosphorylation of a highly-conserved tyrosine residue, Y57, in histone H2A that is mediated by an unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of H2A-Y57 in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2α, the catalytic subunit of CK2, binds across RNA polymerase II-transcribed coding genes and active enhancers. Mutation of Y57 causes a loss of H2B mono-ubiquitylation as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and H2A-Y57F mutation enhance the H2B deubiquitylation activity of the SAGA complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A.
Collapse
|
47
|
Cozza G, Girardi C, Ranchio A, Lolli G, Sarno S, Orzeszko A, Kazimierczuk Z, Battistutta R, Ruzzene M, Pinna LA. Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cell Mol Life Sci 2014; 71:3173-85. [PMID: 24442476 PMCID: PMC11113908 DOI: 10.1007/s00018-013-1552-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
Abstract
It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Cristina Girardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Ranchio
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Graziano Lolli
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw Life Sciences University, Warsaw, Poland
| | | | - Roberto Battistutta
- Department of Chemical Sciences and Venetian Institute of Molecular Medicine (VIMM), University of Padova, Padua, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- CNR, Institute of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
48
|
Synthesis of novel chiral TBBt derivatives with hydroxyl moiety. Studies on inhibition of human protein kinase CK2α and cytotoxicity properties. Eur J Med Chem 2014; 84:364-74. [PMID: 25036794 DOI: 10.1016/j.ejmech.2014.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/26/2014] [Accepted: 07/06/2014] [Indexed: 11/20/2022]
Abstract
The efficient method for the synthesis of novel 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) derivatives bearing a single stereogenic center has been developed. New compounds with a variety of substituents at the meta- and para-position of the phenyl ring are reported. All of the presented compounds were obtained using classical synthetic methods, such as bromination of benzotriazole, and its subsequent alkylation by monotosylated arylpropane-1,3-diols, which in turn have been synthesized through reduction of the corresponding prochiral β-keto esters, and the selective monotosylation of the primary hydroxyl group. The influence of the new and previously reported N-hydroxyalkyl TBBt derivatives on the activity of human protein kinase CK2α catalytic subunit was examined. The most active were derivatives with N-hydroxyalkyl substituents (IC50 in 0.80-7.35 μM range). A binding mode of (R)-1-(4,5,6,7-tetrabromo-2H-benzotriazol-2-yl)butan-3-ol 7b to hCK2α has been proposed based on in silico docking studies. Additionally, MTT-based cytotoxicity tests demonstrated high activities of novel 1-aryl-3-TBBt-propan-1-ol and 3-TBBt-propan-1,2-diol derivatives against human peripheral blood T lymphoblast (CCRF-CEM), and moderate anti-tumor activities against human breast adenocarcinoma (MCF7) cell lines.
Collapse
|
49
|
Perera Y, Toro ND, Gorovaya L, Fernandez-DE-Cossio J, Farina HG, Perea SE. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models. Mol Clin Oncol 2014; 2:935-944. [PMID: 25279177 DOI: 10.3892/mco.2014.338] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/13/2014] [Indexed: 11/06/2022] Open
Abstract
CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives.
Collapse
Affiliation(s)
- Yasser Perera
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Neylen Del Toro
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Larisa Gorovaya
- Animal Facility Unit, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Jorge Fernandez-DE-Cossio
- Department of Bioinformatics, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| | - Hernan G Farina
- Laboratory of Molecular Oncology, Quilmes National University, Bernal, Buenos Aires B1876BXD, Argentina
| | - Silvio E Perea
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba
| |
Collapse
|
50
|
Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, Grosbart M, Theil AF, van Cappellen WA, Kimura H, Bartek J, Fousteri M, Houtsmuller AB, Vermeulen W, Marteijn JA. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol Cell 2013; 51:469-79. [PMID: 23973375 DOI: 10.1016/j.molcel.2013.08.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/07/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
Chromatin remodeling is tightly linked to all DNA-transacting activities. To study chromatin remodeling during DNA repair, we established quantitative fluorescence imaging methods to measure the exchange of histones in chromatin in living cells. We show that particularly H2A and H2B are evicted and replaced at an accelerated pace at sites of UV-induced DNA damage. This accelerated exchange of H2A/H2B is facilitated by SPT16, one of the two subunits of the histone chaperone FACT (facilitates chromatin transcription) but largely independent of its partner SSRP1. Interestingly, SPT16 is targeted to sites of UV light-induced DNA damage-arrested transcription and is required for efficient restart of RNA synthesis upon damage removal. Together, our data uncover an important role for chromatin dynamics at the crossroads of transcription and the UV-induced DNA damage response.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Genetics, Erasmus Medical Centre, Rotterdam 3015 GE, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|