1
|
Kraus A, Skoczynski K, Brötsch M, Burzlaff N, Leipziger J, Schiffer M, Büttner-Herold M, Buchholz B. P2Y2R and Cyst Growth in Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:1351-1365. [PMID: 38848134 PMCID: PMC11452133 DOI: 10.1681/asn.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Key Points Polycystic kidney disease (PKD) is characterized by continuous cyst growth, which results in a decline in kidney function. Deletion of P2Y2R and pharmacological antagonism of purinergic signaling significantly reduced cyst growth in an orthologous PKD mouse model. P2Y2R was expressed in cysts of human PKD nephrectomies, which makes P2Y2R a reasonable target for treatment of PKD. Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by multiple bilateral kidney cysts that gradually enlarge, resulting in a decline in kidney function. Cyst growth is significantly driven by ATP-dependent chloride secretion mediated by the ion channel TMEM16A. This pathway is further augmented in advanced stages of the disease by hypoxia and activation of hypoxia-inducible factor (HIF)-1α . The mechanisms by which ATP leads to activation of TMEM16A and how HIF-1α contributes to cyst growth in vivo have remained elusive. Methods Mice with an inducible tubule-specific deletion of Pkd1 were compared with mice with an additional codeletion of the purinergic receptor P2y2r . Furthermore, animals were challenged by pharmacological activation of HIF-1α and Pkd1 -deficient mice were treated with suramin, an antagonist of purinergic signaling. In addition, expression of P2Y2R, TMEM16A, and HIF-1α was analyzed in nephrectomy samples from 27 patients with ADPKD. Results Genetic deletion of P2y2r significantly inhibited cyst growth in vivo . In addition, aggravation of the polycystic phenotype mediated by pharmacological activation of HIF-1α was reduced by deletion of P2y2r . Application of suramin to pharmacologically inhibit purinergic signaling also suppressed cyst enlargement in vivo . Analysis of kidney samples from 27 patients with ADPKD revealed significant expression of P2Y2R at the luminal site of the cyst-lining epithelium. Conclusions P2Y2R was significantly expressed in human and mouse polycystic kidneys. Deletion and antagonism of P2Y2R reduced cyst enlargement in an ADPKD mouse model.
Collapse
Affiliation(s)
- Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and University Hospital, Erlangen, Germany
| | - Kathrin Skoczynski
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and University Hospital, Erlangen, Germany
| | - Martin Brötsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and University Hospital, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and University Hospital, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and University Hospital, Erlangen, Germany
| |
Collapse
|
2
|
Xu B, Nikolaienko O, Levchenko V, Choubey AS, Isaeva E, Staruschenko A, Palygin O. Modulation of P2X 4 receptor activity by ivermectin and 5-BDBD has no effect on the development of ARPKD in PCK rats. Physiol Rep 2022; 10:e15510. [PMID: 36353932 PMCID: PMC9647406 DOI: 10.14814/phy2.15510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an inherited pathology caused mainly by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene, which usually leads to end-stage renal disease. Previous studies suggested that the P2X purinoreceptor 4 (P2X4 R) may play an important role in the progression of ARPKD. To test this hypothesis, we assessed the chronic effects of ivermectin (P2X4 R allosteric modulator) and 5-BDBD (P2X4 R antagonist) on the development of ARPKD in PCK/CrljCrl-Pkhd1pck/CRL (PCK) rats. Our data indicated that activation of ATP-mediated P2X4 R signaling with ivermectin for 6 weeks in high dose (50 mg/L; water supplementation) decreased the total body weight of PCK rats while the heart and kidney weight remained unaffected. Smaller doses of ivermectin (0.5 or 5 mg/L, 6 weeks) or the inhibition of P2X4 R signaling with 5-BDBD (18 mg/kg/day, food supplement for 8 weeks) showed no effect on electrolyte balance or the basic physiological parameters. Furthermore, cystic index analysis for kidneys and liver revealed no effect of smaller doses of ivermectin (0.5 or 5 mg/L) and 5-BDBD on the cyst development of PCK rats. We observed a slight increase in the cystic liver index on high ivermectin dose, possibly due to the cytotoxicity of the drug. In conclusion, this study revealed that pharmacological modulation of P2X4 R by ivermectin or 5-BDBD does not affect the development of ARPKD in PCK rats, which may provide insights for future studies on investigating the therapeutic potential of adenosine triphosphate (ATP)-P2 signaling in PKD diseases.
Collapse
Affiliation(s)
- Biyang Xu
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Oksana Nikolaienko
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Bogomoletz Institute of PhysiologyDepartment of Cellular MembranologyKyivUkraine
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Elena Isaeva
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
- The James A. Haley Veterans HospitalTampaFloridaUSA
| | - Oleg Palygin
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Division of Nephrology, Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
3
|
Maynard JP, Sfanos KS. P2 purinergic receptor dysregulation in urologic disease. Purinergic Signal 2022; 18:267-287. [PMID: 35687210 PMCID: PMC9184359 DOI: 10.1007/s11302-022-09875-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
P2 purinergic receptors are involved in the normal function of the kidney, bladder, and prostate via signaling that occurs in response to extracellular nucleotides. Dysregulation of these receptors is common in pathological states and often associated with disease initiation, progression, or aggressiveness. Indeed, P2 purinergic receptor expression is altered across multiple urologic disorders including chronic kidney disease, polycystic kidney disease, interstitial cystitis, urinary incontinence, overactive bladder syndrome, prostatitis, and benign prostatic hyperplasia. P2 purinergic receptors are likewise indirectly associated with these disorders via receptor-mediated inflammation and pain, a common characteristic across most urologic disorders. Furthermore, select P2 purinergic receptors are overexpressed in urologic cancer including renal cell carcinoma, urothelial carcinoma, and prostate adenocarcinoma, and pre-clinical studies depict P2 purinergic receptors as potential therapeutic targets. Herein, we highlight the compelling evidence for the exploration of P2 purinergic receptors as biomarkers and therapeutic targets in urologic cancers and other urologic disease. Likewise, there is currently optimism for P2 purinergic receptor-targeted therapeutics for the treatment of inflammation and pain associated with urologic diseases. Further exploration of the common pathways linking P2 purinergic receptor dysregulation to urologic disease might ultimately help in gaining new mechanistic insight into disease processes and therapeutic targeting.
Collapse
Affiliation(s)
- Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Szrejder M, Rogacka D, Piwkowska A. Purinergic P2 receptors: Involvement and therapeutic implications in diabetes-related glomerular injury. Arch Biochem Biophys 2021; 714:109078. [PMID: 34742673 DOI: 10.1016/j.abb.2021.109078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
The purinergic activation of P2 receptors initiates a powerful and rapid signaling cascade that contributes to the regulation of an array of physiological and pathophysiological processes in many organs, including the kidney. P2 receptors are broadly distributed in both epithelial and vascular renal cells. Disturbances of purinergic signaling can lead to impairments in renal function. A growing body of evidence indicates changes in P2 receptor expression and nucleotide metabolism in chronic renal injury and inflammatory diseases. Increasing attention has focused on purinergic P2X7 receptors, which are not normally expressed in healthy kidney tissue but are highly expressed at sites of tissue damage and inflammation. Under hyperglycemic conditions, several mechanisms that are linked to purinergic signaling and involve nucleotide release and degradation are disrupted, resulting in the accumulation of adenosine 5'-triphosphate in the bloodstream in diabetes. Dysfunction of the purinergic system might be associated with serious vascular complications in diabetes, including diabetic nephropathy. This review summarizes our current knowledge of the role of P2 receptors in diabetes-related glomerular injury and its implications for new therapeutics for diabetic nephropathy.
Collapse
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland.
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| |
Collapse
|
5
|
Sudarikova A, Vasileva V, Sultanova R, Ilatovskaya D. Recent advances in understanding ion transport mechanisms in polycystic kidney disease. Clin Sci (Lond) 2021; 135:2521-2540. [PMID: 34751394 PMCID: PMC8589009 DOI: 10.1042/cs20210370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
This review focuses on the most recent advances in the understanding of the electrolyte transport-related mechanisms important for the development of severe inherited renal disorders, autosomal dominant (AD) and recessive (AR) forms of polycystic kidney disease (PKD). We provide here a basic overview of the origins and clinical aspects of ARPKD and ADPKD and discuss the implications of electrolyte transport in cystogenesis. Special attention is devoted to intracellular calcium handling by the cystic cells, with a focus on polycystins and fibrocystin, as well as other calcium level regulators, such as transient receptor potential vanilloid type 4 (TRPV4) channels, ciliary machinery, and purinergic receptor remodeling. Sodium transport is reviewed with a focus on the epithelial sodium channel (ENaC), and the role of chloride-dependent fluid secretion in cystic fluid accumulation is discussed. In addition, we highlight the emerging promising concepts in the field, such as potassium transport, and suggest some new avenues for research related to electrolyte handling.
Collapse
Affiliation(s)
| | | | - Regina F. Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | | |
Collapse
|
6
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
7
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
8
|
Characterization of purinergic receptor expression in ARPKD cystic epithelia. Purinergic Signal 2018; 14:485-497. [PMID: 30417216 DOI: 10.1007/s11302-018-9632-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Polycystic kidney diseases (PKDs) are a group of inherited nephropathies marked by formation of fluid-filled cysts along the nephron. Growing evidence suggests that in the kidney formation of cysts and alteration of cystic electrolyte transport are associated with purinergic signaling. PCK/CrljCrl-Pkhd1pck/CRL (PCK) rat, an established model of autosomal recessive polycystic kidney disease (ARPKD), was used here to test this hypothesis. Cystic fluid of PCK rats and their cortical tissues exhibited significantly higher levels of ATP compared to Sprague Dawley rat kidney cortical interstitium as assessed by highly sensitive ATP enzymatic biosensors. Confocal calcium imaging of the freshly isolated cystic monolayers revealed a stronger response to ATP in a higher range of concentrations (above 100 μM). The removal of extracellular calcium results in the profound reduction of the ATP evoked transient, which suggests calcium entry into the cyst-lining cells is occurring via the extracellular (ionotropic) P2X channels. Further use of pharmacological agents (α,β-methylene-ATP, 5-BDBD, NF449, isoPPADS, AZ10606120) and immunofluorescent labeling of isolated cystic epithelia allowed us to narrow down potential candidate receptors. In conclusion, our ex vivo study provides direct evidence that the profile of P2 receptors is shifted in ARPKD cystic epithelia in an age-related manner towards prevalence of P2X4 and/or P2X7 receptors, which opens new avenues for the treatment of this disease.
Collapse
|
9
|
Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 2018; 234:2095-2103. [PMID: 30317598 DOI: 10.1002/jcp.27544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.
Collapse
Affiliation(s)
- Dehui Zeng
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Pingbo Yao
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Nursing College, University of South China, Hengyang, China
| |
Collapse
|
10
|
Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. Kidney Int 2016; 91:315-323. [PMID: 27780585 DOI: 10.1016/j.kint.2016.08.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 02/04/2023]
Abstract
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Frederick W Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, UK
| | - Robert J Unwin
- Cardiovascular and Metabolic Diseases Biotech Unit, AstraZeneca Gothenburg, Sweden; UCL Centre for Nephrology, University College London, London, UK.
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
11
|
Ilatovskaya DV, Palygin O, Staruschenko A. Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F1135-F1139. [PMID: 27654892 DOI: 10.1152/ajprenal.00406.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney diseases (PKD) are a group of inherited nephropathies marked with the formation of fluid-filled cysts along the nephron. This renal disorder affects millions of people worldwide, but current treatment strategies are unfortunately limited to supportive therapy, dietary restrictions, and, eventually, renal transplantation. Recent advances in PKD management are aimed at targeting exaggerated cell proliferation and dedifferentiation to interfere with cyst growth. However, not nearly enough is known about the ion transport properties of the cystic cells, or specific signaling pathways modulating channels and transporters in this condition. There is growing evidence that abnormally elevated concentrations of adenosine triphosphate (ATP) in PKD may contribute to cyst enlargement; change in the profile of purinergic receptors may also result in promotion of cystogenesis. The current mini-review is focused on the role of ATP and associated signaling affecting ion transport properties of the renal cystic epithelia.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
12
|
Peti-Peterdi J, Kishore BK, Pluznick JL. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2015; 78:391-414. [PMID: 26667077 DOI: 10.1146/annurev-physiol-021115-105403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148;
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
13
|
Pavlov TS, Ilatovskaya DV, Palygin O, Levchenko V, Pochynyuk O, Staruschenko A. Implementing Patch Clamp and Live Fluorescence Microscopy to Monitor Functional Properties of Freshly Isolated PKD Epithelium. J Vis Exp 2015. [PMID: 26381526 DOI: 10.3791/53035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyst initiation and expansion during polycystic kidney disease is a complex process characterized by abnormalities in tubular cell proliferation, luminal fluid accumulation and extracellular matrix formation. Activity of ion channels and intracellular calcium signaling are key physiologic parameters which determine functions of tubular epithelium. We developed a method suitable for real-time observation of ion channels activity with patch-clamp technique and registration of intracellular Ca2+ level in epithelial monolayers freshly isolated from renal cysts. PCK rats, a genetic model of autosomal recessive polycystic kidney disease (ARPKD), were used here for ex vivo analysis of ion channels and calcium flux. Described here is a detailed step-by-step procedure designed to isolate cystic monolayers and non-dilated tubules from PCK or normal Sprague Dawley (SD) rats, and monitor single channel activity and intracellular Ca2+ dynamics. This method does not require enzymatic processing and allows analysis in a native setting of freshly isolated epithelial monolayer. Moreover, this technique is very sensitive to intracellular calcium changes and generates high resolution images for precise measurements. Finally, isolated cystic epithelium can be further used for staining with antibodies or dyes, preparation of primary cultures and purification for various biochemical assays.
Collapse
Affiliation(s)
| | | | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin
| | | | - Oleh Pochynyuk
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston
| | | |
Collapse
|
14
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
15
|
Rangan G. Role of extracellular ATP and P2 receptor signaling in regulating renal cyst growth and interstitial inflammation in polycystic kidney disease. Front Physiol 2013; 4:218. [PMID: 23966953 PMCID: PMC3744908 DOI: 10.3389/fphys.2013.00218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/28/2013] [Indexed: 01/04/2023] Open
Abstract
Polycystic kidney diseases (PKD) are a group of inherited ciliopathies in which the formation and growth of multiple cysts derived from the distal nephron and collecting duct leads to the disruption of normal kidney architecture, chronic interstitial inflammation/fibrosis and hypertension. Kidney failure is the most life-threatening complication of PKD, and is the consequence of cyst expansion, renal interstitial disease and loss of normal kidney tissue. Over the last decade, accumulating evidence suggests that the autocrine and paracrine effects of ATP (through its receptor family P2X and P2Y), could be detrimental for the progression of PKD. (2009). In vitro, ATP-P2 signaling promotes cystic epithelial cell proliferation, chloride-driven fluid secretion and apoptosis. Furthermore, dysfunction of the polycystin signal transduction pathways promotes the secretagogue activity of extracellular ATP by activating a calcium-activated chloride channel via purinergic receptors. Finally, ATP is a danger signal and could potentially contribute to interstitial inflammation associated with PKD. These data suggest that ATP-P2 signaling worsens the progression of cyst enlargement and interstitial inflammation in PKD.
Collapse
Affiliation(s)
- Gopi Rangan
- Michael Stern Translational Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
16
|
Craigie E, Birch RE, Unwin RJ, Wildman SS. The relationship between P2X4 and P2X7: a physiologically important interaction? Front Physiol 2013; 4:216. [PMID: 23966951 PMCID: PMC3744038 DOI: 10.3389/fphys.2013.00216] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/27/2013] [Indexed: 11/24/2022] Open
Abstract
Purinergic signaling within the kidney is becoming an important focus in the study of renal health and disease. The effectors of ATP signaling, the P2Y and P2X receptors, are expressed to varying extents in and along the nephron. There are many studies demonstrating the importance of the P2Y2 receptor on kidney function, and other P2 receptors are now emerging as participants in renal regulation. The P2X4 receptor has been linked to epithelial sodium transport in the nephron and expression levels of the P2X7 receptor are up-regulated in certain pathophysiological states. P2X7 antagonism has been shown to ameliorate rodent models of DOCA salt-induced hypertension and P2X4 null mice are hypertensive. Interestingly, polymorphisms in the genetic loci of P2X4 and P2X7 have been linked to blood pressure variation in human studies. In addition to the increasing evidence linking these two P2X receptors to renal function and health, a number of studies link the two receptors in terms of physical associations between their subunits, demonstrated both in vitro and in vivo. This review will analyze the current literature regarding interactions between P2X4 and P2X7 and assess the potential impact of these with respect to renal function.
Collapse
Affiliation(s)
- Eilidh Craigie
- Centre for Nephrology, UCL Medical School, University College London London, UK
| | | | | | | |
Collapse
|
17
|
O'Meara CC, Hoffman M, Sweeney WE, Tsaih SW, Xiao B, Jacob HJ, Avner ED, Moreno C. Role of genetic modifiers in an orthologous rat model of ARPKD. Physiol Genomics 2012; 44:741-53. [PMID: 22669842 DOI: 10.1152/physiolgenomics.00187.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human data and animal models of autosomal recessive polycystic kidney disease (ARPKD) suggest that genetic factors modulate the onset and severity of the disease. We report here for the first time that ARPKD susceptibility is attenuated by introgressing the mutated Pkhd1 disease allele from the polycystic kidney (PCK) rat onto the FHH (Fawn-Hooded Hypertensive) genetic background. Compared with PCK, the FHH.Pkhd1 strain had significantly decreased renal cyst formation that coincided with a threefold reduction in mean kidney weights. Further analysis revealed that the FHH. Pkhd1 is protected from increased blood pressure as well as elevated plasma creatinine and blood urea nitrogen levels. On the other hand, liver weight and biliary cystogenesis revealed no differences between PCK and FHH.Pkdh1, indicating that genes within the FHH genetic background prevent the development of renal, but not hepatic, manifestations of ARPKD. Microarray expression analysis of kidneys from 30-day-old PCK rats revealed increased expression of genes previously identified in PKD renal expression profiles, such as inflammatory response, extracellular matrix synthesis, and cell proliferation genes among others, whereas the FHH.Pkhd1 did not show activation of these common markers of disease. This newly developed strain can serve as a tool to map modifier genes for renal disease in ARPKD and provides further insight into disease variability and pathophysiology.
Collapse
Affiliation(s)
- Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chang MY, Lu JK, Tian YC, Chen YC, Hung CC, Huang YH, Chen YH, Wu MS, Yang CW, Cheng YC. Inhibition of the P2X7 receptor reduces cystogenesis in PKD. J Am Soc Nephrol 2011; 22:1696-706. [PMID: 21636640 DOI: 10.1681/asn.2010070728] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The P2X7 receptor participates in purinergic signaling, which may promote the progression of ADPKD. We examined the effects of a P2X7 receptor antagonist and a P2X7 receptor agonist on cyst development in a zebrafish model of polycystic kidney disease in which we knocked down pkd2 by morpholinos. We used live wt-1b pronephric-specific GFP-expressing zebrafish embryos to directly observe changes in the pronephros. Exposure of pkd2-morphant zebrafish to a P2X7 receptor antagonist (oxidized ATP [OxATP]) significantly reduced the frequency of the cystic phenotype compared with either exposure to a P2X7 receptor agonist (BzATP) or with no treatment (P < 0.01). Histology confirmed improvement of glomerular cysts in OxATP-treated pkd2 morphants. OxATP also reduced p-ERK activity and cell proliferation in pronephric kidneys in pkd2 morphants. Inhibition of P2X7 with an additional specific antagonist (A-438079), and through morpholino-mediated knockdown of p2rx7, confirmed these effects. In conclusion, blockade of the P2X7 receptor reduces cyst formation via ERK-dependent pathways in a zebrafish model of polycystic kidney disease, suggesting that P2X7 antagonists may have therapeutic potential in ADPKD.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Burnstock G, Kennedy C. P2X receptors in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:333-372. [PMID: 21586364 DOI: 10.1016/b978-0-12-385526-8.00011-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Seven P2X receptor subunits have been cloned which form functional homo- and heterotrimers. These are cation-selective channels, equally permeable to Na(+) and K(+) and with significant Ca(2+) permeability. The three-dimensional structure of the P2X receptor is described. The channel pore is formed by the α-helical transmembrane spanning region 2 of each subunit. When ATP binds to a P2X receptor, the pore opens within milliseconds, allowing the cations to flow. P2X receptors are expressed on both central and peripheral neurons, where they are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed in most types of nonneuronal cells and mediate a wide range of actions, such as contraction of smooth muscle, secretion, and immunomodulation. Changes in the expression of P2X receptors have been characterized in many pathological conditions of the cardiovascular, gastrointestinal, respiratory, and urinogenital systems and in the brain and special senses. The therapeutic potential of P2X receptor agonists and antagonists is currently being investigated in a range of disorders, including chronic neuropathic and inflammatory pain, depression, cystic fibrosis, dry eye, irritable bowel syndrome, interstitial cystitis, dysfunctional urinary bladder, and cancer.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, United Kingdom
| | | |
Collapse
|
20
|
Bradley HJ, Liu X, Collins V, Owide J, Goli GR, Smith M, Surprenant A, White SJ, Jiang LH. Identification of an intracellular microdomain of the P2X7 receptor that is crucial in basolateral membrane targeting in epithelial cells. FEBS Lett 2010; 584:4740-4. [PMID: 21073871 DOI: 10.1016/j.febslet.2010.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
We investigated membrane targeting of the P2X(7) receptor (P2X(7)R) in polarized epithelial cells using immunofluorescent confocal imaging. The wild-type receptor was targeted to the basolateral membrane, independently of adaptor protein μ1B. Deletion of the majority of the intracellular C-terminus, or the last 26 residues (P570-Y595), conferred targeting of the protein to the apical membrane. Alanine substitution in the microdomain P582-Q587 caused similar apical membrane targeting without major effect on the receptor function and surface expression. Our results show basolateral membrane targeting of the P2X(7)R in epithelial cells and that the intracellular C-terminal microdomain P582-Q587 is crucial in this process.
Collapse
Affiliation(s)
- H J Bradley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ponnusamy M, Ma L, Gong R, Pang M, Chin YE, Zhuang S. P2X7 receptors mediate deleterious renal epithelial-fibroblast cross talk. Am J Physiol Renal Physiol 2010; 300:F62-70. [PMID: 20861083 DOI: 10.1152/ajprenal.00473.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peritubular fibroblasts in the kidney are the major erythropoietin-producing cells and also contribute to renal repair following acute kidney injury (AKI). Although few fibroblasts were observed in the interstitium adjacent to damaged tubular epithelium in the early phase of AKI, the underlying mechanism by which their numbers were reduced remains unknown. In this study, we tested the hypothesis that damaged renal epithelial cells directly induce renal interstitial fibroblast death by releasing intracellular ATP and activating purinergic signaling. Exposure of a cultured rat renal interstitial fibroblast cell line (NRK-49F) to necrotic renal proximal tubular cells (RPTC) lysate or supernatant induced NRK-49F cell death by apoptosis and necrosis. Depletion of ATP with apyrase or inhibition of the P2X purinergic receptor with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid blocked the deleterious effect of necrotic RPTC supernatant. The P2X7 receptor, an ATP-sensitive purinergic receptor, was not detected in cultured NRK-49F cells but was inducible by necrotic RPTC supernatant. Treatment with A438079, a highly selective P2X7 receptor inhibitor, or knockdown of the P2X7 receptor with small interference RNA diminished renal fibroblast death induced by necrotic RPTC supernatant. Conversely, overexpression of the P2X7 receptor potentiated this response. Collectively, these findings provide strong evidence that damaged renal epithelial cells can directly induce the death of renal interstitial fibroblasts by ATP activation of the P2X7 receptor.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Middle House 301, 593 Eddy St., Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
22
|
Constantinescu P, Wang B, Kovacevic K, Jalilian I, Bosman GJCGM, Wiley JS, Sluyter R. P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1797-804. [PMID: 20529664 DOI: 10.1016/j.bbamem.2010.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/17/2010] [Accepted: 06/01/2010] [Indexed: 01/10/2023]
Abstract
Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR, immunoblotting and immunofluorescence staining demonstrated the presence of P2X7 in MEL cells. Cytofluorometric measurements demonstrated that ATP induced ethidium+ uptake into MEL cells in a concentration-dependent fashion and with an EC(50) of approximately 154 microM. The most potent P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not ADP or UTP, induced ethidium+ uptake. ATP-induced ethidium+ and YO-PRO-1(2+) uptake were impaired by the P2X7 antagonist, A-438079. A colourmetric assay demonstrated that ATP impaired MEL cell growth. A cytofluorometric assay showed that ATP induced MEL cell death and that this process was impaired by A-438079. Finally, cytofluorometric measurements of Annexin-V binding and bio-maleimide staining demonstrated that ATP could induce rapid phosphatidylserine exposure and microparticle release in MEL cells respectively, both of which were impaired by A-438079. These results demonstrate that MEL cells express functional P2X7, and indicate that activation of this receptor may be important in the death and release of microparticles from red blood cells in vivo.
Collapse
|
23
|
Turner CM, Elliott JI, Tam FWK. P2 receptors in renal pathophysiology. Purinergic Signal 2009; 5:513-20. [PMID: 19507052 PMCID: PMC2776141 DOI: 10.1007/s11302-009-9153-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 03/23/2008] [Indexed: 12/27/2022] Open
Abstract
Our knowledge and understanding of the P2 receptor signalling system in the kidney have increased significantly in the last ten years. The broad range of physiological roles proposed for this receptor system and the variety of P2 receptor subtypes found in the kidney suggest that any disturbance of function may contribute to several pathological processes. So far, most reports of a possible pathophysiological role for this system in the kidney have focussed on polycystic kidney disease, where abnormal P2 receptor signalling might be involved in cyst expansion and disease progression, and on the P2X(7) receptor, a unique P2X subtype, which when activated enhances inflammatory cytokine release and production, and also cell death. Expression of this particular receptor is upregulated in some forms of chronic renal injury and inflammatory diseases. Further studies of adenosine triphosphate signalling and P2 receptor expression in renal disorders could provide us with novel insights into the role of these receptors in both normal and abnormal kidney function.
Collapse
Affiliation(s)
- Clare M Turner
- Imperial College Kidney and Transplant Institute, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK,
| | | | | |
Collapse
|
24
|
Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts. Purinergic Signal 2008; 4:109-24. [PMID: 18438719 DOI: 10.1007/s11302-008-9102-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/08/2008] [Indexed: 01/10/2023] Open
Abstract
The nephron is the functional unit of the kidney. Blood and plasma are continually filtered within the glomeruli that begin each nephron. Adenosine 5' triphosphate (ATP) and its metabolites are freely filtered by each glomerulus and enter the lumen of each nephron beginning at the proximal convoluted tubule (PCT). Flow rate, osmolality, and other mechanical or chemical stimuli for ATP secretion are present in each nephron segment. These ATP-release stimuli are also different in each nephron segment due to water or salt permeability or impermeability along different luminal membranes of the cells that line each nephron segment. Each of the above stimuli can trigger additional ATP release into the lumen of a nephron segment. Each nephron-lining epithelial cell is a potential source of secreted ATP. Together with filtered ATP and its metabolites derived from the glomerulus, secreted ATP and adenosine derived from cells along the nephron are likely the principal two of several nucleotide and nucleoside candidates for renal autocrine and paracrine ligands within the tubular fluid of the nephron. This minireview discusses the first principles of purinergic signaling as they relate to the nephron and the urinary bladder. The review discusses how the lumen of a renal tubule presents an ideal purinergic signaling microenvironment. The review also illustrates how remodeled and encapsulated cysts in autosomal dominant polycystic kidney disease (ADPKD) and remodeled pseudocysts in autosomal recessive PKD (ARPKD) of the renal collecting duct likely create an even more ideal microenvironment for purinergic signaling. Once trapped in these closed microenvironments, purinergic signaling becomes chronic and likely plays a significant epigenetic and detrimental role in the secondary progression of PKD, once the remodeling of the renal tissue has begun. In PKD cystic microenvironments, we argue that normal purinergic signaling within the lumen of the nephron provides detrimental acceleration of ADPKD once remodeling is complete.
Collapse
|
25
|
Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 2008; 456:1005-24. [PMID: 18431594 PMCID: PMC2518081 DOI: 10.1007/s00424-008-0498-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 01/06/2023]
Abstract
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease.
Collapse
Affiliation(s)
- Michelle Boone
- Department of Physiology (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
26
|
Vallon V. P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 2007; 294:F10-27. [PMID: 17977905 DOI: 10.1152/ajprenal.00432.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) regulate physiological and pathophysiological processes through activation of nucleotide P2 receptors in the plasma membrane. Examples include such diverse processes as communication from taste buds to gustatory nerves, platelet aggregation, nociception, or neutrophil chemotaxis. Over approximately the last 15 years, evidence has also accumulated that cells in renal epithelia release nucleotides in response to physiological stimuli and that these nucleotides act in a paracrine and autocrine way to activate P2 receptors and play a significant role in the regulation of transport mechanisms and cell volume regulation. This review discusses potential stimuli and mechanisms involved in nucleotide release in renal epithelia and summarizes the available data on the expression and function of nucleotide P2 receptors along the native mammalian tubular and collecting duct system. Using established agonist profiles for P2 receptor subtypes, significant insights have been gained particularly into a potential role for P2Y(2)-like receptors in the regulation of transport mechanisms in the collecting duct. Due to the lack of receptor subtype-specific antagonists, however, the in vivo relevance of P2 receptor subtypes is unclear. Studies in gene knockout mice provided first insights including an antihypertensive activity of P2Y(2) receptors that is linked to an inhibitory influence on renal Na(+) and water reabsorption. We are only beginning to unravel the important roles of extracellular nucleotides and P2 receptors in the regulation of the diverse transport mechanisms of the kidney.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California and Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161., USA.
| |
Collapse
|
27
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
28
|
Chiu MG, Johnson TM, Woolf AS, Dahm-Vicker EM, Long DA, Guay-Woodford L, Hillman KA, Bawumia S, Venner K, Hughes RC, Poirier F, Winyard PJD. Galectin-3 associates with the primary cilium and modulates cyst growth in congenital polycystic kidney disease. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:1925-38. [PMID: 17148658 PMCID: PMC1762475 DOI: 10.2353/ajpath.2006.060245] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several lines of evidence implicate the beta-galactoside-binding lectin galectin-3 in development and pathological processes in renal collecting ducts: galectin-3 is expressed in the ureteric bud/collecting duct lineage during nephrogenesis, modulates collecting duct growth/differentiation in vitro, and is expressed in human autosomal recessive polycystic kidney disease in cyst epithelia, almost all of which arise from collecting ducts. Moreover, exogenous galectin-3 restricts growth of cysts generated by Madin-Darby canine kidney collecting duct-derived cells in three-dimensional culture in collagen. Using the cpk mouse model of recessively inherited polycystic kidney disease, we observed widespread galectin-3 mRNA and protein in cyst epithelia. Exogenous galectin-3 reduced cyst formation in suspension culture, and mice-null mutant for galectin-3 had more extensive renal cysts in vivo. Galectin-3 was also detected for the first time in the centrosome/primary cilium, which has been implicated in diverse polycystic kidney disease. Cilia structure/number appeared normal in galectin-3-null mutants. Finally, paclitaxel, a therapy that retards polycystic kidney disease in cpk mice, increased extracellular galectin-3, in which the lectin could potentially interact with cilia. These data raise the possibility that galectin-3 may act as a natural brake on cystogenesis in cpk mice, perhaps via ciliary roles.
Collapse
Affiliation(s)
- Miliyun G Chiu
- Nephro-Urology Unit, UCL Institute of Child Health, 30 Guilford St., London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ahmad S, Ahmad A, White CW. Purinergic signaling and kinase activation for survival in pulmonary oxidative stress and disease. Free Radic Biol Med 2006; 41:29-40. [PMID: 16781450 DOI: 10.1016/j.freeradbiomed.2006.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/27/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Stimulus-induced release of endogenous ATP into the extracellular milieu has been shown to occur in a variety of cells, tissues, and organs. Extracellular ATP can propagate signals via P2 receptors that are essential for growth and survival of cells. Abundance of P2 receptors, their multiple isoforms, and their ubiquitous distribution indicate that they transmit vital signals. Pulmonary epithelium and endothelium are rich in both P2X and P2Y receptors. ATP release from lung tissue and cells occurs upon stimulation both in vivo and in vitro. Extracellular ATP can activate signaling cascades composed of protein kinases including extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K). Here we summarize progress related to release of endogenous ATP and nucleotide signaling in pulmonary tissues upon exposure to oxidant stress. Hypoxic, hyperoxic, and ozone exposures cause a rapid increase of extracellular ATP in primary pulmonary endothelial and epithelial cells. Extracellular ATP is critical for survival of these cells in high oxygen and ozone concentrations. The released ATP, upon binding to its specific receptors, triggers ERK and PI3K signaling and renders cells resistant to these stresses. Impairment of ATP release and transmission of such signals could limit cellular survival under oxidative stress. This may further contribute to disease pathogenesis or exacerbation.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | |
Collapse
|
30
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|
31
|
Hillman KA, Burnstock G, Unwin RJ. The P2X7 ATP receptor in the kidney: a matter of life or death? Nephron Clin Pract 2005; 101:e24-30. [PMID: 15925905 DOI: 10.1159/000086036] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 03/17/2005] [Indexed: 11/19/2022] Open
Abstract
P2X7 is an intriguing membrane receptor for the extracellular nucleotide ATP, which functions as a ligand-gated ion channel; it can activate cell membrane permeabilization and also has a wide range of downstream signaling pathways, including mediation of inflammatory responses and modulation of cell turnover. Despite recent identification of P2X7 receptor protein in the renal tract, the biological and potential pathological functions of this receptor and its signaling cascades in the kidney are not yet fully understood. P2X7 receptor protein is expressed in normal kidney development, predominantly in the condensing mesenchyme, and later in the maturing and adult derivatives of the ureteric bud. Glomerular expression of the molecule is scarce in normal kidney, but is upregulated in chronic and inflammatory conditions, suggesting a role in the inflammatory response or in repair and remodeling in these settings. P2X7 receptor expression in the adult collecting ducts of murine kidney, as well as the collecting duct cysts in autosomal recessive polycystic kidney disease, has been described and agonists of the receptor can modulate the development of renal cysts in an in vitro model of cyst formation derived from the cpk/cpk mouse. Further investigation of the function of the P2X7 receptor in normal and abnormal kidneys might lead to novel therapeutic targets in a wide range of renal diseases.
Collapse
Affiliation(s)
- K A Hillman
- Centre for Nephrology, Department of Physiology, Royal Free and University College Medical School, UCL, London, UK.
| | | | | |
Collapse
|