1
|
Ryabchevskaya EM, Granovskiy DL, Evtushenko EA, Ivanov PA, Kondakova OA, Nikitin NA, Karpova OV. Designing Stable Bacillus anthracis Antigens with a View to Recombinant Anthrax Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14040806. [PMID: 35456639 PMCID: PMC9025368 DOI: 10.3390/pharmaceutics14040806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Anthrax is a disease caused by Bacillus anthracis that affects mammals, including humans. Recombinant B. anthracis protective antigen (rPA) is the most common basis for modern anthrax vaccine candidates. However, this protein is characterised by low stability due to proteolysis and deamidation. Here, for the first time, two modification variants leading to full-size rPA stabilisation have been implemented simultaneously, through deamidation-prone asparagine residues substitution and by inactivation of proteolysis sites. Obtained modified rPA (rPA83m) has been demonstrated to be stable in various temperature conditions. Additionally, rPA1+2 containing PA domains I and II and rPA3+4 containing domains III and IV, including the same modifications, have been shown to be stable as well. These antigens can serve as the basis for a vaccine, since the protective properties of PA can be attributed to individual PA domains. The stability of each of three modified anthrax antigens has been considerably improved in compositions with tobacco mosaic virus-based spherical particles (SPs). rPA1+2/rPA3+4/rPA83m in compositions with SPs have maintained their antigenic specificity even after 40 days of incubation at +37 °C. Considering previously proven adjuvant properties and safety of SPs, their compositions with rPA83m/rPA1+2/rPA3+4 in any combinations might be suitable as a basis for new-generation anthrax vaccines.
Collapse
|
2
|
Kaur R, Tiwari A, Manish M, Maurya IK, Bhatnagar R, Singh S. Common garlic (Allium sativum L.) has potent Anti-Bacillus anthracis activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113230. [PMID: 32853741 DOI: 10.1016/j.jep.2020.113230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/14/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrointestinal anthrax, a disease caused by Bacillus anthracis, remains an important but relatively neglected endemic disease of animals and humans in remote areas of the Indian subcontinent and some parts of Africa. Its initial symptoms include diarrhea and stomachache. In the current study, several common plants indicated for diarrhea, dysentery, stomachache or as stomachic as per traditional knowledge in the Indian subcontinent, i.e., Aegle marmelos (L.) Correa (Bael), Allium cepa L. (Onion), Allium sativum L. (Garlic), Azadirachta indica A. Juss. (Neem), Berberis asiatica Roxb. ex DC. (Daruharidra), Coriandrum sativum L. (Coriander), Curcuma longa L. (Turmeric), Cynodon dactylon (L.) Pers. (Bermuda grass), Mangifera indica L. (Mango), Morus indica L. (Black mulberry), Ocimum tenuiflorum L. (Ocimum sanctum L., Holy Basil), Ocimum gratissimum L. (Ram Tulsi), Psidium guajava L. (Guava), Zingiber officinale Roscoe (Ginger), were evaluated for their anti-Bacillus anthracis property. The usage of Azadirachta indica A. Juss. and Curcuma longa L. by Santals (India), and Allium sp. by biblical people to alleviate anthrax-like symptoms is well documented, but the usage of other plants is traditionally only indicated for different gastrointestinal disturbances/conditions. AIM OF THE STUDY Evaluate the above listed commonly available edible plants from the Indian subcontinent that are used in the traditional medicine to treat gastrointestinal diseases including those also indicated for anthrax-like symptoms for the presence of potent anti-B. anthracis activity in a form amenable to use by the general population in the endemic areas. MATERIALS AND METHODS Aqueous extracts made from fourteen plants indicated above were screened for their anti-B. anthracis activity using agar-well diffusion assay (AWDA) and broth microdilution methods. The Aqueous Garlic Extract (AGE) that displayed most potent anti-B. anthracis activity was assessed for its thermostability, stability under pH extremes encountered in the gastrointestinal tract, and potential antagonistic interaction with bile salts as well as the FDA-approved antibiotics used for anthrax control. The bioactive fractions from the AGE were isolated by TLC coupled bioautography followed by their characterization using GC-MS. RESULTS Garlic (Allium sativum L.) extract was identified as the most promising candidate with bactericidal activity against B. anthracis. It consistently inhibited the growth of B. anthracis in AWDA and decreased the viable colony-forming unit counts in liquid-broth cultures by 6-logs within 6-12 h. The AGE displayed acceptable thermostability (>80% anti-B. anthracis activity retained on incubation at 50 °C for 12 h) and stability in gastric pH range (2-8). It did not antagonize the activity of FDA-approved antibiotics used for anthrax control. GC-MS analysis of the TLC separated bioactive fractions of AGE indicated the presence of previously unreported constituents such as phthalic acid derivatives, acid esters, phenyl group-containing compounds, steroids etc. CONCLUSION: The Aqueous Garlic Extract (AGE) displayed potent anti-B. anthracis activity. It was better than that displayed by Azadirachta indica A. Juss. (Neem) and Mangifera indica L., while Curcuma longa L. (Turmeric) did not show any activity under the assay conditions used. Further work should be undertaken to explore the possible application of AGE in preventing anthrax incidences in endemic areas.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| | - Atul Tiwari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| | - Manish Manish
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Indresh K Maurya
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Samer Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India; Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Dobretsov S, Coutinho R, Rittschof D, Salta M, Ragazzola F, Hellio C. The oceans are changing: impact of ocean warming and acidification on biofouling communities. BIOFOULING 2019; 35:585-595. [PMID: 31282218 DOI: 10.1080/08927014.2019.1624727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Climate change (CC) is driving modification of the chemical and physical properties of estuaries and oceans with profound consequences for species and ecosystems. Numerous studies investigate CC effects from species to ecosystem levels, but little is known of the impacts on biofilm communities and on bioactive molecules such as cues, adhesives and enzymes. CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres and rainfall patterns. These environmental changes are resulting in alterations within marine communities and changes in species ranges and composition. This review provides insights and synthesis of knowledge about the effect of elevated temperature and ocean acidification on microfouling communities and bioactive molecules. The existing studies suggest that CC will impact production of bioactive compounds as well as the growth and composition of biofouling communities. Undoubtedly, with CC fouling management will became an even greater challenge.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Marine Science and Fisheries Department, College of Agricultural and Marine Sciences, Sultan Qaboos University , Sultanate of Oman
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University , Sultanate of Oman
| | - Ricardo Coutinho
- Instituto de Estudos do Mar Almirante Paulo Moreira , Praia dos Anjos, Arraial do Cabo , RJ , Brazil
| | - Daniel Rittschof
- Nicholas School, Duke University Marine Laboratory , Beaufort USA
| | - Maria Salta
- School of Biological Sciences, University of Portsmouth , Portsmouth , UK
| | - Federica Ragazzola
- School of Biological Sciences, University of Portsmouth , Portsmouth , UK
| | - Claire Hellio
- Laboratoire des Sciences de l'Envionnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer , Plouzané , France
| |
Collapse
|
5
|
van der Kant R, van Durme J, Rousseau F, Schymkowitz J. SolubiS: Optimizing Protein Solubility by Minimal Point Mutations. Methods Mol Biol 2019; 1873:317-333. [PMID: 30341620 DOI: 10.1007/978-1-4939-8820-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein solubility is adapted to endogeneous protein abundance in the cell where protein folding is also assisted by multiple chaperones. During recombinant protein production, purification and storage proteins are frequently handled at concentrations that are several orders of magnitude above their physiological concentration, often resulting in protein aggregation. Here we describe SolubiS, a method allowing for (1) detection of aggregation prone linear segments within a protein sequence and (2) identification of mutations that abolish the aggregation propensity of these segments without affecting the thermodynamic stability of the protein. Provided the availability of structural information this method is applicable to all globular proteins including antibodies, resulting both in increased in vitro protein solubility and in better protein production yields.
Collapse
Affiliation(s)
- Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Joost van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Hasan T, Kumari K, Devi SC, Handa J, Rehman T, Ansari NA, Singh LR. Osmolytes in vaccine production, flocculation and storage: a critical review. Hum Vaccin Immunother 2018; 15:514-525. [PMID: 30273503 DOI: 10.1080/21645515.2018.1526585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small molecule osmolytes, responsible for protecting stresses have long been known to rescue proteins and enzymes from loss of function. In addition to protecting macromolecules integrity, many osmolytes also act as potential antioxidant and also help to prevent protein aggregation, amyloid formation or misfolding, and therefore are considered promising molecules for neurodegenerative and many other genetic diseases. Osmolytes are also known to be involved in the regulation of several key immunological processes. In the present review we discuss in detail the effect of these compounds on important aspects of vaccines i.e., increasing the efficiency, production and purification steps. The present review therefore will help researchers to make a better strategy in vaccine production to formulation by incorporating specific and appropriate osmolytes in the processes.
Collapse
Affiliation(s)
- Tauheed Hasan
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Kritika Kumari
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | | | - Jaya Handa
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Tabish Rehman
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Nasim Akhtar Ansari
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | | |
Collapse
|
7
|
Karimi F, Alizadeh S, Alizadeh H. Immunogenicity of multi-walled carbon nanotubes functionalized with recombinant protective antigen domain 4 toward development of a nanovaccine against anthrax. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Amador-Molina JC, Valerdi-Madrigal ED, Domínguez-Castillo RI, Sirota LA, Arciniega JL. Temperature-mediated recombinant anthrax protective antigen aggregate development: Implications for toxin formation and immunogenicity. Vaccine 2016; 34:4188-4195. [PMID: 27364097 DOI: 10.1016/j.vaccine.2016.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
Abstract
Anthrax vaccines containing recombinant PA (rPA) as the only antigen face a stability issue: rPA forms aggregates in solution after exposure to temperatures ⩾40°C, thus losing its ability to form lethal toxin (LeTx) with Lethal Factor. To study rPA aggregation's impact on immune response, we subjected rPA to several time and temperature combinations. rPA treated at 50°C for 30min formed high mass aggregates when analyzed by gel electrophoresis and failed to form LeTx as measured by a macrophage lysis assay (MLA). Aggregated rPA-formed LeTx was about 30 times less active than LeTx containing native rPA. Mice immunized with heat-treated rPA combined with Al(OH)3 developed antibody titers about 49 times lower than mice immunized with native rPA, as measured by a Toxicity Neutralization Assay (TNA). Enzyme Linked Immunosorbent Assay (ELISA) of the same immune sera showed anti-rPA titers only 2-7 times lower than titers elicited by native rPA. Thus, rPA's ability to form LeTx correlates with its production of neutralizing antibodies, and aggregation significantly impairs the protein's antibody response. However, while these findings suggest MLA has some value as an in-process quality test for rPA in new anthrax vaccines, they also confirm the superiority of TNA for use in vaccine potency.
Collapse
Affiliation(s)
- Juan C Amador-Molina
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Esther D Valerdi-Madrigal
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Rocío I Domínguez-Castillo
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Lev A Sirota
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Juan L Arciniega
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
9
|
Structural hot spots for the solubility of globular proteins. Nat Commun 2016; 7:10816. [PMID: 26905391 PMCID: PMC4770091 DOI: 10.1038/ncomms10816] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022] Open
Abstract
Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. Mutations in aggregation prone regions of recombinant proteins often improve their solubility, although they might cause negative effects on their structure and function. Here, the authors identify proteins hot spots that can be exploited to optimize solubility without compromising stability.
Collapse
|
10
|
McHugh KJ, Guarecuco R, Langer R, Jaklenec A. Single-injection vaccines: Progress, challenges, and opportunities. J Control Release 2015; 219:596-609. [PMID: 26254198 DOI: 10.1016/j.jconrel.2015.07.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023]
Abstract
Currently, vaccination is the most efficient and cost-effective medical treatment for infectious diseases; however, each year 10 million infants remain underimmunized due to current vaccination schedules that require multiple doses to be administered across months or years. These dosing regimens are especially challenging in the developing world where limited healthcare access poses a major logistical barrier to immunization. Over the past four decades, researchers have attempted to overcome this issue by developing single-administration vaccines based on controlled-release antigen delivery systems. These systems can be administered once, but release antigen over an extended period of time to elicit both primary and secondary immune responses resulting in antigen-specific immunological memory. Unfortunately, unlike controlled release systems for drugs, single-administration vaccines have yet to be commercialized due to poor antigen stability and difficulty in obtaining unconventional release kinetics. This review discusses the current state of single-administration vaccination, challenges delaying the development of these vaccines, and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rohiverth Guarecuco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
11
|
Ability of ELISA and a toxin neutralization assay to detect changes in immunogenicity of a recombinant Bacillus anthracis protective antigen vaccine upon storage. Biologicals 2013; 41:111-4. [DOI: 10.1016/j.biologicals.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
|
12
|
Ganesan A, Watkinson A, Moore BD. Biophysical characterisation of thermal-induced precipitates of recombinant anthrax protective antigen: evidence for kinetically trapped unfolding domains in solid-state. Eur J Pharm Biopharm 2012; 82:475-84. [PMID: 22683695 DOI: 10.1016/j.ejpb.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 01/16/2023]
Abstract
Insoluble aggregation or precipitation is one of the most common degradation pathways observed for biotherapeutics; despite this, the structural mechanisms by which this occurs remain poorly understood due to difficulties associated with biophysical characterisation of protein particulates. To address this knowledge gap, we developed a solid-state circular dichroism (CD) technique, which allows in situ measurements of the secondary and tertiary structural changes associated with the formation of visible therapeutic protein aggregates. We demonstrate how solid-state CD, in conjunction with other biophysical and computational methods can aid in gaining valuable insights into the mechanisms and pathways of thermal-induced precipitation of Bacillus anthracis recombinant protective antigen (rPA), the primary immunogen of anthrax subunit vaccine. Using these methods, we show the domains d3 and d4 are the most labile of the four structurally distinct domains of rPA and play the critical role in nucleating the cascade of unfolding and aggregation. During the assembly process, the domains d1 and d2 become kinetically trapped within the insoluble aggregate and reveal previously intractable distinct tertiary structural elements of the rPA native structure. These findings reveal a uniquely detailed insight into the role of rPA domains on protein stability and provide a mechanistic framework for thermal-induced unfolding and precipitation. It also shows that solid-state CD provides a novel approach in characterising protein precipitation that may facilitate rational improvements to the stability of biopharmaceuticals.
Collapse
Affiliation(s)
- Ashok Ganesan
- XstalBio Ltd., University Avenue, Glasgow, United Kingdom.
| | | | | |
Collapse
|
13
|
Petersen LK, Phanse Y, Ramer-Tait AE, Wannemuehler MJ, Narasimhan B. Amphiphilic polyanhydride nanoparticles stabilize Bacillus anthracis protective antigen. Mol Pharm 2012; 9:874-82. [PMID: 22380593 DOI: 10.1021/mp2004059] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose against a pathogenic challenge, can stabilize and release functional PA. These nanoparticles demonstrated polymer hydrophobicity-dependent preservation of the biological function of PA upon encapsulation, storage (over extended times and elevated temperatures), and release. Specifically, fabrication of amphiphilic polyanhydride nanoparticles composed of 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane best preserved PA functionality. These studies demonstrate the versatility and superiority of amphiphilic nanoparticles as vaccine delivery vehicles suitable for long-term storage.
Collapse
Affiliation(s)
- L K Petersen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
14
|
Jiménez-Alberto A, Parreiras P, Castelán-Vega J, Sirota L, Arciniega J. Feasibility of the use of ELISA in an immunogenicity-based potency test of anthrax vaccines. Biologicals 2011; 39:236-41. [PMID: 21664832 DOI: 10.1016/j.biologicals.2011.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 04/01/2011] [Accepted: 05/10/2011] [Indexed: 12/24/2022] Open
Abstract
Complexities of lethal challenge animal models have prompted the investigation of immunogenicity assays as potency tests of anthrax vaccines. An ELISA was used to measure the antibody response to protective antigen (PA) in mice immunized once with a commercially available (AVA) or a recombinant PA vaccine (rPAV) formulated in-house with aluminum hydroxide. Results from the anti-PA ELISA were used to select a single dose appropriate for the development of a potency test. Immunization with 0.2 mL of AVA induced a measurable response in the majority of animals. This dose was located in the linear range of the vaccine dose-antibody response curve. In the case of rPAV, practical limitations prevented the finding of the best single dose for the potency testing of purified vaccines. In additional immunogenicity experiments neither the magnitude of the response to a single dose of vaccine, nor the estimation of the dose necessary to induce a measurable response were able to consistently detect brief exposure of vaccines to potentially damaging temperatures. However, differences detected for rPAV in the proportion of mice responding to the same dose of treated and untreated vaccine suggested that further assay development to increase the sensitivity of the latter design may be warranted.
Collapse
|
15
|
Reduction of immunogenicity of anthrax vaccines subjected to thermal stress, as measured by a toxin neutralization assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:349-51. [PMID: 21147935 DOI: 10.1128/cvi.00267-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report that a toxin neutralization assay (TNA) can detect a decrease in the immunogenicity of anthrax vaccines as a consequence of brief exposure to elevated temperature. This attribute of TNA may help in adopting immunogenicity as a replacement of the current potency test, which involves protection from lethal challenge.
Collapse
|
16
|
Ortbauer M, Popp M. Functional role of polyhydroxy compounds on protein structure and thermal stability studied by circular dichroism spectroscopy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:428-434. [PMID: 18343146 DOI: 10.1016/j.plaphy.2008.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Indexed: 05/26/2023]
Abstract
Polyhydroxy compounds such as cyclitols, acyclic polyols and sugars are produced by a wide variety of organisms under stressful conditions in order to protect macromolecular structure. Plants undergoing abiotic stresses like heat and dehydration accumulate enormous amounts of polyhydroxy compounds (up to 400 mM) in their cellular tissues. Not only do they serve as osmoprotectants ("compatible solutes"), they also protect membrane structure and preserve enzymatic activity. To gain further insight into the mechanism of protein protection by polyhydroxy compounds, we examined the structural and thermal stability of six model proteins (bovine serum albumin, glutamine synthetase of Escherichia coli, malate dehydrogenase of pig heart, SH2 domain of phospholipaseCgamma1, SH2_Myc and GST_MycMax fusion proteins) upon the addition of various polyhydroxy compounds by circular dichroism spectroscopy. Our results show that D-pinitol (1D-3-O-methyl-chiro-inositol), L-quebrachitol (1L-2-O-methyl-chiro-inositol), myo-inositol, D-chiro-inositol, mannitol, glucose and trehalose promoted improved structural and thermal stability for each protein, whereas conduritol (1,4/2,3-cyclohexanetetrol) and glycerol were not effective. An increase in the midpoint denaturation temperature (T(m)) of 3.3 degrees C to 4.7 degrees C was observed for each protein upon the addition of 400 mM myo-inositol. Although the apparent T(m) of each protein was shifted by the addition of polyhydroxy compounds, the influence seems to be dependent on attributes like the protein surface topology, the hydration shell and on the nature of the protective solute, as well as on its concentration. The O-methylated cyclitols D-pinitol and L-quebrachitol were more effective preservatives than the less hydrophobic non-methylated myo-inositol and D-chiro-inositol. Amongst various polyhydroxy compounds, hydrophobic cyclitols were the most effective stabilizers.
Collapse
Affiliation(s)
- Martina Ortbauer
- Department of Biomolecular Structural Chemistry, University of Vienna, Campus Vienna Biocenter 5, Vienna, Austria.
| | | |
Collapse
|
17
|
Ruhland A, Leal N, Kima PE. Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol 2007; 9:84-96. [PMID: 16889626 DOI: 10.1111/j.1462-5822.2006.00769.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous reports have shown that cells infected with promastigotes of some Leishmania species are resistant to the induction of apoptosis. This would suggest that either parasites elaborate factors that block signalling from apoptosis inducers or that parasites engage endogenous host signalling pathways that block apoptosis. To investigate the latter scenario, we determined whether Leishmania infection results in the activation of signalling pathways that have been shown to mediate resistance to apoptosis in other infection models. First, we showed that infection with the promastigote form of Leishmania major, Leishmania pifanoi and Leishmania amazonensis activates signalling through p38 mitogen-activated protein kinase (MAPK), NFkappaB and PI3K/Akt. Then we found that inhibition of signalling through the PI3K/Akt pathway with LY294002 and Akt IV inhibitor reversed resistance of infected bone marrow-derived macrophages and RAW 264.7 macrophages to potent inducers of apoptosis. Moreover, reduction of Akt levels with small interfering RNAs to Akt resulted in the inability of infected macrophages to resist apoptosis. Further evidence of the role of PI3K/Akt signalling in the promotion of cell survival by infected cells was obtained with the finding that Bad, which is a substrate of Akt, becomes phosphorylated during the course of infection. In contrast to the observations with PI3K/Akt signalling, inhibition of p38 MAPK signalling with SB202190 or NFkappaB signalling with wedelolactone had limited effect on parasite-induced resistance to apoptosis. We conclude that Leishmania promastigotes engage PI3K/Akt signalling, which confers to the infected cell, the capacity to resist death from activators of apoptosis.
Collapse
Affiliation(s)
- Aaron Ruhland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 326111, USA
| | | | | |
Collapse
|
18
|
Jaindl M, Popp M. Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation. Biochem Biophys Res Commun 2006; 345:761-5. [PMID: 16701563 DOI: 10.1016/j.bbrc.2006.04.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 04/26/2006] [Indexed: 11/25/2022]
Abstract
The accumulation of cyclitols in plants is a widespread response that provides protection against various environmental stresses. The capacity of myo-Inositol, pinitol, quercitol, and other compatible solutes (i.e., sorbitol, proline, and glycinebetaine) to protect proteins against thermally induced denaturation and deactivation was examined. Enzymatic activity measurements of L-glutamine synthetase from Escherichia coli and Hordeum vulgare showed that the presence of cyclitols during heat treatment resulted in a significantly higher percentage of residual activity. CD spectroscopy experiments were used to study thermal stabilities of protein secondary structures upon the addition of myo-Inositol, pinitol, and glucose. 0.4 M myo-Inositol was observed to raise the melting temperature (Tm) of GS from E. coli by 3.9 degrees C and MDH from pig heart by 3.4 degrees C, respectively. Pinitol showed an increase in Tm of MDH by 3.8 degrees C, whereas glucose was not effective. Our results show a great potential of stabilizing proteins by the addition of cyclitols.
Collapse
Affiliation(s)
- Martina Jaindl
- Department of Biomolecular Structural Chemistry, University of Vienna, A-1030 Vienna, Austria.
| | | |
Collapse
|
19
|
Zomber G, Reuveny S, Garti N, Shafferman A, Elhanany E. Effects of Spontaneous Deamidation on the Cytotoxic Activity of the Bacillus anthracis Protective Antigen. J Biol Chem 2005; 280:39897-906. [PMID: 16188881 DOI: 10.1074/jbc.m508569200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protective antigen (PA) is a central virulence factor of Bacillus anthracis and a key component in anthrax vaccines. PA binds to target cell receptors, is cleaved by the furin protease, self-aggregates to heptamers, and finally internalizes as a complex with either lethal or edema factors. Under mild room temperature storage conditions, PA cytotoxicity decreased (t(1/2) approximately 7 days) concomitant with the generation of new acidic isoforms, probably through deamidation of Asn residues. Ranking all 68 Asn residues in PA based on their predicted deamidation rates revealed five residues with half-lives of <60 days, and these residues were further analyzed: Asn10 in the 20-kDa region, Asn162 at P6 vicinal to the furin cleavage site, Asn306 in the pro-pore translocation loop, and both Asn713 and Asn719 in the receptor-binding domain. We found that PA underwent spontaneous deamidation at Asn162 upon storage concomitant with decreased susceptibility to furin. A panel of model synthetic furin substrates was used to demonstrate that Asn162 deamidation led to a 20-fold decrease in the bimolecular rate constant (k(cat)/Km) of proteolysis due to the new negatively charged residue at P6 in the furin recognition sequence. Furthermore, reduced PA cytotoxicity correlated with a decrease in PA cell binding and also with deamidation of Asn713 and Asn719. On the other hand, neither deamidation of Asn10 or Asn306 nor impairment of heptamerization could be observed upon prolonged PA storage. We suggest that PA inactivation during storage is associated with susceptible deamidation sites, which are intimately involved in both mechanisms of PA cleavage by furin and PA-receptor binding.
Collapse
Affiliation(s)
- Gil Zomber
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | |
Collapse
|