1
|
Hanisch D, Krumm A, Diehl T, Stork CM, Dejung M, Butter F, Kim E, Brenner W, Fritz G, Hofmann TG, Roos WP. Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression. Cell Death Dis 2022; 13:293. [PMID: 35365623 PMCID: PMC8975953 DOI: 10.1038/s41419-022-04751-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism.
Collapse
Affiliation(s)
- Daniela Hanisch
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Tamara Diehl
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Carla M Stork
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Ella Kim
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Medical Center of the University Mainz, 55131, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Wynand P Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
2
|
Abstract
Replicative polymerases (pols) cannot accommodate damaged template bases, and these pols stall when such offenses are encountered during S phase. Rather than repairing the damaged base, replication past it may proceed via one of two DNA damage tolerance (DDT) pathways, allowing replicative DNA synthesis to resume. In translesion DNA synthesis (TLS), a specialized TLS pol is recruited to catalyze stable, yet often erroneous, nucleotide incorporation opposite damaged template bases. In template switching, the newly synthesized sister strand is used as a damage-free template to synthesize past the lesion. In eukaryotes, both pathways are regulated by the conjugation of ubiquitin to the PCNA sliding clamp by distinct E2/E3 pairs. Whereas monoubiquitination by Rad6/Rad18 mediates TLS, extension of this ubiquitin to a polyubiquitin chain by Ubc13-Mms2/Rad5 routes DDT to the template switching pathway. In this review, we focus on the monoubiquitination of PCNA by Rad6/Rad18 and summarize the current knowledge of how this process is regulated.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | | |
Collapse
|
3
|
Branzei D. Ubiquitin family modifications and template switching. FEBS Lett 2011; 585:2810-7. [PMID: 21539841 DOI: 10.1016/j.febslet.2011.04.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022]
Abstract
Homologous recombination plays an important role in the maintenance of genome integrity. Arrested forks and DNA lesions trigger strand annealing events, called template switching, which can provide for accurate damage bypass, but can also lead to chromosome rearrangements. Advances have been made in understanding the underlying mechanisms for these events and in elucidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged as key players in regulating damage-induced template switching. Here I review the biological significance of template switching at the nexus of DNA replication and recombination, and the role of ubiquitin-like modifications in mediating and controlling this process.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
4
|
Li X, Ward T, Yao X, Wu J. Chk1 prevents abnormal mitosis of S-phase HeLa cells containing DNA damage. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Maor-Shoshani A, Meira LB, Yang X, Samson LD. 3-Methyladenine DNA glycosylase is important for cellular resistance to psoralen interstrand cross-links. DNA Repair (Amst) 2008; 7:1399-406. [PMID: 18571479 DOI: 10.1016/j.dnarep.2008.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/18/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
Abstract
DNA interstrand cross-links (ICLs), widely used in chemotherapy, are cytotoxic lesions because they block replication and transcription. Repair of ICLs involves proteins from different repair pathways however the precise mechanism is still not completely understood. Here, we report that the 3-methyladenine DNA glycosylase (Aag), an enzyme that initiates base excision repair at a variety of alkylated bases, is also involved in the repair of ICLs. Aag(-/-) mouse embryonic stem cells were shown to be more sensitive to the cross-linking agent 4,5',8-trimethylpsoralen than wild-type cells, but no more sensitive than wild-type to the psoralen derivative Angelicin that forms only monoadducts. We show that gamma-H2AX foci formation, a marker for double strand breaks that are formed during ICL repair, is impaired in psoralen treated Aag(-/-) cells in both quantity and kinetics. However, in our in vitro system, purified human AAG can neither bind to the ICL nor cleave it. Taken together, our results suggest that Aag is important for the resistance of mouse ES cells to psoralen-induced ICLs.
Collapse
Affiliation(s)
- Ayelet Maor-Shoshani
- Biological Engineering Department and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
7
|
Nikolaishvili-Feinberg N, Jenkins GS, Nevis KR, Staus DP, Scarlett CO, Unsal-Kaçmaz K, Kaufmann WK, Cordeiro-Stone M. Ubiquitylation of proliferating cell nuclear antigen and recruitment of human DNA polymerase eta. Biochemistry 2008; 47:4141-50. [PMID: 18321066 DOI: 10.1021/bi702329h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study investigated the requirement for ubiquitylation of PCNA at lysine 164 during polymerase eta-dependent translesion synthesis (TLS) of site-specific cis-syn cyclobutane thymine dimers (T (wedge)T). The in vitro assay recapitulated origin-dependent initiation, fork assembly, and semiconservative, bidirectional replication of double-stranded circular DNA substrates. A phosphocellulose column was used to fractionate HeLa cell extracts into two fractions; flow-through column fraction I (CFI) contained endogenous PCNA, RPA, ubiquitin-activating enzyme E1, and ubiquitin conjugase Rad6, and eluted column fraction II (CFII) included pol delta, pol eta, and RFC. CFII supplemented with purified recombinant RPA and PCNA (wild type or K164R, in which lysine was replaced with arginine) was competent for DNA replication and TLS. K164R-PCNA complemented CFII for these activities to the same extent and efficiency as wild-type PCNA. CFII mixed with CFI (endogenous PCNA, E1, Rad6) exhibited enhanced DNA replication activity, but the same TLS efficiency determined with the purified proteins. These results demonstrate that PCNA ubiquitylation at K164 of PCNA is not required in vitro for pol eta to gain access to replication complexes at forks stalled by T (wedge)T and to catalyze TLS across this dimer.
Collapse
Affiliation(s)
- Nana Nikolaishvili-Feinberg
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sidorova JM, Li N, Folch A, Monnat RJ. The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 2008; 7:796-807. [PMID: 18250621 DOI: 10.4161/cc.7.6.5566] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Werner syndrome is an autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several lines of evidence have suggested that the Werner syndrome protein WRN plays a role in DNA replication and S-phase progression. In order to define the exact role of WRN in genomic replication we examined cell cycle kinetics during normal cell division and after methyl-methane-sulfonate (MMS) DNA damage or hydroxyurea (HU)-mediated replication arrest following acute depletion of WRN from human fibroblasts. Loss of WRN markedly extended the time cells needed to complete the cell cycle after either of these genotoxic treatments. Moreover, replication track analysis of individual, stretched DNA fibers showed that WRN depletion significantly reduced the speed at which replication forks elongated in vivo after MMS or HU treatment. These results establish the importance of WRN during genomic replication and indicate that WRN acts to facilitate fork progression after DNA damage or replication arrest. The data provide a mechanistic basis for a better understanding of WRN-mediated maintenance of genomic stability and for predicting the outcomes of DNA-targeting chemotherapy in several adult cancers that silence WRN expression.
Collapse
Affiliation(s)
- Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, Washington 98195-7705, USA.
| | | | | | | |
Collapse
|
9
|
Harrigan JA, Wilson DM, Prasad R, Opresko PL, Beck G, May A, Wilson SH, Bohr VA. The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res 2006; 34:745-54. [PMID: 16449207 PMCID: PMC1356534 DOI: 10.1093/nar/gkj475] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome instability is a characteristic of cancer and aging, and is a hallmark of the premature aging disorder Werner syndrome (WS). Evidence suggests that the Werner syndrome protein (WRN) contributes to the maintenance of genome integrity through its involvement in DNA repair. In particular, biochemical evidence indicates a role for WRN in base excision repair (BER). We have previously reported that WRN helicase activity stimulates DNA polymerase beta (pol β) strand displacement synthesis in vitro. In this report we demonstrate that WRN exonuclease activity can act cooperatively with pol β, a polymerase lacking 3′–5′ proofreading activity. Furthermore, using small interference RNA technology, we demonstrate that WRN knockdown cells are hypersensitive to the alkylating agent methyl methanesulfonate, which creates DNA damage that is primarily repaired by the BER pathway. In addition, repair assays using whole cell extracts from WRN knockdown cells indicate a defect in long patch (LP) BER. These findings demonstrate that WRN plays a direct role in the repair of methylation-induced DNA damage, and suggest a role for both WRN helicase and exonuclease activities together with pol β during LP BER.
Collapse
Affiliation(s)
| | | | - Rajendra Prasad
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIHResearch Triangle Park, NC, USA
| | | | | | | | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIHResearch Triangle Park, NC, USA
| | - Vilhelm A. Bohr
- To whom correspondence should be addressed. Tel: +1 410 558 8162; Fax: +1 410 558 8157;
| |
Collapse
|
10
|
Soria G, Podhajcer O, Prives C, Gottifredi V. P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 2006; 25:2829-38. [PMID: 16407842 DOI: 10.1038/sj.onc.1209315] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
p21(Cip1/WAF1) is a known inhibitor of the short-gap filling activity of proliferating cell nuclear antigen (PCNA) during DNA repair. In agreement, p21 degradation after UV irradiation promotes PCNA-dependent repair. Recent reports have identified ubiquitination of PCNA as a relevant feature for PCNA-dependent DNA repair. Here, we show that PCNA ubiquitination in human cells is notably augmented after UV irradiation and other genotoxic treatments such as hydroxyurea, aphidicolin and methylmethane sulfonate. Intriguingly, those DNA damaging agents also promoted downregulation of p21. While ubiquitination of PCNA was not affected by deficient nucleotide excision repair (NER) and was observed in both proliferating and arrested cells, stable p21 expression caused a significant reduction in UV-induced ubiquitinated PCNA. Surprisingly, the negative regulation of PCNA ubiquitination by p21 does not depend on the direct interaction with PCNA but requires the cyclin dependent kinase binding domain of p21. Taken together, our data suggest that p21 downregulation plays a role in efficient PCNA ubiquitination after UV irradiation.
Collapse
Affiliation(s)
- G Soria
- Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Masuyama S, Tateishi S, Yomogida K, Nishimune Y, Suzuki K, Sakuraba Y, Inoue H, Ogawa M, Yamaizumi M. Regulated expression and dynamic changes in subnuclear localization of mammalian Rad18 under normal and genotoxic conditions. Genes Cells 2005; 10:753-62. [PMID: 16098139 DOI: 10.1111/j.1365-2443.2005.00874.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rad18 plays a crucial role in postreplication repair in both lower eukaryotes and higher eukaryotes. However, regulation of the Rad18 expression in higher eukaryotes is largely unknown. We found that the RAD18 transcript is expressed ubiquitously in various tissues and very highly in the testis in mammals. Although human RAD18 (hRAD18) transcription levels fluctuate during the cell cycle, being maximal in the late S and minimal in the early G1, the protein levels remain constant throughout the cell cycle. Following UV-irradiation, hRAD18 transcription levels decrease significantly, but Rad18 protein levels change little. The protein levels are maintained at least in part by enhanced translation rates. hRad18 localizes in the nucleus in two forms: a diffused form and a condensed form forming nuclear dots. These nuclear dots disperse rapidly in the nucleoplasm after treatments with various genotoxic agents, resulting in an enhancement of the intranuclear Rad18 concentration of the diffused form. No de novo protein synthesis is required for this process. These results suggest that in higher eukaryotes, the maintenance and dynamic translocation of Rad18 protein is important for postreplication repair.
Collapse
Affiliation(s)
- Sadaharu Masuyama
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Solovjeva L, Svetlova M, Sasina L, Tanaka K, Saijo M, Nazarov I, Bradbury M, Tomilin N. High mobility of flap endonuclease 1 and DNA polymerase eta associated with replication foci in mammalian S-phase nucleus. Mol Biol Cell 2005; 16:2518-28. [PMID: 15758026 PMCID: PMC1087254 DOI: 10.1091/mbc.e04-12-1066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Originally detected in fixed cells, DNA replication foci (RFi) were later visualized in living cells by using green fluorescent protein (GFP)-tagged proliferating cell nuclear antigen (PCNA) and DNA ligase I. It was shown using fluorescence redistribution after photobleaching (FRAP) assay that focal GFP-PCNA slowly exchanged, suggesting the existence of a stable replication holocomplex. Here, we used the FRAP assay to study the dynamics of the GFP-tagged PCNA-binding proteins: Flap endonuclease 1 (Fen1) and DNA polymerase eta (Pol eta). We also used the GFP-Cockayne syndrome group A (CSA) protein, which does associate with transcription foci after DNA damage. In normal cells, GFP-Pol eta and GFP-Fen1 are mobile with residence times at RFi (t(m)) approximately 2 and approximately 0.8 s, respectively. GFP-CSA is also mobile but does not concentrate at discrete foci. After methyl methanesulfonate (MMS) damage, the mobile fraction of focal GFP-Fen1 decreased and t(m) increased, but it then recovered. The mobilities of focal GFP-Pol eta and GFP-PCNA did not change after MMS. The mobility of GFP-CSA did not change after UV-irradiation. These data indicate that the normal replication complex contains at least two mobile subunits. The decrease of the mobile fraction of focal GFP-Fen1 after DNA damage suggests that Fen1 exchange depends on the rate of movement of replication forks.
Collapse
Affiliation(s)
- Lioudmila Solovjeva
- Laboratory of Chromosome Stability, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|