1
|
Microtubules in Influenza Virus Entry and Egress. Viruses 2020; 12:v12010117. [PMID: 31963544 PMCID: PMC7020094 DOI: 10.3390/v12010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are respiratory pathogens that represent a significant threat to public health, despite the large-scale implementation of vaccination programs. It is necessary to understand the detailed and complex interactions between influenza virus and its host cells in order to identify successful strategies for therapeutic intervention. During viral entry, the cellular microenvironment presents invading pathogens with a series of obstacles that must be overcome to infect permissive cells. Influenza hijacks numerous host cell proteins and associated biological pathways during its journey into the cell, responding to environmental cues in order to successfully replicate. The cellular cytoskeleton and its constituent microtubules represent a heavily exploited network during viral infection. Cytoskeletal filaments provide a dynamic scaffold for subcellular viral trafficking, as well as virus-host interactions with cellular machineries that are essential for efficient uncoating, replication, and egress. In addition, influenza virus infection results in structural changes in the microtubule network, which itself has consequences for viral replication. Microtubules, their functional roles in normal cell biology, and their exploitation by influenza viruses will be the focus of this review.
Collapse
|
2
|
Romagnoli R, Baraldi PG, Prencipe F, Lopez-Cara C, Rondanin R, Simoni D, Hamel E, Grimaudo S, Pipitone RM, Meli M, Tolomeo M. Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation. Eur J Med Chem 2016; 108:39-52. [PMID: 26629859 PMCID: PMC4724257 DOI: 10.1016/j.ejmech.2015.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022]
Abstract
Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3',4',5'-trimethoxybenzoyl)-3-iodoacetamido-6-methoxy benzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3',4',5'-trimethoxybenzoyl moiety at the 2-position of different benzoheterocycles such as benzo[b]furan, benzo[b]thiophene, indole and N-methylindole. Effects on biological activity of the iodoacetamido group and of different moieties (methyl and methoxy) at the C-3 to C-7 positions were examined. In the series of benzo[b]furan derivatives, moving the iodoacetylamino group from the C-4 to the C-5 or C-6 positions did not significantly affect antiproliferative activity. Compounds 4, 15, 20 and 23 blocked STAT5 signals and induced apoptosis of K562 BCR-ABL positive cells. For compound 23, the trimethoxybenzoyl moiety at the 2-position of the benzo[b]furan core was not essential for potent inhibition of STAT5 activation.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy.
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Carlota Lopez-Cara
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Riccardo Rondanin
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Daniele Simoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stefania Grimaudo
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, 90125 Palermo, Italy
| | - Rosaria Maria Pipitone
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, 90125 Palermo, Italy
| | - Maria Meli
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile, Area di Farmacologia, Università di Palermo, 90125 Palermo, Italy
| | - Manlio Tolomeo
- Centro Interdipartimentale di Ricerca in Oncologia Clinica e Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Malattie Infettive, Università di Palermo, 90125 Palermo, Italy
| |
Collapse
|
3
|
The new iodoacetamidobenzofuran derivative TR120 decreases STAT5 expression and induces antitumor effects in imatinib-sensitive and imatinib-resistant BCR-ABL-expressing leukemia cells. Anticancer Drugs 2013; 24:384-93. [PMID: 23370613 DOI: 10.1097/cad.0b013e32835e64a0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification of novel compounds modulating the expression/activity of molecular targets downstream to BCR-ABL could be a new approach in the treatment of chronic myeloid leukemias (CMLs) resistant to imatinib or other BCR-ABL-targeted molecules. Recently, we synthesized a new class of substituted 2-(3,4,5-trimethoxybenzoyl)-2-N,N-dimethylamino-benzo[b]furans, and among these 3-iodoacetylamino-6-methoxybenzofuran-2-yl(3,5-trimethoxyphenyl)methanone (TR120) showed marked cytotoxic activity in BCR-ABL-expressing cells. Interestingly, TR120 was more potent than imatinib in cell growth inhibition and apoptosis induction in both BCR-ABL-expressing K562 and KCL22 cells. Moreover, it showed antitumor activity in imatinib-resistant K562-R and KCL22-R cells at concentrations similar to those active in the respective sensitive cells. Further, TR120 induced a marked decrease in signal transducer and activator of transcription 5 (STAT5) expression in K562 cells. Consistent with this effect, it determined a block of cells in the G0-G1 phase of the cell cycle, a decrease in the level of cyclin D1, and a reduction in Bcl-xL expression; however, it did not cause modifications in the Bcl-2 level. Of interest, TR120 had synergistic effects when used in combination with imatinib in both sensitive and resistant cells. Considering that STAT5 is a BCR-ABL molecular target that plays a key role in the pathogenesis of CML as well as in BCR-ABL-mediated resistance to apoptosis, TR120 could potentially be a useful novel agent in the treatment of imatinib-resistant CML.
Collapse
|
4
|
Audzevich T, Pearce G, Breucha M, Günal G, Jessberger R. Control of the STAT6-BCL6 antagonism by SWAP-70 determines IgE production. THE JOURNAL OF IMMUNOLOGY 2013; 190:4946-55. [PMID: 23589612 DOI: 10.4049/jimmunol.1203014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Asthma and allergies are major health concerns in which Ig isotype E plays a pivotal role. Ag-bound IgE drives mast cells and basophils into exocytosis, thereby promoting allergic and potentially anaphylactic reactions. The importance of tightly regulated IgE production is underscored by severe immunological conditions in humans with elevated IgE levels. Cytokines direct IgH class-switching to a particular isotype by initiation of germline transcription (GLT) from isotype-specific intronic (I) promoters. The switch to IgE depends on IL-4, which stimulates GLT of the Iε promoter, but is specifically and strongly impaired in Swap-70(-/-) mice. Although early events in IL-4 signal transduction (i.e., activation of the JAK/STAT6 pathway) do not require SWAP-70, SWAP-70 deficiency results in impaired Iε GLT. The affinity of STAT6 to chromatin is reduced in absence of SWAP-70. Chromatin immunoprecipitation revealed that SWAP-70 binds to Iε and is required for association of STAT6 with Iε. BCL6, known to antagonize STAT6 particularly at Iε, is increased on Iε in absence of SWAP-70. Other promoters bound by BCL6 and STAT6 were found unaffected. We conclude that SWAP-70 controls IgE production through regulation of the antagonistic STAT6 and BCL6 occupancy of Iε. The identification of this mechanism opens new avenues to inhibit allergic reactions triggered by IgE.
Collapse
Affiliation(s)
- Tatsiana Audzevich
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
5
|
Fernandez DJ, Tuma DJ, Tuma PL. Hepatic microtubule acetylation and stability induced by chronic alcohol exposure impair nuclear translocation of STAT3 and STAT5B, but not Smad2/3. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1402-15. [PMID: 23064763 PMCID: PMC3532545 DOI: 10.1152/ajpgi.00071.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although alcoholic liver disease is clinically well described, the molecular basis for alcohol-induced hepatotoxicity is not well understood. Previously, we found that alcohol exposure led to increased microtubule acetylation and stability in polarized, hepatic WIF-B cells and in livers from ethanol-fed rats. Because microtubules are known to regulate transcription factor nuclear translocation and dynamic microtubules are required for translocation of at least a subset of these factors, we examined whether alcohol-induced microtubule acetylation and stability impair nuclear translocation. We examined nuclear delivery of factors representing the two mechanisms by which microtubules regulate translocation. To represent factors that undergo directed delivery, we examined growth hormone-induced STAT5B translocation and IL-6-induced STAT3 translocation. To represent factors that are sequestered in the cytoplasm by microtubule attachment until ligand activation, we examined transforming growth factor-β-induced Smad2/3 translocation. We found that ethanol exposure selectively impaired translocation of the STATs, but not Smad2/3. STAT5B delivery was decreased to a similar extent by addition of taxol (a microtubule-stabilizing drug) or trichostatin A (a deacetylase inhibitor), agents that promote microtubule acetylation in the absence of alcohol. Thus the alcohol-induced impairment of STAT nuclear translocation can be explained by increased microtubule acetylation and stability. Only ethanol treatment impaired STAT5B activation, indicating that microtubules are not important for its activation by Jak2. Furthermore, nuclear exit was not changed in treated cells, indicating that this process is also independent of microtubule acetylation and stability. Together, these results raise the exciting possibility that deacetylase agonists may be effective therapeutics for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- David J. Fernandez
- 1Department of Biology, The Catholic University of America, Washington, DC; and
| | - Dean J. Tuma
- 2Department of Internal Medicine, University of Nebraska, Omaha, Nebraska
| | - Pamela L. Tuma
- 1Department of Biology, The Catholic University of America, Washington, DC; and
| |
Collapse
|
6
|
|
7
|
Zhao H, Sokhansanj BA. Integrated modeling methodology for microtubule dynamics and Taxol kinetics with experimentally identifiable parameters. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2007; 88:18-25. [PMID: 17707543 DOI: 10.1016/j.cmpb.2007.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/21/2007] [Accepted: 07/06/2007] [Indexed: 05/16/2023]
Abstract
Microtubule dynamics play a critical role in cell function and stress response, modulating mitosis, morphology, signaling, and transport. Drugs such as paclitaxel (Taxol) can impact tubulin polymerization and affect microtubule dynamics. While theoretical methods have been previously proposed to simulate microtubule dynamics, we develop a methodology here that can be used to compare model predictions with experimental data. Our model is a hybrid of (1) a simple two-state stochastic formulation of tubulin polymerization kinetics and (2) an equilibrium approximation for the chemical kinetics of Taxol drug binding to microtubule ends. Model parameters are biologically realistic, with values taken directly from experimental measurements. Model validation is conducted against published experimental data comparing optical measurements of microtubule dynamics in cultured cells under normal and Taxol-treated conditions. To compare model predictions with experimental data requires applying a "windowing" strategy on the spatiotemporal resolution of the simulation. From a biological perspective, this is consistent with interpreting the microtubule "pause" phenomenon as at least partially an artifact of spatiotemporal resolution limits on experimental measurement.
Collapse
Affiliation(s)
- He Zhao
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | |
Collapse
|
8
|
O'Brien JJ, Nathanson NM. Retrograde activation of STAT3 by leukemia inhibitory factor in sympathetic neurons. J Neurochem 2007; 103:288-302. [PMID: 17608645 DOI: 10.1111/j.1471-4159.2007.04736.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leukemia inhibitory factor (LIF) is a member of the interleukin-6 family of cytokines and signals through the glycoprotein 130 and LIF receptor beta subunits. Binding of cytokines to these subunits activates multiple signaling cascades, including the Janus kinase (Jak)/signal transducers and activators of transcription (STAT) pathway. We used compartmentalized cultures of sympathetic neurons and immunocytochemical analyses of STAT3 to examine the mechanisms involved in retrograde signaling of LIF from distal neurites (DN) to cell bodies. Addition of LIF to the DN of these neurons triggers the activation and nuclear translocation of STAT3. Inhibition of Jak activity in the cell bodies prevented LIF-induced retrograde activation of STAT3, while block of Jak activity in the DN had no effect on the appearance of activated STAT3 in the nucleus. These results show that the transport of activated Jak is not the main mechanism mediating retrograde signaling. Although there is an increase in phosphorylated STAT3 in the neurites after distal stimulation, the transport of activated STAT3 is not necessary for retrograde signaling. Our results are consistent with a signaling endosome model for retrograde signaling, in which the LIF/glycoprotein 130/LIF receptor/Jak complex is internalized and transported to activate STAT3 in the cell body.
Collapse
Affiliation(s)
- Jennifer J O'Brien
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
9
|
Chen W, Khurana Hershey GK. Signal transducer and activator of transcription signals in allergic disease. J Allergy Clin Immunol 2007; 119:529-41; quiz 542-3. [PMID: 17336608 DOI: 10.1016/j.jaci.2007.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/03/2007] [Accepted: 01/05/2007] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins are a group of transcription factors that transmit signals from the extracellular milieu of cells to the nucleus. They are crucial for the signaling of many cytokines that are mediators of allergic inflammation and impact various cell types critical to allergy including epithelial cells, mast cells, lymphocytes, dendritic cells, and eosinophils. Dysregulation of STAT signaling has been implicated in allergic disease, highlighting the importance of these ubiquitous molecules in allergic inflammation and the potential of these pathways as a target for therapeutic intervention. This review will summarize the current understanding of the roles of STAT signaling in allergic disease and the potential of targeting STATs for the treatment of allergic disorders, emphasizing recent observations.
Collapse
Affiliation(s)
- Weiguo Chen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
10
|
Paradise A, Levin MK, Korza G, Carson JH. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J Mol Biol 2006; 365:50-65. [PMID: 17056062 PMCID: PMC1831836 DOI: 10.1016/j.jmb.2006.09.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/20/2022]
Abstract
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.
Collapse
Affiliation(s)
- Allison Paradise
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
11
|
Maggio M, Guralnik JM, Longo DL, Ferrucci L. Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 2006; 61:575-84. [PMID: 16799139 PMCID: PMC2645627 DOI: 10.1093/gerona/61.6.575] [Citation(s) in RCA: 495] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human interleukin IL-6 was originally cloned in 1986. In 1993, William Ershler, in his article "IL-6: A Cytokine for Gerontologists," indicated IL-6 as one of the main signaling pathways modulating the complex relationship between aging and chronic morbidity. Over the last 12 years, our understanding of the role of IL-6 in human physiology and pathology has substantially grown, although some of the questions originally posed by Ershler are still debated. In this review, we will focus on IL-6 structure, IL-6 signaling, and trans signaling pathways, and the role of IL-6 in geriatric syndromes and chronic disease. In the final section of this review, we dissect the critical elements of the IL-6 signaling pathway and point out targets for intervention that are targeted by emerging drugs, some still on the horizon and others already being tested in clinical trials.
Collapse
Affiliation(s)
- Marcello Maggio
- Clinical Research Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Jack M. Guralnik
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland
| | - Dan L. Longo
- Clinical Research Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Luigi Ferrucci
- Clinical Research Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
12
|
Lopez-Perez M, Salazar EP. A role for the cytoskeleton in STAT5 activation in MCF7 human breast cancer cells stimulated with EGF. Int J Biochem Cell Biol 2006; 38:1716-28. [PMID: 16765629 DOI: 10.1016/j.biocel.2006.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/17/2006] [Accepted: 04/02/2006] [Indexed: 11/25/2022]
Abstract
A rapid increase in the tyrosine phosphorylation of signal transducers and activators of transcription (STAT) proteins has been extensively documented in cells stimulated with cytokines and growth factors. However, the mechanisms by which these transcription factors translocate to the nucleus have not been studied in detail. Our results demonstrate that stimulation of MCF7 cells with epidermal growth factor (EGF) promoted an increase in the phosphorylation of STAT5 at Tyr-694, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. In addition, EGF stimulated STAT5 nuclear translocation and an increased in STAT5 DNA binding activity. Prevention of microtubules and microfilaments polymerization induced a partial inhibition of STAT5 nuclear translocation and STAT5 DNA binding activity. However, STAT5 phosphorylation at Tyr-694 was dependent on the integrity of microtubule network and it was independent of the integrity of actin cytoskeleton. Furthermore, EGF induced the formation of the associations STAT5-tubulin and STAT5-kinesin heavy chain in a fashion dependent of cytoskeleton integrity. In summary, our results demonstrate, for the first time, that cytoskeleton plays an important role in STAT5 activation and translocation into the nucleus in MCF7 cells stimulated with EGF.
Collapse
Affiliation(s)
- Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av IPN# 2508, San Pedro Zacatenco, Mexico, DF 07360, Mexico
| | | |
Collapse
|