1
|
Kader L, Willits A, Young EE. Editorial: The Impact of Micro RNA-320a Serum Level on Severity of Symptoms and Cerebral Processing of Pain in Patients with Fibromyalgia. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:1925-1927. [PMID: 35861419 PMCID: PMC9960029 DOI: 10.1093/pm/pnac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin E Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Moderate Soil Drying-Induced Alternative Splicing Provides a Potential Novel Approach for the Regulation of Grain Filling in Rice Inferior Spikelets. Int J Mol Sci 2022; 23:ijms23147770. [PMID: 35887118 PMCID: PMC9318316 DOI: 10.3390/ijms23147770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Poor grain filling of inferior spikelets, especially in some large-panicle rice varieties, is becoming a major limitation in breaking the ceiling of rice production. In our previous studies, we proved that post-anthesis moderate soil drying (MD) was an effective way to promote starch synthesis and inferior grain filling. As one of the most important regulatory processes in response to environmental cues and at different developmental stages, the function of alternative splicing (AS) has not yet been revealed in regulating grain filling under MD conditions. In this study, AS events at the most active grain-filling stage were identified in inferior spikelets under well-watered control (CK) and MD treatments. Of 16,089 AS events, 1840 AS events involving 1392 genes occurred differentially between the CK and MD treatments, many of which function on spliceosome, ncRNA metabolic process, starch, and sucrose metabolism, and other functions. Some of the splicing factors and starch synthesis-related genes, such as SR protein, hnRNP protein, OsAGPL2, OsAPS2, OsSSIVa, OsSSIVb, OsGBSSII, and OsISA1 showed differential AS changes under MD treatment. The expression of miR439f and miR444b was reduced due to an AS event which occurred in the intron where miRNAs were located in the MD-treated inferior spikelets. On the contrary, OsAGPL2, an AGPase encoding gene, was alternatively spliced, resulting in different transcripts with or without the miR393b binding site, suggesting a potential mechanism for miRNA-mediated gene regulation on grain filling of inferior spikelets in response to MD treatment. This study provides some new insights into the function of AS on the MD-promoted grain filling of inferior spikelets, and potential application in agriculture to increase rice yields by genetic approaches.
Collapse
|
3
|
Li M, Wang F, Ma J, Liu H, Ye H, Zhao P, Wang J. Comprehensive Evolutionary Analysis of CPP Genes in Brassica napus L. and Its Two Diploid Progenitors Revealing the Potential Molecular Basis of Allopolyploid Adaptive Advantage Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:873071. [PMID: 35548281 PMCID: PMC9085292 DOI: 10.3389/fpls.2022.873071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Allopolyploids exist widely in nature and have strong environmental adaptability. The typical allopolyploid Brassica napus L. is a widely cultivated crop, but whether it is superior to its diploid progenitors in abiotic stress resistance and the key genes that may be involved are not fully understood. Cystein-rich polycomb-like protein (CPP) genes encode critical transcription factors involved in the response of abiotic stress, including salt stress. To explore the potential molecular basis of allopolyploid adaptation to salt stress, we comprehensively analyzed the characteristics and salt stress response of the CPP genes in B. napus and its two diploid progenitors in this study. We found some molecular basis that might be associated with the adaptability of B. napus, including the expansion of the CPP gene family, the acquisition of introns by some BnCPPs, and abundant cis-acting elements upstream of BnCPPs. We found two duplication modes (whole genome duplication and transposed duplication) might be the main reasons for the expansion of CPP gene family in B. napus during allopolyploidization. CPP gene expression levels and several physiological indexes were changed in B. napus and its diploid progenitors after salt stress, suggesting that CPP genes might play important roles in the response of salt stress. We found that some BnCPPs might undergo new functionalization or subfunctionalization, and some BnCPPs also show biased expression, which might contribute to the adaptation of B. napus under saline environment. Compared with diploid progenitors, B. napus showed stronger physiological responses, and BnCPP gene expression also showed higher changes after salt stress, indicating that the allopolyploid B. napus had an adaptive advantage under salt stress. This study could provide evidence for the adaptability of polyploid and provide important clues for the study of the molecular mechanism of salt stress resistance in B. napus.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Li M, Ma J, Liu H, Ou M, Ye H, Zhao P. Identification and Characterization of Wall-Associated Kinase (WAK) and WAK-like (WAKL) Gene Family in Juglans regia and Its Wild Related Species Juglans mandshurica. Genes (Basel) 2022; 13:genes13010134. [PMID: 35052474 PMCID: PMC8775259 DOI: 10.3390/genes13010134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinase (WAK) and WAK-like kinase (WAKL) are receptor-like kinases (RLKs), which play important roles in signal transduction between the cell wall and the cytoplasm in plants. WAK/WAKLs have been studied in many plants, but were rarely studied in the important economic walnut tree. In this study, 27 and 14 WAK/WAKL genes were identified in Juglans regia and its wild related species Juglans mandshurica, respectively. We found tandem duplication might play a critical role in the expansion of WAK/WAKL gene family in J. regia, and most of the WAK/WAKL homologous pairs underwent purified selection during evolution. All WAK/WAKL proteins have the extracellular WAK domain and the cytoplasmic protein kinase domain, and the latter was more conserved than the former. Cis-acting elements analysis showed that WAK/WAKL might be involved in plant growth and development, plant response to abiotic stress and hormones. Gene expression pattern analysis further indicated that most WAK/WAKL genes in J. regia might play a role in the development of leaves and be involved in plant response to biotic stress. Our study provides a new perspective for the evolutionary analysis of gene families in tree species and also provides potential candidate genes for studying WAK/WAKL gene function in walnuts.
Collapse
|
5
|
Ferdous MJ, Hossain MR, Park JI, Robin AHK, Jesse DMI, Jung HJ, Kim HT, Nou IS. Inheritance Pattern and Molecular Markers for Resistance to Blackleg Disease in Cabbage. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8120583. [PMID: 31817976 PMCID: PMC6963615 DOI: 10.3390/plants8120583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 05/06/2023]
Abstract
The inheritance and causal loci for resistance to blackleg, a devastating disease of Brassicaceous crops, are yet to be known in cabbage (Brassica oleracea L.). Here, we report the pattern of inheritance and linked molecular marker for this trait. A segregating BC1 population consisting of 253 plants was raised from resistant and susceptible parents, L29 (♀) and L16 (♂), respectively. Cotyledon resistance bioassay of BC1 population, measured based on a scale of 0-9 at 12 days after inoculation with Leptosphaeria maculans isolate 03-02 s, revealed the segregation of resistance and ratio, indicative of dominant monogenic control of the trait. Investigation of potential polymorphism in the previously identified differentially expressed genes within the collinear region of 'B. napus blackleg resistant loci Rlm1' in B. oleracea identified two insertion/deletion (InDel) mutations in the intron and numerous single nucleotide polymorphisms (SNPs) throughout the LRR-RLK gene Bol040029, of which six SNPs in the first exon caused the loss of two LRR domains in the susceptible line. An InDel marker, BLR-C-InDel based on the InDel mutations, and a high resolution melting (HRM) marker, BLR-C-2808 based on the SNP C2808T in the second exon were developed, which predicated the resistance status of the BC1 population with 80.24%, and of 24 commercial inbred lines with 100% detection accuracy. This is the first report of inheritance and molecular markers linked with blackleg resistance in cabbage. This study will enhance our understanding of the trait, and will be helpful in marker assisted breeding aiming at developing resistant cabbage varieties.
Collapse
Affiliation(s)
- Mostari Jahan Ferdous
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Denison Michael Immanuel Jesse
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
- Correspondence:
| |
Collapse
|
6
|
Li M, Wang R, Liang Z, Wu X, Wang J. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization. BMC PLANT BIOLOGY 2019; 19:110. [PMID: 30898097 PMCID: PMC6429743 DOI: 10.1186/s12870-019-1716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/12/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Polyploidization is a common event in the evolutionary history of angiosperms, and there will be some changes in the genomes of plants other than a simple genomic doubling after polyploidization. Allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good group for studying the problems associated with polyploidization. On the other hand, the EIN3/EIL gene family is an important gene family in plants, all members of which are key genes in the ethylene signaling pathway. Until now, the EIN3/EIL gene family in B. napus and its diploid progenitors have been largely unknown, so it is necessary to comprehensively identify and analyze this gene family. RESULTS In this study, 13, 7 and 7 EIN3/EIL genes were identified in B. napus (2n = 4x = 38, AnCn), B. rapa (2n = 2x = 20, Ar) and B. oleracea (2n = 2x = 18, Co). All of the identified EIN3/EIL proteins were divided into 3 clades and further divided into 8 sub-clades. Ka/Ks analysis showed that all identified EIN3/EIL genes underwent purifying selection after the duplication events. Moreover, gene structure analysis showed that some EIN3/EIL genes in B. napus acquired introns during polyploidization, and homolog expression bias analysis showed that B. napus was biased towards its diploid progenitor B. rapa. The promoters of the EIN3/EIL genes in B. napus contained more cis-acting elements, which were mainly involved in endosperm gene expression and light responsiveness, than its diploid progenitors. Thus, B. napus might have potential advantages in some biological aspects. CONCLUSIONS The results indicated allotetraploid B. napus might have potential advantages in some biological aspects. Moreover, our results can increase the understanding of the evolution of the EIN3/EIL gene family in B. napus, and provided more reference for future research about polyploidization.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ziwei Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
7
|
Chen EYY, Chen JS, Ying SY. The microRNA and the perspectives of miR-302. Heliyon 2019; 5:e01167. [PMID: 30723835 PMCID: PMC6351428 DOI: 10.1016/j.heliyon.2019.e01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
MiRNAs are naturally occurring, small, non-coding RNA molecules that post-transcriptionally regulate the expression of a large number of genes involved in various biological processes, either through mRNA degradation or through translation inhibition. MiRNAs play important roles in many aspects of physiology and pathology throughout the body, particularly in cancer, which have made miRNAs attractive tools and targets for translational research. The types of non-coding RNAs, biogenesis of miRNAs, circulating miRNAs, and direct delivery of miRNA were briefly reviewed. As a case of point, the role and perspective of miR-302, a family of ES-specific miRNA, on cancer, iPSCs, heart disease were presented.
Collapse
Affiliation(s)
- Emily Yen Yu Chen
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Jack S. Chen
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Abstract
MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. Numerous miRNAs have been reported to induce RNA interference (RNAi), a post-transcriptional gene-silencing mechanism. Recent evidence also indicates that they are involved in the transcriptional regulation of genome activities. They were first discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development, and are now recognized as small gene silencers transcribed from the noncoding regions of a genome. In humans, nearly 97% of the genome is noncoding DNA, which varies from one individual to another, and changes in these sequences are frequently noted to manifest in clinical and circumstantial malfunction; for example, type 2 myotonic dystrophy and fragile X syndrome were found to be associated with miRNAs derived from introns. Intronic miRNA is a new class of miRNAs derived from the processing of non-protein-coding regions of gene transcripts. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of RNA polymerase (Pol)-II and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells; however, their functions and applications have not been reported. Here, we show for the first time that intron-derived miRNA is not only able to induce RNAi in mammalian cells but also in fish, chicken embryos, and adult mice cells, demonstrating the evolutionary preservation of this gene regulation system in vivo. These miRNA-mediated animal models provide artificial means to reproduce the mechanisms of miRNA-induced disease in vivo and will shed further light on miRNA-related therapies.
Collapse
Affiliation(s)
- Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA.
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Mukherjee D, Saha D, Acharya D, Mukherjee A, Chakraborty S, Ghosh TC. The role of introns in the conservation of the metabolic genes of Arabidopsis thaliana. Genomics 2018; 110:310-317. [DOI: 10.1016/j.ygeno.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
10
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and were inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. MiRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis of miRNAs, circulating miRNAs, miRNAs and cancer, iPSCs, and heart disease are presented in this chapter, highlighting some recent studies on these topics.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Donald C Chang
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
11
|
Abstract
Transgenic animal models are valuable tools for testing gene functions and drug mechanisms in vivo. They are also the best similitude for a human body for etiological and pathological research of diseases. All pharmaceutically developed medicines must be proven to be safe and effective in animals before approval by the Food and Drug Administration (FDA) to be used in clinical trials. To this end, the transgenic animal models of diseases serve as the front line of drug evaluation. However, there is currently no transgenic animal model for microRNA (miRNA)-related research. MiRNAs, small single-stranded regulatory RNAs capable of silencing intracellular gene transcripts (mRNAs) that contain either complete or partial complementarity to the miRNA, are useful for the design of new therapies against cancer polymorphism and viral mutation. Recently, varieties of natural miRNAs have been found to be derived from hairpin-like RNA precursors in almost all eukaryotes, including yeast (Schizosaccharomyces pombe), plant (Arabidopsis spp.), nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), fish, mouse and human, involving intracellular defense against viral infections and regulation of certain gene expressions during development. To facilitate the miRNA research in vivo, we have developed a state-of-the-art transgenic strategy for silencing specific genes in zebrafish, chicken, and mouse, using intronic miRNAs. By the insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, we have found that mature miRNAs were successfully transcribed by RNA polymerases type II (Pol-II), coexpressed with the encoding gene transcripts, and excised out of the encoding gene transcripts by intracellular RNA splicing and processing mechanisms. In conjunction with retroviral transfection, the designed hairpin-like pre-miRNA construct has also been placed in the intron regions of a cellular gene for tissue-specific expression, specifically regulated by the gene promoter of interest. Because the retroviral vectors are integrated into the genome of its host cells, we can select and propagate the most effective transgenic animals to form a stable model line for further research. Here, we have shown for the first time that transgene-like animal models were generated using the intronic miRNA expression system reported previously, which has been proven to be useful for studying miRNA function as well as the related gene regulation in vivo.
Collapse
Affiliation(s)
- Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA.
| | - Shin-Ju E Chang
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Tian M, He X, Wang W, Liu D, Meng Q. Differential microRNA expression profiling and target gene prediction in the muscle tissues of clenbuterol-fed Chinese miniature swine. ACTA AGR SCAND A-AN 2017. [DOI: 10.1080/09064702.2017.1332094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Tian
- Postdoctoral Research Workstation, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Biology, China Agricultural University (CAU), Beijing, People’s Republic of China
| | - X. He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - W. Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - D. Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Q. Meng
- College of Biology, China Agricultural University (CAU), Beijing, People’s Republic of China
| |
Collapse
|
13
|
Seyhan AA. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences. MOLECULAR BIOSYSTEMS 2016; 12:295-312. [PMID: 26617199 DOI: 10.1039/c5mb00506j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently. In conclusion, the current platform technology offers a miRNA/shRNA scaffold for the expression of combinations of native or synthetic intronic miRNAs as singletons or polycistrons for combinatorial multiplexed RNAi silencing or RNA-based gene therapy applications.
Collapse
Affiliation(s)
- Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton, St., Orlando, FL 32804, USA. and The Chemical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Establishment and Characterization of a Human Small Cell Osteosarcoma Cancer Stem Cell Line: A New Possible In Vitro Model for Discovering Small Cell Osteosarcoma Biology. Stem Cells Int 2016; 2016:3042198. [PMID: 27651797 PMCID: PMC5019944 DOI: 10.1155/2016/3042198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OSA) is the most common primary malignant bone tumor, usually arising in the long bones of children and young adults. There are different subtypes of OSA, among which we find the conventional OS (also called medullary or central osteosarcoma) which has a high grade of malignancy and an incidence of 80%. There are different subtypes of high grade OS like chondroblastic, fibroblastic, osteoblastic, telangiectatic, and the small cell osteosarcoma (SCO). In this study, for the first time, we have isolated, established, and characterized a cell line of cancer stem cells (CSCs) from a human SCO. First of all, we have established a primary finite cell line of SCO, from which we have isolated the CSCs by the sphere formation assay. We have proved their in vitro mesenchymal and embryonic stem phenotype. Additionally, we have showed their neoplastic phenotype, since the original tumor bulk is a high grade osteosarcoma. This research demonstrates the existence of CSCs also in human primary SCO and highlights the establishment of this particular stabilized cancer stem cell line. This will represent a first step into the study of the biology of these cells to discover new molecular targets molecules for new incisive therapeutic strategies against this highly aggressive OSA.
Collapse
|
15
|
Zheng Z, Huang R, Tian R, Jiao Y, Du X. Pm-miR-133 hosting in one potential lncRNA regulates RhoA expression in pearl oyster Pinctada martensii. Gene 2016; 591:484-9. [PMID: 27363668 DOI: 10.1016/j.gene.2016.06.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Long non-coding RNAs (LncRNAs) are abundant in the genome of higher forms of eukaryotes and implicated in regulating the diversity of biological processes partly because they host microRNAs (miRNAs), which are repressors of target gene expression. In vertebrates, miR-133 regulates the differentiation and proliferation of cardiac and skeletal muscles. Pinctada martensii miR-133 (pm-miR-133) was identified in our previous research through Solexa deep sequencing. In the present study, the precise sequence of mature pm-miR-133 was validated through miR-RACE. Stem loop qRT-PCR analysis demonstrated that mature pm-miR-133 was constitutively expressed in the adductor muscle, gonad, hepatopancreas, mantle, foot, and gill of P. martensii. Among these tissues, the adductor muscle exhibited the highest pm-miR-133 expression. Target analysis indicated that pm-RhoA was the potential regulatory target of pm-miR-133. Bioinformatics analyses revealed that a potential LncRNA (designated as Lnc133) with a mature pm-miR-133 could generate a hairpin structure that was highly homologous to that of Lottia gigantea. Lnc133 was also highly expressed in the adductor muscle, gill, hepatopancreas, and gonad. Phylogenetic analysis further showed that the miR-133s derived from chordate and achordate were separated into two classes. Therefore, Lnc133 hosting pm-miR-133 could be involved in regulating the cell proliferation of adductor muscles by targeting pm-RhoA.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China
| | - RongLian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China
| | - RongRong Tian
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
16
|
Rathore P, Geeta R, Das S. Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:35-48. [PMID: 27095398 DOI: 10.1016/j.plantsci.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Plant genomes are characterized by the presence of large miRNA gene families which are few in number. The expansion of miRNA families is thought to be driven by gene and genome duplication. Some members of these miRNA gene families are tandemly arranged and their analysis is of interest because such organisation may indicate origin through tandem duplication and also to investigate whether some such tandem clusters have similar expression patterns, and whether these are regulated through a common set of cis-regulatory elements (eg. promoters and enhancers). As a first step, we undertake a comprehensive study using micro-synteny analyses of tandemly organised miRNA families across the Brassicaceae spanning an evolutionary time scale of ca. 45 million years, among Arabidopsis, Capsella, Brassica and Thellungiella species, to address the following questions: Are most miRNA gene families present as tandem clusters? To what extent are these tandem patterns retained? To what extent can family sizes be ascribed to genome duplication? Our analysis of thirteen tandemly organised miRNA families revealed that synteny is largely conserved among Arabidopsis thaliana, A. lyrata and Capsella rubella, which form a clade spanning approximately between 6.2-9.8 my (Acarkan et al., 2000) [1]. On the other hand, comparison of sequences from these species with Brassica rapa, B. oleracea and Thellungiella halophila, which form a separate clade spanning 31 my (Franzke et al., 2011)[2] reveals many differences. The latter clade reveals several paralogous duplications that probably resulted from whole genome duplication, as well as disrupted synteny. Phylogenetic analyses of precursor sequences generally support the history inferred from synteny analysis. Synteny and phylogenetic analysis of six members of the tandemly organised miR169 family suggest that the Brassicaceae ancestral state consisted of a "dimer as a unit" which may have undergone direct local duplication to retain the transcriptional orientation followed by lineage specific changes. MiR169, to the best of our knowledge, is one of the largest tandemly organised miRNA gene family across plant kingdom and further analysis should reveal the generality of this pattern of evolution. The conserved organisation of miR395A-B-C and miR395 D-E-F as two clusters on same chromosome/scaffold across A. thaliana, B. rapa and salsuginea demonstrates retention of the large chromosomal segment across the two lineages. MiRNA family miR845 was detected only in Arabidopsis species and Thellungiella indicating a complex loss and retention history. MiR447A-B family was only found in A. thaliana indicating that it is a species-specific gene family of recent origin.
Collapse
Affiliation(s)
| | - R Geeta
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
17
|
MiRNAs and Other Epigenetic Changes as Biomarkers in Triple Negative Breast Cancer. Int J Mol Sci 2015; 16:28347-76. [PMID: 26633365 PMCID: PMC4691037 DOI: 10.3390/ijms161226090] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) is characterised by the lack of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2). Since it cannot be treated by current endocrine therapies which target these receptors and due to its aggressive nature, it has one of the worst prognoses of all breast cancer subtypes. The only treatments remain chemo- and/or radio-therapy and surgery and because of this, novel biomarkers or treatment targets are urgently required to improve disease outcomes. MicroRNAs represent an attractive candidate for targeted therapies against TNBC, due to their natural ability to act as antisense interactors and regulators of entire gene sets involved in malignancy and their superiority over mRNA profiling to accurately classify disease. Here we review the current knowledge regarding miRNAs as biomarkers in TNBC and their potential use as therapeutic targets in this disease. Further, we review other epigenetic changes and interactions of these changes with microRNAs in this breast cancer subtype, which may lead to the discovery of new treatment targets for TNBC.
Collapse
|
18
|
Jiu S, Zhu X, Wang J, Zhang C, Mu Q, Wang C, Fang J. Genome-Wide Mapping and Analysis of Grapevine MicroRNAs and Their Potential Target Genes. THE PLANT GENOME 2015; 8:eplantgenome2014.12.0091. [PMID: 33228294 DOI: 10.3835/plantgenome2014.12.0091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/02/2015] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded, nonprotein-coding, endogenously expressed, small RNAs 19 to 25 nucleotides in length. Recognizing the lack of specific and systematic studies on genome-wide mapping of grapevine (Vitis vinifera L.) miRNAs, we conducted genome-wide mapping of Vv-miRNAs (V. vinifera miRNAs), SB-miRNAs (V. vinifera L. 'Summer Black' miRNAs), and Va-miRNAs (V. amurensis Rupr. miRNAs). The mapping results revealed that many of miRNAs located within the intergenic region had independent transcription units. To further validate the mapping results and existence of miRNAs, 12 randomly selected precursors of miRNAs (pre-miRNAs) were successfully cloned and sequenced. Subsequently, 15 conserved and 29 nonconserved intragenic (intronic, exonic) Vv-miRNA genes, 24 nonconserved intragenic SB-miRNA genes, and 23 nonconserved intragenic Va-miRNA genes were labeled on the basis of their locations in host genes, and 15 MIRNA clusters were detected. Interestingly, five miRNA pairs, namely, Vv-MIR395b and Vv-MIR395c, Vv-MIR482 and Vv-MIRC13, Vv-MIR172a and Va-MIR057, SB-MIR024 and Vv-MIRC35, and Vv-MIRC36 and Va-MIR073 were clustered in the host genes GSVIVT01011558001, GSVIVT01008132001, GSVIVT01031524001, GSVIVT01028156001, and GSVIVT01024516001, respectively. To validate the existence of target genes and miRNA-guided cleavage sites, 3'-end product of four predicted target messenger RNAs were amplified by RNA ligase-mediated 5' rapid amplification of cDNA ends. In addition, we also conducted contrastive analysis on the genomic location of miRNAs and their potential target genes. Results showed that the order of priority of miRNA-target interaction may be less closely related with their genomic location. These findings could benefit some further study on grapevine functional genomics and will provide new insights into the regulatory mechanisms and evolution of miRNAs in Vitis species.
Collapse
Affiliation(s)
- Songtao Jiu
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| | - Jian Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| | - Cheng Zhang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing City, Jiangsu Province, PR China
| |
Collapse
|
19
|
Zhang D, Xie L, Jin Y. In situ Detection of MicroRNAs: The Art of MicroRNA Research in Human Diseases. ACTA ACUST UNITED AC 2015; Suppl 3. [PMID: 28529819 DOI: 10.4172/2157-7099.s3-013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Lixin Xie
- Department of Respiratory Medicine, Chinese PLA General Hospital, 28th Fuxing Road, Beijing 100853, PR China
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
20
|
Deng JH, Deng P, Lin SL, Ying SY. Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol 2015; 1218:321-40. [PMID: 25319661 DOI: 10.1007/978-1-4939-1538-5_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MicroRNAs (miRNAs) are small, single-stranded noncoding RNAs important in many biological processes through posttranscriptional modification of complementary intracellular messenger RNAs (mRNAs). MiRNAs have been reported to induce RNA interference (RNAi), by utilizing the miRNA-induced silencing complex (miRISC) to target mRNAs. They were first discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development, and are now recognized as small gene silencers transcribed from the noncoding regions of a genome. In humans, nearly 97 % of the genome is noncoding DNA and changes in these sequences are frequently noted to manifest in clinical and circumstantial malfunction; for example, type 2 myotonic dystrophy and fragile X syndrome were found to be associated with miRNAs derived from introns. Intronic miRNA (mirtrons) is a class of miRNAs derived from the processing of non-protein-coding regions of gene transcripts. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of RNA polymerase (Pol)-II and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells; however, their functions and applications have not been reported. It is notable that there are different, but still highly conserved, mirtrons in mammalian than in invertebrates, and could be an indication that mirtrons are an evolutionary precursor to existing miRNA biogenesis pathways. Here, we show that intron-derived miRNA is not only able to induce RNAi in mammalian cells but also in fish, chicken embryos, and adult mice cells, demonstrating the evolutionary preservation of this gene regulation system in vivo. These miRNA-mediated animal models provide artificial means to reproduce the mechanisms of miRNA-induced disease in vivo and will shed further light on miRNA-related therapies.
Collapse
Affiliation(s)
- Jia Han Deng
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Bishop Medical Teaching and Research Building 401, MCH51A, 1333 San Pablo Street, BMT-301, Los Angeles, CA, 90033, USA
| | | | | | | |
Collapse
|
21
|
Krist B, Florczyk U, Pietraszek-Gremplewicz K, Józkowicz A, Dulak J. The Role of miR-378a in Metabolism, Angiogenesis, and Muscle Biology. Int J Endocrinol 2015; 2015:281756. [PMID: 26839547 PMCID: PMC4709675 DOI: 10.1155/2015/281756] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-378a (miR-378a, previously known as miR-378) is one of the small noncoding RNA molecules able to regulate gene expression at posttranscriptional level. Its two mature strands, miR-378a-3p and miR-378a-5p, originate from the first intron of the peroxisome proliferator-activated receptor gamma, coactivator 1 beta (ppargc1b) gene encoding PGC-1β. Embedding in the sequence of this transcriptional regulator of oxidative energy metabolism implies involvement of miR-378a in metabolic pathways, mitochondrial energy homeostasis, and related biological processes such as muscle development, differentiation, and regeneration. On the other hand, modulating the expression of proangiogenic factors such as vascular endothelial growth factor, angiopoietin-1, or interleukin-8, influencing inflammatory reaction, and affecting tumor suppressors, such as SuFu and Fus-1, miR-378a is considered as a part of an angiogenic network in tumors. In the latter, miR-378a can evoke broader actions by enhancing cell survival, reducing apoptosis, and promoting cell migration and invasion. This review describes the current knowledge on miR-378a linking oxidative/lipid metabolism, muscle biology, and blood vessel formation.
Collapse
Affiliation(s)
- Bart Krist
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
| | - Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
| | - Katarzyna Pietraszek-Gremplewicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
- *Jozef Dulak:
| |
Collapse
|
22
|
Wen JZ, Liao JY, Zheng LL, Xu H, Yang JH, Guan DG, Zhang SM, Zhou H, Qu LH. A contig-based strategy for the genome-wide discovery of microRNAs without complete genome resources. PLoS One 2014; 9:e88179. [PMID: 24516608 PMCID: PMC3917882 DOI: 10.1371/journal.pone.0088179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/04/2014] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of many cellular processes and exist in a wide range of eukaryotes. High-throughput sequencing is a mainstream method of miRNA identification through which it is possible to obtain the complete small RNA profile of an organism. Currently, most approaches to miRNA identification rely on a reference genome for the prediction of hairpin structures. However, many species of economic and phylogenetic importance are non-model organisms without complete genome sequences, and this limits miRNA discovery. Here, to overcome this limitation, we have developed a contig-based miRNA identification strategy. We applied this method to a triploid species of edible banana (GCTCV-119, Musa spp. AAA group) and identified 180 pre-miRNAs and 314 mature miRNAs, which is three times more than those were predicted by the available dataset-based methods (represented by EST+GSS). Based on the recently published miRNA data set of Musa acuminate, the recall rate and precision of our strategy are estimated to be 70.6% and 92.2%, respectively, significantly better than those of EST+GSS-based strategy (10.2% and 50.0%, respectively). Our novel, efficient and cost-effective strategy facilitates the study of the functional and evolutionary role of miRNAs, as well as miRNA-based molecular breeding, in non-model species of economic or evolutionary interest.
Collapse
Affiliation(s)
- Jun-Zhi Wen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ling-Ling Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Dao-Gang Guan
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Si-Min Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
23
|
Xie G, Myint PK, Zaman MJS, Li Y, Zhao L, Shi P, Ren F, Wu Y. Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population. PLoS One 2013; 8:e74126. [PMID: 24040186 PMCID: PMC3770660 DOI: 10.1371/journal.pone.0074126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/01/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-inflammatory cytokine and its genetic variations may play an important role in the process of atherosclerosis. We assessed whether serum interleukin-10 (IL-10) and its genetic variations are associated with ischemic stroke in a Chinese general population. METHODS An epidemiological survey on cardiovascular diseases and their risk factors was carried in a general population in Beijing in 2005. Serum IL-10, IL-6, p-selectin, soluble intercellular adhesion molecule-1 and C-reactive protein were analyzed using ELISA kits, while three IL-10 Single Nucleotide Polymorphisms (SNP) (rs1800872, rs1554286 and rs3021094) were genotyped in 1475 participants. RESULTS A high serum IL-10 (top tertile) was significantly associated with ischemic stroke (multivariable adjusted odds ratio (OR) =0.50; 95%CI 0.31-0.81). Rs1800872 (AA vs. AC+CC genotype, OR=1.60; 1.06-2.39), rs1554286(TT vs. CT+CC genotype, OR=1.59; 1.06-2.39), and rs3021094 (CC/CA vs. AA genotype, OR=1.64; 1.04-2.60) were all significantly associated with ischemic stroke even after controlling for age, sex, smoking, systolic blood pressure, total cholesterol, glucose, body mass index and serum IL-10. The SNP score (a summary index of these SNPs) and IL-10 (top tertile) together significantly improved the discriminative power in predicting ischemic stroke by 3.3% (95%CI: 0.2-6.4, p=0.0398) compared to predictions based on conventional risk factors alone. CONCLUSIONS The lower serum IL-10 concentration and its selected genetic variations were significantly associated with an increased likelihood of ischemic stroke in this cross-sectional study. Our results suggest that more prospective studies should be conducted to provide stronger evidence justifying the use of IL-10 and its SNPs as new biomarkers to identify a predisposition towards ischemic stroke.
Collapse
Affiliation(s)
- Gaoqiang Xie
- Peking University Clinical Research Institute, Beijing, People’s Republic of China
| | - Phyo Kyaw Myint
- School of Medicine and Dentistry, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Norwich Research Park Cardiovascular Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Clinical Gerontology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Stroke Research Group, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - M. Justin S. Zaman
- Norwich Research Park Cardiovascular Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Department of Cardiology, James Paget University Hospital, Great Yarmouth, United Kingdom
| | - Ying Li
- Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, People’s Republic of China
| | - Liancheng Zhao
- Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, People’s Republic of China
| | - Ping Shi
- Shijingshan Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Fuxiu Ren
- Shijingshan Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Beijing, People’s Republic of China
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, People’s Republic of China
- The George Institute, Beijing, People’s Republic of China
| |
Collapse
|
24
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
25
|
Godnic I, Zorc M, Jevsinek Skok D, Calin GA, Horvat S, Dovc P, Kovac M, Kunej T. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS One 2013; 8:e65165. [PMID: 23762306 PMCID: PMC3675212 DOI: 10.1371/journal.pone.0065165] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) involved in regulation of gene expression. Intragenic miRNAs, especially those exhibiting a high degree of evolutionary conservation, have been shown to be coordinately regulated and/or expressed with their host genes, either with synergistic or antagonistic correlation patterns. However, the degree of cross-species conservation of miRNA/host gene co-location is not known and co-expression information is incomplete and fragmented among several studies. Using the genomic resources (miRBase and Ensembl) we performed a genome-wide in silico screening (GWISS) for miRNA/host gene pairs in three well-annotated vertebrate species: human, mouse, and chicken. Approximately half of currently annotated miRNA genes resided within host genes: 53.0% (849/1,600) in human, 48.8% (418/855) in mouse, and 42.0% (210/499) in chicken, which we present in a central publicly available Catalog of intragenic miRNAs (http://www.integratomics-time.com/miR-host/catalog). The miRNA genes resided within either protein-coding or ncRNA genes, which include long intergenic ncRNAs (lincRNAs) and small nucleolar RNAs (snoRNAs). Twenty-seven miRNA genes were found to be located within the same host genes in all three species and the data integration from literature and databases showed that most (26/27) have been found to be co-expressed. Particularly interesting are miRNA genes located within genes encoding for miRNA silencing machinery (DGCR8, DICER1, and SND1 in human and Cnot3, Gdcr8, Eif4e, Tnrc6b, and Xpo5 in mouse). We furthermore discuss a potential for phenotype misattribution of miRNA host gene polymorphism or gene modification studies due to possible collateral effects on miRNAs hosted within them. In conclusion, the catalog of intragenic miRNAs and identified 27 miRNA/host gene pairs with cross-species conserved co-location, co-expression, and potential co-regulation, provide excellent candidates for further functional annotation of intragenic miRNAs in health and disease.
Collapse
Affiliation(s)
- Irena Godnic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Dasa Jevsinek Skok
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Milena Kovac
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
- * E-mail:
| |
Collapse
|
26
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented in this chapter, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
27
|
Abstract
Transgenic animal models are valuable tools for testing gene functions and drug mechanisms in vivo. They are also the best similitude for a human body for etiological and pathological research of diseases. All pharmaceutically developed drugs must be proven to be safe and effective in animals before approval by the Food and Drug Administration to be used in clinical trials. To this end, the transgenic animal models of diseases serve as the front line of drug evaluation. However, there is currently no transgenic animal model for microRNA (miRNA) research. miRNAs, small single-stranded regulatory RNAs capable of silencing intracellular gene transcripts (mRNAs) that contain either complete or partial complementarity to the miRNA, are useful for the design of new therapies against cancer polymorphism and viral mutation. Recently, varieties of natural miRNAs have been found to derived from hairpin-like RNA precursors in almost all eukaryotes, including yeast (Schizosaccharomyces pombe), plant (Arabidopsis spp.), nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), fish, mouse, and human, involving intracellular defense against viral infections and regulation of certain gene expressions during development. To facilitate the miRNA research in vivo, we have developed a state-of-the-art transgenic strategy for silencing specific genes in zebrafish, chicken, and mouse, using intronic miRNAs. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, we have found that mature miRNAs were successfully transcribed by RNA polymerases type II (Pol II), coexpressed with the encoding gene transcript, and excised out of the encoding gene transcript by natural RNA splicing and processing mechanisms. In conjunction with retroviral transfection systems, the designed hairpin-like pre-miRNA construct was further tested to insert into the intron regions of a cellular gene for tissue-specific expression regulated by the gene promoter. Because the retroviral vectors were randomly integrated into the genome of its host cell, the most effective transgenic animal can be selected and propagated to be a stable transgenic line for future research. Here, we have shown for the first time that transgene-like animal models were generated using the intronic miRNA-expressing system described previously, which has been proven to be useful for both miRNA research and in vivo evaluation of miRNA-associated target gene functions.
Collapse
Affiliation(s)
- Shi-Lung Lin
- Division of Regenerative Medicine, WJWU and LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA.
| | | | | |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. Numerous miRNAs have been reported to induce RNA interference (RNAi), a posttranscriptional gene-silencing mechanism. Recent evidence also indicates that they are involved in the transcriptional regulation of genome activities. They were first discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development and are now recognized as small gene silencers transcribed from the noncoding regions of a genome. In humans, nearly 97% of the genome is noncoding DNA, which varies from one individual to another, and changes in these sequences are frequently noted to manifest in clinical and circumstantial malfunction; for example, type 2 myotonic dystrophy and fragile X syndrome were found to be associated with miRNAs derived from introns. Intronic miRNA is a new class of miRNAs derived from the processing of nonprotein-coding regions of gene transcripts. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of RNA polymerase (Pol)-II and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells; however, their functions and applications have not been reported. Here, we show for the first time that intron-derived miRNA is not only able to induce RNAi in mammalian cells, but also in fish, chicken embryos, and adult mice cells, demonstrating the evolutionary preservation of this gene regulation system in vivo. These miRNA-mediated animal models provide artificial means to reproduce the mechanisms of miRNA-induced disease in vivo and will shed further light on miRNA-related therapies.
Collapse
Affiliation(s)
- Shi-Lung Lin
- Division of Regenerative Medicine, WJWU and LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA.
| | | |
Collapse
|
29
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
30
|
Zhang S, Shan C, Kong G, Du Y, Ye L, Zhang X. MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-κB-inducing kinase (NIK). Oncogene 2012; 31:3607-20. [PMID: 22105365 DOI: 10.1038/onc.2011.523] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/11/2011] [Accepted: 10/14/2011] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that can act as oncogenes or tumor suppressor genes in human cancer. Emerging evidence indicates that deregulation of miRNAs contributes to the hepatocarcinogenesis. In the present study, we demonstrated that the levels of miR-520e were dramatically decreased in examined hepatoma cell lines and clinical hepatocellular carcinoma (HCC) tissues. Moreover, we found that DNA hypermethylation in the upstream region of miR-520e resulted in the downregulation of miR-520e. Next, we demonstrated that introduction of miR-520e dramatically suppressed the growth of hepatoma cells in vitro and in vivo, whereas silencing the expression of miR-520e by anti-miR-520e resulted in a promoted cell proliferation, suggesting that miR-520e may be a novel tumor suppressor. Further studies revealed that NF-κB-inducing kinase (NIK) was one of the direct target genes of miR-520e, as miR-520e directly bound to the 3'untranslated region of NIK, which reduced the expression of NIK at the levels of mRNA and protein. Moreover, silencing of NIK was able to inhibit the growth of hepatoma cells, similar to the effect of miR-520e overexpression on growth of hepatoma cells. Meanwhile, the knockdown of NIK expression reversed the enhanced proliferation mediated by anti-miR-520e. In addition, miR-520e significantly decreased the phosphorylation of ERK1/2 (p-ERK1/2) and depressed the transcriptional activity and nuclear translocation of nuclear factor κB (NF-κB) (p65). These results suggest that miR-520e suppresses the growth of hepatoma cells by targeting NIK involving the NIK/p-ERK1/2/NF-κB signaling pathway. Finally, we showed that the intratumoral injection with miR-520e was able to directly repress the growth of hepatoma cells in the nude mice. Thus, our finding provides new insight into the mechanism of hepatocarcinogenesis, indicating a therapeutic potential of miR-520e in the treatment of HCC.
Collapse
Affiliation(s)
- S Zhang
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute For Molecular Biology, College of Life Sciences, Nankai University, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
31
|
Perera RJ, Ray A. Epigenetic regulation of miRNA genes and their role in human melanomas. Epigenomics 2012; 4:81-90. [PMID: 22332660 DOI: 10.2217/epi.11.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a leading cause of death from cancers in the USA. While exposure to UV radiation has long been identified as a primary risk factor for melanoma, molecular mechanisms directly linking UV radiation to the development of melanoma, especially metastatic melanoma, are poorly understood. Besides abnormality in several signal transduction pathways important for normal melanocyte development, a number of ncRNAs, including miRNAs, are emerging as important causal factors to melanoma initiation and progression. The recent discovery of altered patterns of epigenetic regulation in ncRNA genes adds further complexity. Since miRNA precursor genes are usually nested within other protein-coding genes, the abnormal regulation of these protein-coding genes by epigenetic mechanisms is expected to cause aberrant regulation of the miRNA target genes. We discuss recent findings that link epigenetic regulation of ncRNA genes to melanoma, and speculate on a possible connection between UV irradiation and epigenetic regulation that might be important for this disease.
Collapse
|
32
|
Pinheiro I, Dejager L, Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 2011; 33:791-802. [PMID: 21953569 DOI: 10.1002/bies.201100047] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
Abstract
In this paper, we hypothesize that X chromosome-associated mechanisms, which affect X-linked genes and are behind the immunological advantage of females, may also affect X-linked microRNAs. The human X chromosome contains 10% of all microRNAs detected so far in the human genome. Although the role of most of them has not yet been described, several X chromosome-located microRNAs have important functions in immunity and cancer. We therefore provide a detailed map of all described microRNAs located on human and mouse X chromosomes, and highlight the ones involved in immune functions and oncogenesis. The unique mode of inheritance of the X chromosome is ultimately the cause of the immune disadvantage of males and the enhanced survival of females following immunological challenges. How these aspects influence X-linked microRNAs will be a challenge for researchers in the coming years, not only from an evolutionary point of view, but also from the perspective of disease etiology.
Collapse
Affiliation(s)
- Iris Pinheiro
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | | | | |
Collapse
|
33
|
O'Sullivan JF, Martin K, Caplice NM. Microribonucleic acids for prevention of plaque rupture and in-stent restenosis: "a finger in the dam". J Am Coll Cardiol 2011; 57:383-9. [PMID: 21251577 DOI: 10.1016/j.jacc.2010.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/26/2010] [Accepted: 09/21/2010] [Indexed: 01/09/2023]
Abstract
Vascular smooth muscle cells (VSMCs), which make up the arterial medial layer, possess a phenotype switching capability. This modulation of VSMCs is important in the development of atherosclerotic vascular disease. It has been recognized that VSMCs may also have a stabilizing role in advanced atherosclerotic plaques. Moreover, reduction of the proliferative capacity of these cells may be of benefit in reducing neointimal hyperplasia following therapeutic percutaneous intervention. The biology of microribonucleic acids (miRNAs) and their ability to modify smooth muscle biology has recently emerged in a number of investigations. These studies elucidated the key role of miRNAs, miR-143 and miR-145, in particular, in the regulation of SMC homeostasis in vitro, in murine models of targeted gene deletion, and also in human vascular pathology. This review places this burgeoning knowledge within the wider context of atherosclerosis and restenosis and explores the therapeutic potential of miRNAs to change the fate of VSMCs within the plaque.
Collapse
Affiliation(s)
- John F O'Sullivan
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
34
|
Girijadevi R, Sreedevi VCS, Sreedharan JV, Pillai MR. IntmiR: a complete catalogue of intronic miRNAs of human and mouse. Bioinformation 2011; 5:458-9. [PMID: 21423893 PMCID: PMC3055153 DOI: 10.6026/97320630005458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/24/2011] [Indexed: 01/17/2023] Open
Abstract
IntmiR is a manually curated database of published intronic miRNAs of Human and Mouse genome. Each entry in
the database, aims at providing a complete resource of intronic miRNA with their target gene and deregulation in various diseases with
related tissues and pathways. The current release contains 426 intronic miRNA loci from human and 76 from mouse, expressing distinct
target mRNA sequences. Database gives information on an intronic miRNA-disease relationship, including miRNA ID, pathaway connected and
related tissues. All entries can be retrieved by miRNA ID or target gene. IntmiR is freely available at rgcb.res.in/intmir.
Collapse
Affiliation(s)
- Reshmi Girijadevi
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram ,India
| | | | | | - Madhavan Radhakrishna Pillai
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram ,India
- Madhavan Radhakrishna Pillai: Phone : +91- 471-2341716 | 2347975;Fax : 91- 471-2348096
| |
Collapse
|
35
|
Salem M, Xiao C, Womack J, Rexroad CE, Yao J. A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:410-429. [PMID: 19816740 DOI: 10.1007/s10126-009-9232-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. miRNAs are most often identified through computational prediction from genome sequences. The rainbow trout genome sequence is not available yet, which does not allow miRNA prediction for this species which is of great economic interest for aquaculture and sport fisheries, and is a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. To identify miRNAs from rainbow trout, we constructed a miRNA library from a pool of nine somatic tissues. Analysis of the library identified 210 unique sequences representing 54 distinct miRNAs; 50 with conserved sequences matching previously identified miRNAs and four novel miRNAs. In addition, 13 miRNAs were computationally predicted from the rainbow trout transcriptome. Real-time PCR was used to measure miRNA expression patterns in adult somatic tissues and unfertilized eggs. The majority of the miRNAs showed characteristic tissue-specific expression patterns suggesting potential roles in maintaining tissue identity. Potential miRNA-target interactions were computationally predicted and single nucleotide polymorphisms (SNPs) were identified in the miRNAs and their target sites in the rainbow trout transcripts. The rainbow trout miRNAs identified and characterized in this study provide a new tool for functional genome research in salmonids. Tissue-specific miRNAs may serve as molecular markers, predictive of specific functional and diagnostic implications. The data on genetic polymorphisms in miRNA-target interactions is particularly useful for rainbow trout breeding programs.
Collapse
Affiliation(s)
- Mohamed Salem
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | | | |
Collapse
|
36
|
Next Generation Sequencing of miRNAs - Strategies, Resources and Methods. Genes (Basel) 2010; 1:70-84. [PMID: 24710011 PMCID: PMC3960865 DOI: 10.3390/genes1010070] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 02/04/2023] Open
Abstract
miRNAs constitute a family of small RNA species that have been demonstrated to play a central role in regulating gene expression in many organisms. With the advent of next generation sequencing, new opportunities have arisen to identify and quantify miRNAs and elucidate their function. The unprecedented sequencing depth reached by next generation sequencing technologies makes it possible to get a comprehensive miRNA landscape but also poses new challenges for data analysis. We provide an overview of strategies used for miRNA sequencing, public miRNA resources, and useful methods and tools that are available for data analysis.
Collapse
|
37
|
In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs. J Virol 2010; 84:7713-25. [PMID: 20504925 DOI: 10.1128/jvi.00310-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alphavirus-based replicon vector systems (family Togaviridae) have been developed as expression vectors with demonstrated potential in vaccine development against both infectious diseases and cancer. The single-cycle nature of virus-like replicon particles (VRP), generated by supplying the structural proteins from separate replicable helper RNAs, is an attractive safety component of these systems. MicroRNAs (miRNAs) have emerged as important cellular RNA regulation elements. Recently, miRNAs have been employed as a mechanism to attenuate or restrict cellular tropism of replication-competent viruses, such as oncolytic adenoviruses, vesicular stomatitis virus, and picornaviruses as well as nonreplicating lentiviral and adenoviral vectors. Here, we describe the incorporation of miRNA-specific target sequences into replicable alphavirus helper RNAs that are used in trans to provide the structural proteins required for VRP production. VRP were found to be efficiently produced using miRNA-targeted helper RNAs if miRNA-specific inhibitors were introduced into cells during VRP production. In the absence of such inhibitors, cellular miRNAs were capable of downregulating helper RNA replication in vitro. When miRNA targets were incorporated into a replicon RNA, cellular miRNAs were capable of downregulating replicon RNA replication upon delivery of VRP into animals, demonstrating activity in vivo. These data provide the first example of miRNA-specific repression of alphavirus replicon and helper RNA replication and demonstrate the feasibility of miRNA targeting of expression vector helper functions that are provided in trans.
Collapse
|
38
|
Wang Z. MicroRNA: A matter of life or death. World J Biol Chem 2010; 1:41-54. [PMID: 21537368 PMCID: PMC3083949 DOI: 10.4331/wjbc.v1.i4.41] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 02/05/2023] Open
Abstract
Progressive cell loss due to apoptosis is a pathological hallmark implicated in a wide spectrum of degenerative diseases such as heart disease, atherosclerotic arteries and hypertensive vessels, Alzheimer's disease and other neurodegenerative disorders. Tremendous efforts have been made to improve our understanding of the molecular mechanisms and signaling pathways involved in apoptosistic cell death. Once ignored completely or overlooked as cellular detritus, microRNAs (miRNAs) that were discovered only a decade ago, have recently taken many by surprise. The importance of miRNAs has steadily gained appreciation and miRNA biology has exploded into a massive swell of interest with enormous range and potential in almost every biological discipline because of their widespread expression and diverse functions in both animals and humans. It has been established that miRNAs are critical regulators of apoptosis of various cell types. These small molecules act by repressing the expression of either the proapoptotic or antiapoptotic genes to produce antiapoptotic or proapoptotic effects. Appealing evidence has been accumulating for the involvement of miRNAs in human diseases associated with apoptotic cell death and the potential of miRNAs as novel therapeutic targets for the treatment of the diseases. This editorial aims to convey this message and to boost up the research interest by providing a timely, comprehensive overview on regulation of apoptosis by miRNAs and a synopsis on the pathophysiologic implications of this novel regulatory network based on the currently available data in the literature. It begins with a brief introduction to apoptosis and miRNAs, followed by the description of the fundamental aspects of miRNA biogenesis and action, and the role of miRNAs in regulating apoptosis of cancer cells and cardiovascular cells. Speculations on the development of miRNAs as potential therapeutic targets are also presented. Remarks are also provided to point out the unanswered questions and to outline the new directions for the future research of the field.
Collapse
Affiliation(s)
- Zhiguo Wang
- Zhiguo Wang, Research Center, Montreal Heart Institute and Department of Medicine, University of Montreal, Montreal, PQ H1T 1C8, Canada
| |
Collapse
|
39
|
Lutter D, Marr C, Krumsiek J, Lang EW, Theis FJ. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics 2010; 11:224. [PMID: 20370903 PMCID: PMC2865499 DOI: 10.1186/1471-2164-11-224] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 04/06/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNA-mediated control of gene expression via translational inhibition has substantial impact on cellular regulatory mechanisms. About 37% of mammalian microRNAs appear to be located within introns of protein coding genes, linking their expression to the promoter-driven regulation of the host gene. In our study we investigate this linkage towards a relationship beyond transcriptional co-regulation. RESULTS Using measures based on both annotation and experimental data, we show that intronic microRNAs tend to support their host genes by regulation of target gene expression with significantly correlated expression patterns. We used expression data of three differentiating cell types and compared gene expression profiles of host and target genes. Many microRNA target genes show expression patterns significantly correlated with the expressions of the microRNA host genes. By calculating functional similarities between host and predicted microRNA target genes based on GO annotations, we confirm that many microRNAs link host and target gene activity in an either synergistic or antagonistic manner. CONCLUSIONS These two regulatory effects may result from fine tuning of target gene expression functionally related to the host or knock-down of remaining opponent target gene expression. This finding allows to extend the common practice of mapping large scale gene expression data to protein associated genes with functionality of co-expressed intronic microRNAs.
Collapse
Affiliation(s)
- Dominik Lutter
- Institute of Bioinformatics and Systems Biology, CMB, Helmholtz Zentrum München, Germany.
| | | | | | | | | |
Collapse
|
40
|
Zheng G, Ambros V, Li WH. Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent. SILENCE 2010; 1:9. [PMID: 20359322 PMCID: PMC2864223 DOI: 10.1186/1758-907x-1-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 04/01/2010] [Indexed: 01/13/2023]
Abstract
Background Antisense reagents can serve as efficient and versatile tools for studying gene function by inhibiting nucleic acids in vivo. Antisense reagents have particular utility for the experimental manipulation of the activity of microRNAs (miRNAs), which are involved in the regulation of diverse developmental and physiological pathways in animals. Even in traditional genetic systems, such as the nematode Caenorhabditis elegans, antisense reagents can provide experimental strategies complementary to mutational approaches. Presently no antisense reagents are available for inhibiting miRNAs in the nematode C. elegans. Results We have developed a new class of fluorescently labelled antisense reagents to inhibit miRNAs in developing worms. These reagents were synthesized by conjugating dextran with 2'-O-methyl oligoribonucleotide. The dextran-conjugated antisense reagents can be conveniently introduced into the germline of adult hermaphrodites and are transmitted to their progeny, where they efficiently and specifically inhibit a targeted miRNA in different tissues, including the hypodermis, the vulva and the nervous system. We show that these reagents can be used combinatorially to inhibit more than one miRNA in the same animal. Conclusion This class of antisense reagents represents a new addition to the toolkit for studying miRNA in C. elegans. Combined with numerous mutants or reporter stains available, these reagents should provide a convenient approach to examine genetic interactions that involve miRNA, and may facilitate studying functions of miRNAs, especially ones whose deletion strains are difficult to generate. See related research article: http://jbiol.com/content/9/3/20
Collapse
Affiliation(s)
- Genhua Zheng
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9039, USA.
| | | | | |
Collapse
|
41
|
Jamalkandi SA, Masoudi-Nejad A. Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Funct Integr Genomics 2009; 9:419-32. [DOI: 10.1007/s10142-009-0141-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/24/2022]
|
42
|
Abstract
MicroRNAs (miRNAs) are an emerging class of highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level. It is now clear that miRNAs can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death, viral infection and tumorigenesis. Recent studies provide clear evidence that miRNAs are abundant in the liver and modulate a diverse spectrum of liver functions. Deregulation of miRNA expression may be a key pathogenetic factor in many liver diseases including viral hepatitis, hepatocellular cancer and polycystic liver diseases. A clearer understanding of the mechanisms involved in miRNA deregulation will offer new diagnostic and therapeutic strategies to treat liver diseases. Moreover, better understanding of miRNA regulation and identification of tissue-specific miRNA targets employing transgenic/knockout models and/or modulating oligonucleotides will improve our knowledge of liver physiology and diseases.
Collapse
|
43
|
Fujii YR. Oncoviruses and Pathogenic MicroRNAs in Humans. Open Virol J 2009; 3:37-51. [PMID: 19920887 PMCID: PMC2778015 DOI: 10.2174/1874357900903010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 12/19/2022] Open
Abstract
For disease prognosis, the functional significance of the oncoviral integration locus in oncogenesis has remained enigmatic. The locus encodes several transcripts without protein products, but microRNAs (miRNAs) have recently been identified from a common oncoviral integration locus. miRNA is an endogenous, non-coding small RNA by which gene expression is suppressed. Although miRNA genes, such as let-7 in the nematode, have orthologs among animals, the relationship between miRNAs and tumorigenesis or tumor suppression has been mainly discovered in several human cancers. On the contrary, this review clearly demonstrates the potential for human tumorigenesis of both miRNA genes from oncoviral integration sites and other cellular onco-microRNA genes, and we conclude that alteration of the miRNA profile of cells can be defined as tumorigenic or tumor suppressive. Thus, we explain here that virally-pathogenic miRNAs could also be partly responsible for oncogenesis or oncogene suppression to confirm' the RNA wave', with the miRNAs hypothesized as a mobile and functional genetic element.
Collapse
|
44
|
Luo Q, Zhou Q, Yu X, Lin H, Hu S, Yu J. Genome-wide mapping of conserved microRNAs and their host transcripts in Tribolium castaneum. J Genet Genomics 2009; 35:349-55. [PMID: 18571123 DOI: 10.1016/s1673-8527(08)60051-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are endogenous 22-nt RNAs, which play important regulatory roles by post-transcriptional gene silencing. A computational strategy has been developed for the identification of conserved miRNAs based on features of known metazoan miRNAs in red flour beetle (Tribolium castaneum), which is regarded as one of the major laboratory models of arthropods. Among 118 putative miRNAs, 47% and 53% of the predicted miRNAs from the red flour beetle are harbored by known protein-coding genes (intronic) and genes located outside (intergenic miRNA), respectively. There are 31 intronic miRNAs in the same transcriptional orientation as the host genes, which may share RNA polymerase II and spliceosomal machinery with their host genes for their biogenesis. A hypothetical feedback model has been proposed based on the analysis of the relationship between intronic miRNAs and their host genes in the development of red flour beetle.
Collapse
Affiliation(s)
- Qibin Luo
- James D Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
MicroRNAs (miRNAs) are an emerging class of highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level. It is now clear that miRNAs can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death, viral infection and tumorigenesis. Recent studies provide clear evidence that miRNAs are abundant in the liver and modulate a diverse spectrum of liver functions. Deregulation of miRNA expression may be a key pathogenetic factor in many liver diseases including viral hepatitis, hepatocellular cancer and polycystic liver diseases. A clearer understanding of the mechanisms involved in miRNA deregulation will offer new diagnostic and therapeutic strategies to treat liver diseases. Moreover, better understanding of miRNA regulation and identification of tissue-specific miRNA targets employing transgenic/knockout models and/or modulating oligonucleotides will improve our knowledge of liver physiology and diseases.
Collapse
|
46
|
Mendes ND, Freitas AT, Sagot MF. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 2009; 37:2419-33. [PMID: 19295136 PMCID: PMC2677885 DOI: 10.1093/nar/gkp145] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The discovery of microRNAs (miRNAs), almost 10 years ago, changed dramatically our perspective on eukaryotic gene expression regulation. However, the broad and important functions of these regulators are only now becoming apparent. The expansion of our catalogue of miRNA genes and the identification of the genes they regulate owe much to the development of sophisticated computational tools that have helped either to focus or interpret experimental assays. In this article, we review the methods for miRNA gene finding and target identification that have been proposed in the last few years. We identify some problems that current approaches have not yet been able to overcome and we offer some perspectives on the next generation of computational methods.
Collapse
Affiliation(s)
- N D Mendes
- Equipe BAOBAB, Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS, Univ. Lyon 1, 43 bd du 11 nov 1918, 69622, Villeurbanne Cedex, France.
| | | | | |
Collapse
|
47
|
Abstract
Utilization of gene silencing effectors, such as microRNA (miRNA) and small hairpin RNA (shRNA), provides a powerful new strategy for human skin care in vivo, particularly for hyperpigmentation treatment and aging prevention. In this study, tyrosinase (Tyr), the rate-limiting enzyme of melanin (black pigment) biosynthesis, was served as a target for treatment of hyperpigmentation in mouse and human skins. There are over 54 native microRNA capable of silencing human tyrosinase for skin whitening and lightening. To this, we have designed a mir-434-5p homologue and used it to successfully demonstrate the feasibility of miRNA-mediated skin whitening and lightening in vitro and in vivo. Under the same experimental condition in the trials, Pol-II-directed intronic mir-434-5p expression did not cause any detectable sign of cytotoxicity, whereas siRNAs targeting the same sequence often induced certain nonspecific mRNA degradation as previously reported. Because the intronic miRNA-mediated gene silencing pathway is tightly regulated by multiple intracellular surveillance systems, including Pol-II transcription, RNA splicing, exosomal digestion and nonsense-mediated RNA decay (NMD), the current findings underscore the fact that intronic miRNA agents, such as manually re-designed mir-434-5p homologues, are effective, target-specific and safe to be used for skin whitening without any detectable cytotoxic effect. Given that the human skins also express a variety of other native miRNAs, we may re-design these miRNAs based on their individual functions for skin care, which may provide significant insights into areas of opportunity for new cosmetic and/or therapeutical applications.
Collapse
Affiliation(s)
- David Ts Wu
- Institute of Mello Biotechnology, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
48
|
Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 2008; 79:581-8. [PMID: 18550634 DOI: 10.1093/cvr/cvn156] [Citation(s) in RCA: 697] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the endothelial monolayer is fundamental for the homoeostasis of the vascular system. Functional endothelial cells are also required for the growth of new blood vessels during neovascularization. Although multiple growth factors have been shown to regulate angiogenesis and vascular development, little is known about the complex upstream regulation of gene expression and translation. MicroRNAs (miRNAs) are an emerging class of highly conserved, non-coding small RNAs that regulate gene expression on the post-transcriptional level by inhibiting the translation of protein from mRNA or by promoting the degradation of mRNA. More than 500 human miRNAs have been identified so far, and increasing evidence indicates that miRNAs have distinct expression profiles and play crucial roles in various physiological and pathological processes such as cardiogenesis, haematopoietic lineage differentiation, and oncogenesis. Meanwhile, a few specific miRNAs that regulate endothelial cell functions and angiogenesis have been described. Let7-f, miR-27b, and mir-130a were identified as pro-angiogenic miRNAs. In contrast, miR-221 and miR-222 inhibit endothelial cell migration, proliferation, and angiogenesis in vitro by targeting the stem cell factor receptor c-kit and indirectly regulating endothelial nitric oxide synthase expression. Moreover, some miRNAs are involved in tumour angiogenesis such as the miR-17-92 cluster and miR-378. Early studies also indicate the contribution of specific miRNAs (e.g. miR-155, miR-21, and miR-126) to vascular inflammation and diseases. Thus, the identification of miRNAs and their respective targets may offer new therapeutic strategies to treat vascular diseases such as atherosclerosis, to improve neovascularization after ischaemia, or to prevent tumour progression.
Collapse
Affiliation(s)
- Carmen Urbich
- Department of Molecular Cardiology, Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
49
|
Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol 2008; 36:1354-1369. [PMID: 18657893 DOI: 10.1016/j.exphem.2008.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/08/2008] [Accepted: 05/12/2008] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self-renewal and differentiation. We propose that specific intracellular signaling pathways modulate gene expression during differentiation by regulating microRNA expression. MATERIALS AND METHODS Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with platelet-derived growth factor (PDGF) signaling. RESULTS The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells, such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted toward specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signaling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signaling was experimentally confirmed by direct PDGF inhibition. CONCLUSION Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways.
Collapse
|
50
|
The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28:1213-23. [PMID: 18234899 DOI: 10.1523/jneurosci.5065-07.2008] [Citation(s) in RCA: 638] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center Brain Bank with near-optimal clinicopathological correlation. Cases were separated into four groups: elderly nondemented with negligible AD-type pathology, nondemented with incipient AD pathology, mild cognitive impairment (MCI) with moderate AD pathology, and AD. Among the AD-related miRNA expression changes, miR-107 was exceptional because miR-107 levels decreased significantly even in patients with the earliest stages of pathology. In situ hybridization with cross-comparison to neuropathology demonstrated that particular cerebral cortical laminas involved by AD pathology exhibit diminished neuronal miR-107 expression. Computational analysis predicted that the 3'-untranslated region (UTR) of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) mRNA is targeted multiply by miR-107. From the same RNA material analyzed on miRNA microarrays, mRNA expression profiling was performed using Affymetrix Exon Array microarrays on nondemented, MCI, and AD patients. BACE1 mRNA levels tended to increase as miR-107 levels decreased in the progression of AD. Cell culture reporter assays performed with a subset of the predicted miR-107 binding sites indicate the presence of at least one physiological miR-107 miRNA recognition sequence in the 3'-UTR of BACE1 mRNA. Together, the coordinated application of miRNA profiling, Affymetrix microarrays, new bioinformatics predictions, in situ hybridization, and biochemical validation indicate that miR-107 may be involved in accelerated disease progression through regulation of BACE1.
Collapse
|