1
|
Chen M, Wang J, Lin L, Xu X, Wei W, Shen Y, Wei D. Synergistic Regulation of Metabolism by Ca 2+/Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synth Biol 2022; 11:273-285. [PMID: 34941247 DOI: 10.1021/acssynbio.1c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People’s Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd, Zaozhuang 277100, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
2
|
Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 2015; 99:1627-36. [PMID: 25575886 DOI: 10.1007/s00253-014-6350-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Since its first use in 1990 to enhance production of α-amylase in E. coli, engineering of heterologous hosts to express the hemoglobin from the bacterium Vitreoscilla (VHb) has become a widely used strategy to enhance production of a variety of bioproducts, stimulate bioremediation, and increase growth and survival of engineered organisms. The hosts have included a variety of bacteria, yeast, fungi, higher plants, and even animals. The beneficial effects of VHb expression are presumably the result of one or more of its activities. The available evidence indicates that these include oxygen binding and delivery to the respiratory chain and oxygenases, protection against reactive oxygen species, and control of gene expression. In the past 4 to 5 years, the use of this "VHb technology" has continued in a variety of biotechnological applications in a wide range of organisms. These include enhancement of production of an ever wider array of bioproducts, new applications in bioremediation, a possible role in enhancing aerobic waste water treatment, and the potential to enhance growth and survival of both plants and animals of economic importance.
Collapse
|
3
|
Ratakonda S, Anand A, Dikshit K, Stark BC, Howard AJ. Crystallographic structure determination of B10 mutants of Vitreoscilla hemoglobin: role of Tyr29 (B10) in the structure of the ligand-binding site. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:215-22. [PMID: 23519792 PMCID: PMC3606562 DOI: 10.1107/s1744309112044818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022]
Abstract
Site-directed mutants of the gene encoding wild-type Vitreoscilla hemoglobin were made that changed Tyr29 (B10) of the wild-type Vitreoscilla hemoglobin (VHb) to either Phe or Ala. The wild-type and the two mutant hemoglobins were expressed in Escherichia coli and purified to homogeneity. The binding of the two mutants to CO was essentially identical to that of wild-type VHb as determined by CO-difference spectra. Circular-dichroism spectra also showed the two mutants to be essentially the same as wild-type VHb regarding overall helicity. All three VHbs were crystallized and their structures were determined at resolutions of 1.7-1.9 Å, which are similar to that of the original wild-type structure determination. The Tyr29Phe mutant has a structure that is essentially indistinguishable from that of the wild type. However, the structure of the Tyr29Ala mutant has significant differences from that of the wild type. In addition, for the Tyr29Ala mutant it was possible to determine the positions of most of the residues in the D region, which was disordered in the originally reported structure of wild-type VHb as well as in the wild-type VHb structure reported here. In the Tyr29Ala mutant, the five-membered ring of proline E8 (Pro54) occupies the space occupied by the aromatic ring of Tyr29 in the wild-type structure. These results are discussed in the context of the proposed role of Tyr29 in the structure of the oxygen-binding pocket.
Collapse
Affiliation(s)
- Sireesha Ratakonda
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Arvind Anand
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | - Kanak Dikshit
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | - Benjamin C. Stark
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Andrew J. Howard
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Stark BC, Dikshit KL, Pagilla KR. The Biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J 2012; 3:e201210002. [PMID: 24688662 PMCID: PMC3962134 DOI: 10.5936/csbj.201210002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 01/17/2023] Open
Abstract
The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated.
Collapse
Affiliation(s)
- Benjamin C Stark
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago IL 60616, USA
| | - Kanak L Dikshit
- Institute of Microbial Technology, Sec-39a, Chandigarh, 160036, India
| | - Krishna R Pagilla
- Department of Civil and Architectural Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| |
Collapse
|
5
|
Stark BC, Dikshit KL, Pagilla KR. Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla. Biotechnol Lett 2011; 33:1705-14. [DOI: 10.1007/s10529-011-0621-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
|
6
|
Shepherd M, Barynin V, Lu C, Bernhardt PV, Wu G, Yeh SR, Egawa T, Sedelnikova SE, Rice DW, Wilson JL, Poole RK. The single-domain globin from the pathogenic bacterium Campylobacter jejuni: novel D-helix conformation, proximal hydrogen bonding that influences ligand binding, and peroxidase-like redox properties. J Biol Chem 2010; 285:12747-54. [PMID: 20164176 PMCID: PMC2857070 DOI: 10.1074/jbc.m109.084509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/29/2010] [Indexed: 11/06/2022] Open
Abstract
The food-borne pathogen Campylobacter jejuni possesses a single-domain globin (Cgb) whose role in detoxifying nitric oxide has been unequivocally demonstrated through genetic and molecular approaches. The x-ray structure of cyanide-bound Cgb has been solved to a resolution of 1.35 A. The overall fold is a classic three-on-three alpha-helical globin fold, similar to that of myoglobin and Vgb from Vitreoscilla stercoraria. However, the D region (defined according to the standard globin fold nomenclature) of Cgb adopts a highly ordered alpha-helical conformation unlike any previously characterized members of this globin family, and the GlnE7 residue has an unexpected role in modulating the interaction between the ligand and the TyrB10 residue. The proximal hydrogen bonding network in Cgb demonstrates that the heme cofactor is ligated by an imidazolate, a characteristic of peroxidase-like proteins. Mutation of either proximal hydrogen-bonding residue (GluH23 or TyrG5) results in the loss of the high frequency nu(Fe-His) stretching mode (251 cm(-1)), indicating that both residues are important for maintaining the anionic character of the proximal histidine ligand. Cyanide binding kinetics for these proximal mutants demonstrate for the first time that proximal hydrogen bonding in globins can modulate ligand binding kinetics at the distal site. A low redox midpoint for the ferrous/ferric couple (-134 mV versus normal hydrogen electrode at pH 7) is consistent with the peroxidase-like character of the Cgb active site. These data provide a new insight into the mechanism via which Campylobacter may survive host-derived nitrosative stress.
Collapse
Affiliation(s)
- Mark Shepherd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochem J 2010; 426:271-80. [DOI: 10.1042/bj20091417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacterial haemoglobin from Vitreoscilla, VHb, displays several unusual properties that are unique among the globin family. When the gene encoding VHb, vgb, is expressed from its natural promoter in either Vitreoscilla or Escherichia coli, the level of VHb increases more than 50-fold under hypoxic conditions and decreases significantly during oxidative stress, suggesting similar functioning of the vgb promoter in both organisms. In the present study we show that expression of VHb in E. coli induced the antioxidant genes katG (catalase–peroxidase G) and sodA (superoxide dismutase A) and conferred significant protection from oxidative stress. In contrast, when vgb was expressed in an oxyR mutant of E. coli, VHb levels increased and the strain showed high sensitivity to oxidative stress without induction of antioxidant genes; this indicates the involvement of the oxidative stress regulator OxyR in mediating the protective effect of VHb under oxidative stress. A putative OxyR-binding site was identified within the vgb promoter and a gel-shift assay confirmed its interaction with oxidized OxyR, an interaction which was disrupted by the reduced form of the transcriptional activator Fnr (fumurate and nitrate reductase). This suggested that the redox state of OxyR and Fnr modulates their interaction with the vgb promoter. VHb associated with reduced OxyR in two-hybrid screen experiments and in vitro, converting it into an oxidized state in the presence of NADH, a condition where VHb is known to generate H2O2. These observations unveil a novel mechanism by which VHb may transmit signals to OxyR to autoregulate its own biosynthesis, simultaneously activating oxidative stress functions. The activation of OxyR via VHb, reported in the present paper for the first time, suggests the involvement of VHb in transcriptional control of many other genes as well.
Collapse
|
8
|
Kaur R, Ahuja S, Anand A, Singh B, Stark BC, Webster DA, Dikshit KL. Functional implications of the proximal site hydrogen bonding network in Vitreoscilla
hemoglobin (VHb): Role of Tyr95 (G5) and Tyr126 (H12). FEBS Lett 2008; 582:3494-500. [DOI: 10.1016/j.febslet.2008.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 11/27/2022]
|
9
|
Liu T, Guo R. Effects of Triton X-100 and Acyclovir on Human Serum Albumin Structure. J SURFACTANTS DETERG 2007. [DOI: 10.1007/s11743-007-1051-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Liu TQ, Guo R. Influences of Triton X-100 on Hemoglobin Behaviors in Hemoglobin/Acyclovir/Triton X-100/H2O System. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Kvist M, Ryabova ES, Nordlander E, Bülow L. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J Biol Inorg Chem 2007; 12:324-34. [PMID: 17219165 DOI: 10.1007/s00775-006-0190-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
In order to investigate the ability of the Vitreoscilla hemoglobin (VHb) to act as a peroxidase, the protein was overexpressed in Escerichia coli and purified using a 6xHis-tag. The peroxidase activity of VHb was studied using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferrocene carboxylic acid (FcCOOH) dopamine and L-dopa as substrates. The effects of external agents such as pH, salt concentration/ionic strength, and the thermal stability of VHb on the catalytic activity were assessed. The optimum pH for VHb using ABTS as a substrate was estimated to be 6-7. The VHb protein proved to be stable up to 80 degrees C, as judged by its peroxidase activity. Furthermore, NaCl concentrations up to 100 mM did not exert any significant effect on the activity. The catalytic activity against ABTS and FcCOOH was similar to that measured for horseradish peroxidase, whereas in the case of the phenolic substrates dopamine and L-dopa the activity was several orders of magnitude lower. The Michaelis constants, KmH2O2, were in good agreement with the data for human and bovine hemoglobin. No activity could be detected for the negative controls lacking VHb. These results demonstrate that VHb exhibits peroxidase activity, a finding in line with the hypothesis that VHb has cellular functions beyond the role as an oxygen carrier.
Collapse
Affiliation(s)
- Malin Kvist
- Center for Chemistry and Chemical Engineering, Pure and Applied Biochemistry, Lund Institute of Technology, Box 124, 221 00, Lund, Sweden
| | | | | | | |
Collapse
|
12
|
Suwanwong Y, Kvist M, Isarankura-Na-Ayudhya C, Tansila N, Bulow L, Prachayasittikul V. Chimeric antibody-binding Vitreoscilla hemoglobin (VHb) mediates redox-catalysis reaction: new insight into the functional role of VHb. Int J Biol Sci 2006; 2:208-15. [PMID: 16967102 PMCID: PMC1560407 DOI: 10.7150/ijbs.2.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022] Open
Abstract
Experimentation was initiated to explore insight into the redox-catalysis reaction derived from the heme prosthetic group of chimeric Vitreoscilla hemoglobin (VHb). Two chimeric genes encoding chimeric VHbs harboring one and two consecutive sequences of Fc-binding motif (Z-domain) were successfully constructed and expressed in E. coli strain TG1. The chimeric ZVHb and ZZVHb were purified to a high purity of more than 95% using IgG-Sepharose affinity chromatography. From surface plasmon resonance, binding affinity constants of the chimeric ZVHb and ZZVHb to human IgG were 9.7 x 107 and 49.1 x 107 per molar, respectively. More importantly, the chimeric VHbs exhibited a peroxidase-like activity determined by activity staining on native PAGE and dot blotting. Effects of pH, salt, buffer system, level of peroxidase substrate and chromogen substrate were determined in order to maximize the catalytic reaction. From our findings, the chimeric VHbs displayed their maximum peroxidase-like activity at the neutral pH (~7.0) in the presence of high concentration (20-40 mM) of hydrogen peroxide. Under such conditions, the detection limit derived from the calibration curve was at 250 ng for the chimeric VHbs, which was approximately 5-fold higher than that of the horseradish peroxidase. These findings reveal the novel functional role of Vitreoscilla hemoglobin indicating a high trend of feasibility for further biotechnological and medical applications.
Collapse
Affiliation(s)
- Yaneenart Suwanwong
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Malin Kvist
- 2. Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | - Natta Tansila
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Leif Bulow
- 2. Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Virapong Prachayasittikul
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|