1
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
2
|
Titanium dioxide nanotubes increase purinergic receptor P2Y6 expression and activate its downstream PKCα-ERK1/2 pathway in bone marrow mesenchymal stem cells under osteogenic induction. Acta Biomater 2023; 157:670-682. [PMID: 36442823 DOI: 10.1016/j.actbio.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. TiO2 nanotubes were prepared on the surface of titanium specimens using the anodizing method and characterized their features. Quantitative reverse transcriptase polymerase chain reaction and western blotting were used to detect the expression of P2Y6, markers of osteogenic differentiation, and PKCα-ERK1/2. A rat femoral defect model was established to evaluate the osseointegration effect of TiO2 nanotubes combined with P2Y6 agonists. The results showed that the average inner diameter of the TiO2 nanotubes increased with an increase in voltage (voltage range of 30-90V), and the expression of P2Y6 in BMSCs could be upregulated by TiO2 nanotubes in osteogenic culture. Inhibition of P2Y6 expression partially inhibited the osteogenic effect of TiO2 nanotubes and downregulated the activity of the PKCα-ERK1/2 pathway. When using in vitro and in vivo experiments, the osteogenic effect of TiO2 nanotubes when combined with P2Y6 agonists was more pronounced. TiO2 nanotubes promoted the P2Y6 expression of BMSCs during osteogenic differentiation and promoted osteogenesis by activating the PKCα-ERK1/2 pathway. The combined application of TiO2 nanotubes and P2Y6 agonists may be an effective new strategy to improve the osseointegration of titanium implants. STATEMENT OF SIGNIFICANCE: Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. For the first time, this study revealed the relationship between TiO2 nanotubes and purine receptor P2Y6, and further explored its mode of action, which may provide clues as to the regulatory role of TiO2 nanotubes on osteogenic differentiation of BMSCs. These findings will help to develop novel methods for guiding material design and biosafety evaluation of nano implants.
Collapse
|
3
|
Kyawsoewin M, Limraksasin P, Ngaokrajang U, Pavasant P, Osathanon T. Extracellular adenosine triphosphate induces IDO and IFNγ expression of human periodontal ligament cells through P 2 X 7 receptor signaling. J Periodontal Res 2022; 57:742-753. [PMID: 35510301 DOI: 10.1111/jre.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stimuli induce the release of adenosine triphosphate into the extracellular environment by human periodontal ligament cells (hPDLCs). Extracellular adenosine triphosphate (eATP) plays the role in both inflammation and osteogenic differentiation. eATP involves in immunosuppressive action by increasing immunosuppressive molecules IDO and IFNγ expression on immune cells. However, the role of eATP on the immunomodulation of hPDLCs remains unclear. This study aimed to examine the effects of eATP on the IDO and IFNγ expression of hPDLCs and the participation of purinergic P2 receptors in this phenomenon. METHODS hPDLCs were treated with eATP. The mRNA and protein expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) and interferon-gamma (IFNγ) were determined. The role of the purinergic P2 receptor was determined using calcium chelator (EGTA) and PKC inhibitor (PKCi). Chemical inhibitors (KN62 and BBG), small interfering RNA (siRNA), and P2 X7 receptor agonist (BzATP) were used to confirm the involvement of P2 X7 receptors on IDO and IFNγ induction by hPDLCs. RESULTS eATP significantly enhanced mRNA expression of IDO and IFNγ. Moreover, eATP increased kynurenine which is the active metabolite of tryptophan breakdown catalyzed by the IDO enzyme and significantly induced IFNγ protein expression. EGTA and PKCi reduced eATP-induced IDO and IFNγ expressions by hPDLCs, confirming the role of calcium signaling. Chemical P2 X7 inhibitors (KN62 and BBG) and siRNA targeting the P2 X7 receptor significantly inhibited the eATP-induced IDO and IFNγ production. Correspondingly, BzATP markedly increased IDO and IFNγ expression. CONCLUSION eATP induced immunosuppressive function of hPDLCs by promoting IDO and IFNγ production via P2 X7 receptor signaling. eATP may become a promising target for periodontal regeneration by modulating immune response and further triggering tissue healing.
Collapse
Affiliation(s)
- Maythwe Kyawsoewin
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Oral Biological Science, University of Dental Medicine, Yangon, Myanmar
| | - Phoonsuk Limraksasin
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Utapin Ngaokrajang
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Ishizuka K. Calcitonin Gene-related Peptide Inhibits Osteoclast Differentiation by Inducing the Negative Regulators <i>MafB</i> and <i>Bcl6</i>. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kyoko Ishizuka
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
5
|
Ma J, Gao J, Niu M, Zhang X, Wang J, Xie A. P2X4R Overexpression Upregulates Interleukin-6 and Exacerbates 6-OHDA-Induced Dopaminergic Degeneration in a Rat Model of PD. Front Aging Neurosci 2020; 12:580068. [PMID: 33328961 PMCID: PMC7671967 DOI: 10.3389/fnagi.2020.580068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) remains elusive. Current thinking suggests that the activation of microglia and the subsequent release of inflammatory factors, including interleukin-6 (IL-6), are involved in the pathogenesis of PD. P2X4 receptor (P2X4R) is a member of the P2X superfamily of ion channels activated by ATP. To study the possible effect of the ATP-P2X4R signal axis on IL-6 in PD, lentivirus carrying the P2X4R-overexpression gene or empty vector was injected into the substantia nigra (SN) of rats, followed by treatment of 6-hydroxydopamine (6-OHDA) or saline 1 week later. The research found the relative expression of P2X4R in the 6-OHDA-induced PD rat models was notably higher than that in the normal. And P2X4R overexpression could upregulate the expression of IL-6, reduce the amount of dopaminergic (DA) neurons in the SN of PD rats, suggesting that P2X4R may mediate the production of IL-6 to damage DA neurons in the SN. Our data revealed the important role of P2X4R in modulating IL-6, which leads to neuroinflammation involved in PD pathogenesis.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinzhao Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengyue Niu
- Department of Neurology, Ruijin Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xiaona Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Barros-Becker F, Squirrell JM, Burke R, Chini J, Rindy J, Karim A, Eliceiri KW, Gibson A, Huttenlocher A. Distinct Tissue Damage and Microbial Cues Drive Neutrophil and Macrophage Recruitment to Thermal Injury. iScience 2020; 23:101699. [PMID: 33196024 PMCID: PMC7644964 DOI: 10.1016/j.isci.2020.101699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Tissue damage triggers a rapid innate immune response that mediates host defense. Previously we reported that thermal damage of the larval zebrafish fin disrupts collagen organization and induces a robust and potentially damaging innate immune response. The mechanisms that drive damaging versus protective neutrophil inflammation in interstitial tissues remain unclear. Here we identify distinct cues in the tissue microenvironment that differentially drive neutrophil and macrophage responses to sterile injury. Using live imaging, we found a motile zone for neutrophils, but not macrophages, in collagen-free regions and identified a specific role for interleukin-6 (IL-6) receptor signaling in neutrophil responses to thermal damage. IL-6 receptor mutants show impaired neutrophil recruitment to sterile thermal injury that was not present in tissues infected with Pseudomonas aeruginosa. These findings identify distinct signaling networks during neutrophil recruitment to sterile and microbial damage cues and provide a framework to limit potentially damaging neutrophil inflammation.
Collapse
Affiliation(s)
- Francisco Barros-Becker
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Biology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Russell Burke
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Chini
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Aos Karim
- Department of Surgery, University of Wisconsin-Madison, Madison WI, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Angela Gibson
- Department of Surgery, University of Wisconsin-Madison, Madison WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Hioki T, Tokuda H, Nakashima D, Fujita K, Kawabata T, Sakai G, Kim W, Tachi J, Tanabe K, Matsushima-Nishiwaki R, Otsuka T, Iida H, Kozawa O. HSP90 inhibitors strengthen extracellular ATP-stimulated synthesis of interleukin-6 in osteoblasts: Amplification of p38 MAP kinase. Cell Biochem Funct 2020; 39:88-97. [PMID: 32567086 DOI: 10.1002/cbf.3566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/03/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Heat shock protein 90 (HSP90) is expressed ubiquitously in a variety of cell types including osteoblasts. HSP90 acts as a key driver of proteostasis under pathophysiological conditions. Here, we investigated the involvement of HSP90 in extracellular ATP-stimulated interleukin (IL)-6 synthesis and HSP90 downstream signalling in osteoblast-like MC3T3-E1 cells. In osteoblasts, extracellular ATP stimulates the synthesis of IL-6, a bone-remodelling agent. Geldanamycin, 17-allylamino-17-demethoxy-geldanamycin (17-AAG) and onalespib, three different HSP90 inhibitors, amplified the ATP-stimulated IL-6 release. Geldanamycin increased IL-6 mRNA expression elicited by ATP. ATP enhanced the triiodothyronine-induced osteocalcin release, but HSP90 inhibitors suppressed the release. Extracellular ATP induced the phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK), p38 MAPK, c-Jun N-terminal kinase (JNK), p70 S6 kinase, Akt, and myosin phosphatase-targeting subunit (MYPT), a Rho-kinase substrate. SB203580, an inhibitor of p38 MAPK, suppressed ATP-stimulated IL-6 release. Inhibitors of MEK1/2 (PD98059), JNK (SP600125), upstream kinase of p70 S6 kinase (rapamycin) and Akt (deguelin), all increased IL-6 release. Y27632, a Rho-kinase inhibitor, failed to affect the IL-6 release stimulated by ATP. Geldanamycin and 17-AAG both amplified ATP-induced p38 MAPK phosphorylation, although geldanamycin inhibited the phosphorylation of Akt induced by ATP. In addition, SB203580 significantly reduced the amplification by geldanamycin of the IL-6 release. Taken together, our results strongly suggest that HSP90 inhibitors up-regulate extracellular ATP-stimulated IL-6 synthesis via amplification of p38 MAPK activation in osteoblasts. SIGNIFICANCE OF THE STUDY: Heat shock protein 90 (HSP90) acts as a key driver of proteostasis under pathophysiological conditions in a variety of cell types. We have previously shown that HSP90 is expressed at high levels in osteoblast-like MC3T3-E1 cells, even in their quiescent state, consistent with HSP90 performing an important physiological function in osteoblasts. In the present study, we investigated whether HSP90 is implicated in extracellular ATP-induced interleukin (IL)-6 synthesis in osteoblast-like MC3T3-E1 cells. Our results strongly suggest that HSP90 inhibitors up-regulate extracellular ATP-stimulated IL-6 synthesis via amplification of p38 mitogen-activated protein kinase activation in osteoblasts.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Clinical Laboratory/Biobank of Medical Genome Centre, National Centre for Geriatrics and Gerontology, Obu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroki Iida
- Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
8
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
9
|
Corciulo C, Cronstein BN. Signaling of the Purinergic System in the Joint. Front Pharmacol 2020; 10:1591. [PMID: 32038258 PMCID: PMC6993121 DOI: 10.3389/fphar.2019.01591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
The joint is a complex anatomical structure consisting of different tissues, each with a particular feature, playing together to give mobility and stability at the body. All the joints have a similar composition including cartilage for reducing the friction of the movement and protecting the underlying bone, a synovial membrane that produces synovial fluid to lubricate the joint, ligaments to limit joint movement, and tendons for the interaction with muscles. Direct or indirect damage of one or more of the tissues forming the joint is the foundation of different pathological conditions. Many molecular mechanisms are involved in maintaining the joint homeostasis as well as in triggering disease development. The molecular pathway activated by the purinergic system is one of them.The purinergic signaling defines a group of receptors and intermembrane channels activated by adenosine, adenosine diphosphate, adenosine 5’-triphosphate, uridine triphosphate, and uridine diphosphate. It has been largely described as a modulator of many physiological and pathological conditions including rheumatic diseases. Here we will give an overview of the purinergic system in the joint describing its expression and function in the synovium, cartilage, ligament, tendon, and bone with a therapeutic perspective.
Collapse
Affiliation(s)
- Carmen Corciulo
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States.,Krefting Research Centre-Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Salem M, Tremblay A, Pelletier J, Robaye B, Sévigny J. P2Y 6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells. Front Pharmacol 2018. [PMID: 29541027 PMCID: PMC5835513 DOI: 10.3389/fphar.2018.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP-2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 ligand UDP induced expression and secretion of CXCL10. For the other studies, we took advantage of mice deficient in P2Y6 (P2ry6-/-). Similar expression levels of P2Y1, P2Y2, P2X2, P2X4, and A2A were detected in P2ry6-/- and WT IEC. Agonists of TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion of CXCL10 more prominently in P2ry6-/- IEC than in WT IEC. CXCL10 expression and secretion induced by poly(I:C) in both P2ry6-/- and WT IEC were inhibited by general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4. Neither adenosine nor an A2A antagonist had an effect on CXCL10 expression and secretion. Macrophage chemotaxis was induced by the supernatant of poly(I:C)-treated IEC which was consistent with the level of CXCL10 secreted. Finally, the non-nucleotide agonist FGF2 induced MMP9 mRNA expression also at a higher level in P2ry6-/- IEC than in WT IEC. In conclusion, extracellular nucleotides regulate CXCL10 expression and secretion by IEC. In the absence of P2Y6, these effects are modulated by other P2 receptors also present on IEC. These data suggest that the presence of P2Y6 regulates chemokine secretion and may also regulate IEC homeostasis.
Collapse
Affiliation(s)
- Mabrouka Salem
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|
11
|
Oh SJ, Gu DR, Jin SH, Park KH, Lee SH. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling. Biochem Biophys Res Commun 2016; 475:125-32. [PMID: 27179783 DOI: 10.1016/j.bbrc.2016.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5' monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.
Collapse
Affiliation(s)
- Se Jeong Oh
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Su Hyun Jin
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Keun Ha Park
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
12
|
Noronha-Matos JB, Correia-de-Sá P. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol 2016; 231:1852-61. [PMID: 26754327 DOI: 10.1002/jcp.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852-1861, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| |
Collapse
|
13
|
Abstract
Accumulating evidence now suggests that purinergic signalling exerts significant regulatory effects in the musculoskeletal system. In particular, it has emerged that extracellular nucleotides are key regulators of bone cell differentiation, survival and function. This review discusses our current understanding of the direct effects of purinergic signalling in bone, cartilage and muscle.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| |
Collapse
|
14
|
Christensen MG, Fagerberg SK, de Bruijn PI, Bjaelde RG, Jakobsen H, Leipziger J, Skals M, Praetorius HA. [Ca2+]i Oscillations and IL-6 Release Induced by α-Hemolysin from Escherichia coli Require P2 Receptor Activation in Renal Epithelia. J Biol Chem 2015; 290:14776-84. [PMID: 25911098 DOI: 10.1074/jbc.m115.639526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 02/02/2023] Open
Abstract
Urinary tract infections are commonly caused by α-hemolysin (HlyA)-producing Escherichia coli. In erythrocytes, the cytotoxic effect of HlyA is strongly amplified by P2X receptors, which are activated by extracellular ATP released from the cytosol of the erythrocytes. In renal epithelia, HlyA causes reversible [Ca(2+)]i oscillations, which trigger interleukin-6 (IL-6) and IL-8 release. We speculate that this effect is caused by HlyA-induced ATP release from the epithelial cells and successive P2 receptor activation. Here, we demonstrate that HlyA-induced [Ca(2+)]i oscillations in renal epithelia were completely prevented by scavenging extracellular ATP. In accordance, HlyA was unable to inflict any [Ca(2+)]i oscillations in 132-1N1 cells, which lack P2R completely. After transfecting these cells with the hP2Y2 receptor, HlyA readily triggered [Ca(2+)]i oscillations, which were abolished by P2 receptor antagonists. Moreover, HlyA-induced [Ca(2+)]i oscillations were markedly reduced in medullary thick ascending limbs isolated from P2Y2 receptor-deficient mice compared with wild type. Interestingly, the following HlyA-induced IL-6 release was absent in P2Y2 receptor-deficient mice. This suggests that HlyA induces ATP release from renal epithelia, which via P2Y2 receptors is the main mediator of HlyA-induced [Ca(2+)]i oscillations and IL-6 release. This supports the notion that ATP signaling occurs early during bacterial infection and is a key player in the further inflammatory response.
Collapse
Affiliation(s)
- Mette G Christensen
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Steen K Fagerberg
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Pauline I de Bruijn
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Randi G Bjaelde
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Helle Jakobsen
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Jens Leipziger
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Marianne Skals
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| | - Helle A Praetorius
- From the Department of Biomedicine, Physiology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Tsuchiya N, Kodama D, Goto S, Togari A. Shear stress-induced Ca(2+) elevation is mediated by autocrine-acting glutamate in osteoblastic MC3T3-E1 cells. J Pharmacol Sci 2015; 127:311-8. [PMID: 25837928 DOI: 10.1016/j.jphs.2015.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/28/2022] Open
Abstract
Mechanical loading is an important regulatory factor in bone homeostasis. Neurotransmitters, such as glutamate and ATP, are known to be released from osteoblasts, but their roles have been less studied. In this study, we investigated the role of transmitter release in mechanotransduction. To identify from where transmitters were released, focal fluid flow was applied to a single cell of MC3T3-E1, mouse calvaria-derived osteoblastic cell line, by using a glass micropipette. Intracellular Ca(2+) elevation induced by the focal shear stress was eliminated by either GdCl3, a mechanosensing channel inhibitor, or removal of extracellular Ca(2+). On the other hand, the focal shear stress-induced Ca(2+) elevation was also significantly suppressed by inositol triphosphate receptor antagonist or vesicular release inhibitors. These results suggest that not only mechanosensitive channel-mediated Ca(2+) influx but also some autocrine transmitters are involved in mechanotransduction. Additionally, glutamate receptor antagonists, but not ATP receptor antagonist, suppressed most of the focal shear stress-induced Ca(2+) elevation. Therefore, it is suggested that glutamate is released from osteoblasts following the activation of mechanosensitive Ca(2+) channels and acts in an autocrine manner. The glutamate release may have a significant role in the initial event of mechanotransduction in bone tissue.
Collapse
Affiliation(s)
- Norika Tsuchiya
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Daisuke Kodama
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| |
Collapse
|
16
|
Wang CM, Ploia C, Anselmi F, Sarukhan A, Viola A. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. EMBO J 2014; 33:1354-64. [PMID: 24843045 DOI: 10.15252/embj.201386666] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Organization of immune responses requires exchange of information between cells. This is achieved through either direct cell-cell contacts and establishment of temporary synapses or the release of soluble factors, such as cytokines and chemokines. Here we show a novel form of cell-to-cell communication based on adenosine triphosphate (ATP). ATP released by stimulated T cells induces P2X4/P2X7-mediated calcium waves in the neighboring lymphocytes. Our data obtained in lymph node slices suggest that, during T-cell priming, ATP acts as a paracrine messenger to reduce the motility of lymphocytes and that this may be relevant to allow optimal tissue scanning by T cells.
Collapse
Affiliation(s)
- Chiuhui Mary Wang
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Rozzano, Italy
| | | | - Fabio Anselmi
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Antonella Viola
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Rozzano, Italy
| |
Collapse
|
17
|
Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, Wang C, Tan L, Qi B, Zhu D, Zhang X, Yu T. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells 2014; 31:1170-80. [PMID: 23404811 DOI: 10.1002/stem.1356] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/13/2013] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
Abstract
Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.
Collapse
Affiliation(s)
- Dahui Sun
- Department of Orthopedics, The First Norman Bethune Hospital of Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
19
|
Tan TW, Pfau B, Jones D, Meyer T. Stimulation of primary osteoblasts with ATP induces transient vinculin clustering at sites of high intracellular traction force. J Mol Histol 2013; 45:81-9. [PMID: 23933795 PMCID: PMC4544565 DOI: 10.1007/s10735-013-9530-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Adenosine 5′-triphosphate (ATP), released in response to mechanical and inflammatory stimuli, induces the dynamic and asynchronous protrusion and subsequent retraction of local membrane structures in osteoblasts. The molecular mechanisms involved in the ligand-stimulated herniation of the plasma membrane are largely unknown, which prompted us to investigate whether the focal-adhesion protein vinculin is engaged in the cytoskeletal alterations that underlie the ATP-induced membrane blebbing. Using time-lapse fluorescence microscopy of primary bovine osteoblast-like cells expressing green fluorescent protein-tagged vinculin, we found that stimulation of cells with 100 μM ATP resulted in the transient and rapid clustering of recombinant vinculin in the cell periphery, starting approximately 100 s after addition of the nucleotide. The ephemeral nature of the vinculin clusters was made evident by the brevity of their mean assembly and disassembly times (66.7 ± 13.3 s and 99.0 ± 6.6 s, respectively). Traction force vector maps demonstrated that the vinculin-rich clusters were localized predominantly at sites of high traction force. Intracellular calcium measurements showed that the ligand-induced increase in [Ca2+]i clearly preceded the clustering of vinculin, since [Ca2+]i levels returned to normal within 30 s of exposure to ATP, indicating that intracellular calcium transients trigger a cascade of signalling events that ultimately result in the incorporation of vinculin into membrane-associated focal aggregates.
Collapse
Affiliation(s)
- Toh Weng Tan
- Institute for Experimental Orthopaedics and Biomechanics, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
20
|
Gene clustering analysis in human osteoporosis disease and modifications of the jawbone. Arch Oral Biol 2013; 58:912-29. [DOI: 10.1016/j.archoralbio.2013.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/11/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
21
|
Abstract
The patent application WO2012082947 claims novel compounds as agonists of a plasma membrane-bound bile acid receptor TGR5. By activating TGR5, the agonists improve glycemic control and enhance energy expenditure. The basic generic claim of the patent covers pyrazole derivatives, different permutations on the core pyrazole ring are covered in the subsidiary claims. The claimed compounds are human TGR5 agonists having potency in the nM range.
Collapse
Affiliation(s)
- Saurin Raval
- Zydus Research Centre, Moraiya, Ahmedabad 382210, India.
| |
Collapse
|
22
|
Syberg S, Brandao-Burch A, Patel JJ, Hajjawi M, Arnett TR, Schwarz P, Jorgensen NR, Orriss IR. Clopidogrel (Plavix), a P2Y12 receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo. J Bone Miner Res 2012; 27:2373-86. [PMID: 22714653 DOI: 10.1002/jbmr.1690] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clopidogrel (Plavix), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation, and activity in vitro; and (2) trabecular and cortical bone parameters in vivo. P2Y(12) receptor expression by osteoblasts and osteoclasts was confirmed using qPCR and Western blotting. Clopidogrel at 10 µM and 25 µM inhibited mineralized bone nodule formation by 50% and >85%, respectively. Clopidogrel slowed osteoblast proliferation with dose-dependent decreases in cell number (25% to 40%) evident in differentiating osteoblasts (day 7). A single dose of 10 to 25 µM clopidogrel to mature osteoblasts also reduced cell viability. At 14 days, ≥10 µM clopidogrel decreased alkaline phosphatase (ALP) activity by ≤70% and collagen formation by 40%, while increasing adipocyte formation. In osteoclasts, ≥1 µM clopidogrel inhibited formation, viability and resorptive activity. Twenty-week-old mice (n = 10-12) were ovariectomized or sham treated and dosed orally with clopidogrel (1 mg/kg) or vehicle (NaCl) daily for 4 weeks. Dual-energy X-ray absorptiometry (DXA) analysis showed clopidogrel-treated animals had decreases of 2% and 4% in whole-body and femoral bone mineral density (BMD), respectively. Detailed analysis of trabecular and cortical bone using micro-computed tomography (microCT) showed decreased trabecular bone volume in the tibia (24%) and femur (18%) of clopidogrel-treated mice. Trabecular number was reduced 20%, while trabecular separation was increased up to 15%. Trabecular thickness and cortical bone parameters were unaffected. Combined, these findings indicate that long-term exposure of bone cells to clopidogrel in vivo could negatively impact bone health.
Collapse
Affiliation(s)
- Susanne Syberg
- Research Centre of Ageing and Osteoporosis, Department of Medicine, Copenhagen University Hospital, Glostrup, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Orriss IR, Key ML, Brandao-Burch A, Patel JJ, Burnstock G, Arnett TR. The regulation of osteoblast function and bone mineralisation by extracellular nucleotides: The role of p2x receptors. Bone 2012; 51:389-400. [PMID: 22749889 DOI: 10.1016/j.bone.2012.06.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Extracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part, via the P2Y(2) receptor. We report here that primary rat osteoblasts express additional, functional P2 receptors (P2X1, P2X3, P2X4, P2X6, P2Y(12), P2Y(13) and P2Y(14)). Receptor expression changed with cellular differentiation: e.g., P2X4 receptor mRNA levels were 5-fold higher in mature, bone-forming osteoblasts, relative to immature, proliferating cells. The rank order of expression of P2 receptor mRNAs in mature osteoblasts was P2X4>>P2Y(1)>P2X2>P2Y(6)>P2X1>P2Y(2)>P2Y(4)>P2X6>P2X5>P2X7>P2X3>P2Y(14)>P2Y(13)>P2Y(12). Increased intracellular Ca(2+) levels following stimulation with P2X-selective agonists indicated the presence of functional receptors. To investigate whether P2X receptors might also regulate bone formation, osteoblasts were cultured for 14days with P2X receptor agonists. The P2X1 and P2X3 receptor agonists, α,β-meATP and β,γ-meATP inhibited bone mineralisation by 70% and 90%, respectively at 1μM, with complete abolition at ≥25μM; collagen production was unaffected. Bz-ATP, a P2X7 receptor agonist, reduced bone mineralisation by 70% and 99% at 10μM and 100μM, respectively. Osteoblast alkaline phosphatase activity was similarly inhibited by these agonists, whilst ecto-nucleotide pyrophosphatase/phosphodiesterase activity was increased. The effects of α,β-meATP and Bz-ATP were attenuated by antagonists selective for the P2X1 and P2X7 receptors, respectively. Our results show that normal osteoblasts express functional P2X receptors and that the P2X1 and P2X7 receptors negatively regulate bone mineralisation.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Komoto S, Kondo H, Fukuta O, Togari A. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast. Chronobiol Int 2012; 29:66-74. [PMID: 22217103 DOI: 10.3109/07420528.2011.636496] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most living organisms exhibit circadian rhythms that are generated by endogenous circadian clocks, the master one being present in the suprachiasmatic nuclei (SCN). Output signals from the SCN are believed to transmit standard circadian time to peripheral tissue through sympathetic nervous system and humoral routes. Therefore, the authors examined the expression of clock genes following treatment with the β-adrenergic receptor agonist, isoprenaline, or the synthetic glucocorticoid, dexamethasone, in cultured human osteoblast SaM-1 cells. Cells were treated with 10(-6) M isoprenaline or 10(-7) M dexamethasone for 2 h and gene expressions were determined using real-time polymerase chain reaction (PCR) analysis. Treatment with isoprenaline or dexamethasone induced the circadian expression of clock genes human period 1 (hPer1), hPer2, hPer3, and human brain and muscle Arnt-like protein 1 (hBMAL1). Isoprenaline or dexamethasone treatment immediately increased hPer1 and hPer2 and caused circadian oscillation of hPer1 and hPer2 with three peaks within 48 h. hPer3 expression had one peak after isoprenaline or dexamethasone treatment. hBMAL expression had two peaks after isoprenaline or dexamethasone treatment, the temporal pattern being in antiphase to that of the other clock genes. Dexamethasone treatment delayed the oscillation of all clock genes for 2-6 h compared with isoprenaline treatment. The authors also examined the expression of osteoblast-related genes hα-1 type I collagen (hCol1a1), halkaline phosphatase (hALP), and hosteocalcin (hOC). Isoprenaline induced oscillation of hCol1a1, but not hALP and hOC. On the other hand, dexamethasone induced oscillation of hCol1a1 and hALP, but not hOC. Isoprenaline up-regulated hCol1a1 expression, but dexamethasone down-regulated hCol1a1 and hALP expression in the first phase.
Collapse
Affiliation(s)
- Shintaro Komoto
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
26
|
Brandao-Burch A, Key ML, Patel JJ, Arnett TR, Orriss IR. The P2X7 Receptor is an Important Regulator of Extracellular ATP Levels. Front Endocrinol (Lausanne) 2012; 3:41. [PMID: 22654865 PMCID: PMC3355863 DOI: 10.3389/fendo.2012.00041] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/29/2012] [Indexed: 11/17/2022] Open
Abstract
Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function. In this study, we demonstrate that mouse osteoclasts and their precursors constitutively release ATP into their extracellular environment. Levels were highest at day 2 (precursor cells), possibly reflecting the high number of red blood cells and accessory cells present. Mature osteoclasts constitutively released ATP in the range 0.05-0.5 pmol/ml/cell. Both osteoclasts and osteoblasts express mRNA and protein for the P2X7 receptor. We found that in osteoclasts, expression levels are fourfold higher in mature cells relative to precursors, whilst in osteoblasts expression remains relatively constant during differentiation. Selective antagonists (0.1-100 μM AZ10606120, A438079, and KN-62) were used to determine whether this release was mediated via P2X7 receptors. AZ10606120, A438079, and KN-62, at 0.1-10 μM, decreased ATP release by mature osteoclasts by up to 70, 60, and 80%, respectively. No differences in cell viability were observed. ATP release also occurs via vesicular exocytosis; inhibitors of this process (1-100 μM NEM or brefeldin A) had no effect on ATP release from osteoclasts. P2X7 receptor antagonists (0.1-10 μM) also decreased ATP release from primary rat osteoblasts by up to 80%. These data show that ATP release via the P2X7 receptor contributes to extracellular ATP levels in osteoclast and osteoblast cultures, suggesting an important additional role for this receptor in autocrine/paracrine purinergic signaling in bone.
Collapse
Affiliation(s)
- Andrea Brandao-Burch
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Michelle L. Key
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Jessal J. Patel
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Timothy R. Arnett
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Isabel R. Orriss
- Department of Cell and Developmental Biology, University College LondonLondon, UK
- *Correspondence: Isabel R. Orriss, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK. e-mail:
| |
Collapse
|
27
|
Orriss IR, Wang N, Burnstock G, Arnett TR, Gartland A, Robaye B, Boeynaems JM. The P2Y(6) receptor stimulates bone resorption by osteoclasts. Endocrinology 2011; 152:3706-16. [PMID: 21828185 DOI: 10.1210/en.2011-1073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence indicates that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone remodeling. Osteoclasts (the bone-resorbing cell) and osteoblasts (the bone-forming cell) display expression of the G protein-coupled P2Y(6) receptor, but the role of this receptor in modulating cell function is unclear. Here, we demonstrate that extracellular UDP, acting via P2Y(6) receptors, stimulates the formation of osteoclasts from precursor cells, while also enhancing the resorptive activity of mature osteoclasts. Furthermore, osteoclasts derived from P2Y(6) receptor-deficient (P2Y(6)R(-/-)) animals displayed defective function in vitro. Using dual energy x-ray absorptiometry scanning and microcomputed tomographic analysis we showed that P2Y(6)R(-/-) mice have increased bone mineral content, cortical bone volume, and cortical thickness in the long bones and spine, whereas trabecular bone parameters were unaffected. Histomorphometric analysis showed the perimeter of the bone occupied by osteoclasts on the endocortical and trabecular surfaces was decreased in P2Y(6)R(-/-) mice. Taken together these results show the P2Y(6) receptor may play an important role in the regulation of bone cell function in vivo.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chang JY. Methylmercury-induced IL-6 release requires phospholipase C activities. Neurosci Lett 2011; 496:152-6. [PMID: 21513770 DOI: 10.1016/j.neulet.2011.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Methylmercury (MeHg) is a neurotoxin capable of causing severe damage to the CNS, especially in the developing fetus. Glia in the CNS release a number of cytokines that are important for proper CNS development and function. We reported earlier that MeHg could induce interleukin-6 (IL-6) release in primary mouse glia. This finding is significant considering previous reports indicating that sustained IL-6 exposure could be detrimental to cerebellar granule neurons, one of the major cellular targets of MeHg cytotoxicity. By using pharmacological antagonists against phophatidycholine- and phosphoinositol-specific phospholipase C, the current study indicated that phospholipase C activity was necessary for MeHg-induced IL-6 release. Results from pharmacological antagonists further suggested that the calcium signaling initiated by phospholipase C appeared essential for this event. In contrast, protein kinase C activity did not appear to be important. Even though mitogen-activated protein kinases were important for IL-6 release in some experimental systems, these enzymes did not appear to be required for MeHg-induced IL-6 release in glia. Based on these data and those reported by us and others, there is a possibility that MeHg-induced phospholipase C activation initiates a calcium signaling that causes phospholipase A(2) activation. This, in turn, leads to arachidonic acid and lysophosphatidyl choline generation, both of which are potent inducers for IL-6 release.
Collapse
Affiliation(s)
- Jason Y Chang
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
29
|
Sbordone L, Sbordone C, Filice N, Menchini-Fabris G, Baldoni M, Toti P. Gene clustering analysis in human osseous remodeling. J Periodontol 2010; 80:1998-2009. [PMID: 19961383 DOI: 10.1902/jop.2009.090290] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tentative bioinformatic predictions were performed to comprehend the complexity of the gene interaction networks of the T lymphocyte cell cycle and of human periodontitis. This study aims to identify and rank genes involved in osseous augmentation or bone remodeling to obtain groups with more numerous predicted associations called the leader gene clusters. METHODS An iterative search (consisting of a consecutive expansion-filtering loop) was performed for which only genes involved in a specific process were identified. For each gene, predicted associations with all other involved genes were obtained from a Web-available database (Search Tool for the Retrieval of Interacting Genes/Proteins) and the weighted number of links (WNL), given by the sum of only high-confidence predicted associations (results with a score > or =0.9), allowing gene ranking. Genes belonging to higher clustering classes were identified. RESULTS A total of 161 genes potentially involved in bone-volume augmentation and 128 genes connected with the bone-remodeling phenomenon were identified. For the bone-volume augmentation process, only one gene belonged to the leader gene group, whereas six other genes were classified as cluster B genes; for the bone-remodeling phenomenon, three leader genes were identified, whereas six other genes formed the cluster B group. No one gene belonged to leader gene clusters of both processes, whereas one gene of each higher cluster group belonged to the immediately lower cluster of the opposite process. Only three genes of the higher clusters were experimentally involved in both analyses. CONCLUSIONS A de novo identification was performed based on the data mining of leader genes involved in bone-volume augmentation or bone remodeling to acquire primeval information about their molecular basis and to plan future ad hoc targeted experiments. For several genes of the upper clusters, an active role in the bone processes was already known, but the present analysis suggested that they play a major role in the analyzed phenomena. The role of the transcription factors as leader genes and the numerous orphan genes (genes with WNL = 0) recovered probably attest to a lack of information regarding these processes, which could be further clarified through specific DNA microarray experiments.
Collapse
|
30
|
Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells. Toxicol Appl Pharmacol 2010; 244:308-14. [PMID: 20114058 DOI: 10.1016/j.taap.2010.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/27/2009] [Accepted: 01/13/2010] [Indexed: 11/22/2022]
Abstract
Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu & Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.
Collapse
|
31
|
Nishii N, Nejime N, Yamauchi C, Yanai N, Shinozuka K, Nakabayashi T. Effects of ATP on the intracellular calcium level in the osteoblastic TBR31-2 cell line. Biol Pharm Bull 2009; 32:18-23. [PMID: 19122274 DOI: 10.1248/bpb.32.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of extracellular ATP on TBR31-2 cells established from the bone marrow of transgenic mice harboring the temperature-sensitive simian virus (SV) 40 T-antigen gene. These cells showed the capacity to differentiate toward osteoblasts and could be enhanced by bone morphogenetic protein (BMP)-2, an inducer of osteoblasts. The intracellular calcium ion level ([Ca(2+)](i)) in differentiating TBR31-2 cells was measured by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe, Calcium Green 1/AM. P2 receptor agonists, such as ATP (1 microM), uridine 5'-triphosphate (1 microM), and ADP (1 microM), significantly increased the [Ca(2+)](i) of TBR31-2 cells in 2-d and 5-d cultures, but a potent P2X receptor agonist, alpha,beta-methylene ATP (10 microM), did not increase [Ca(2+)](i). The increase in [Ca(2+)](i) induced by ATP in the 2-d culture tended to be higher than in the 5-d culture. The increase in [Ca(2+)](i) of both cultures was inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, a P2 receptor antagonist. However, in an external Ca(2+)-free condition ATP-induced increase in [Ca(2+)](i) was unchanged at either stage. U73122, phospholipase C inhibitor and Thapsigargin, a calcium-pump inhibitor, significantly inhibited the increase in [Ca(2+)](i) at both stages. Reverse transcription-polymerase chain reaction analysis showed that the expression of P2Y receptor mRNA was higher in the 2-d culture than in the 5-d culture. These results indicate that ATP induces the increase in [Ca(2+)](i) from the calcium store through activating P2Y receptors in TBR31-2 cells and that the 2-d culture can respond to ATP more than the 5-d culture due to the higher expression of P2Y receptors. This suggests that the physiological role of ATP in osteoblasts is altered during differentiation.
Collapse
Affiliation(s)
- Naomi Nishii
- First Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Hirukawa K, Muraki K, Ohya S, Imaizumi Y, Togari A. Electrophysiological properties of a novel Ca(2+)-activated K(+) channel expressed in human osteoblasts. Calcif Tissue Int 2008; 83:222-9. [PMID: 18787886 DOI: 10.1007/s00223-008-9167-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 08/04/2008] [Indexed: 11/28/2022]
Abstract
Intracellular Ca(2+) mobilization plays important roles in cell survival, proliferation, and differentiation of osteoblasts. In this study, we identified a novel type of Ca(2+)-activated K(+) channel in human osteoblasts and investigated its physiological roles. Using RT-PCR methods and single-channel analysis in the patch-clamp technique, we found that BK and IK channels were genetically expressed in human osteoblasts and had electrophysiological properties similar to those reported previously for the channels in other organs (conductance, voltage dependence, and sensitivity to intracellular Ca(2+)). Taking advantage of the fact that ATP induces elevation of the intracellular Ca(2+) concentration in human osteoblasts, we successfully demonstrated that ATP-induced hyperpolarization was effectively inhibited by the IK channel blockers charybdotoxin and clotrimazole and by a P2 purinergic receptor antagonist, suramin, but not by the BK channel blockers tetraethylammonium chloride and iberiotoxin under the current-clamp mode of whole-cell clamp. The present study is the first to demonstrate the electrophysiological properties and functional expression of IK channels in human osteoblasts, findings which suggest that IK channels are regulators of membrane potential that give rise to intracellular Ca(2+) mobilization by physiological stimulation.
Collapse
Affiliation(s)
- Koji Hirukawa
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
33
|
Wongkhantee S, Yongchaitrakul T, Pavasant P. Mechanical stress induces osteopontin via ATP/P2Y1 in periodontal cells. J Dent Res 2008; 87:564-8. [PMID: 18502966 DOI: 10.1177/154405910808700601] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our previous study showed that mechanical stress induced the expression of osteopontin (OPN) in human periodontal ligament (HPDL) cells through the Rho kinase pathway. The increase of OPN expression via Rho kinase has been demonstrated to be triggered by nucleotide. Therefore, we hypothesized that nucleotides, particularly adenosine triphosphate (ATP), participated in the stress-induced OPN expression in HPDL cells. In the present study, the roles of ATP and P2Y1 purinoceptor were examined. Reverse-transcription polymerase chain-reaction and Western blot analysis revealed that the stress-induced ATP exerted its stimulatory effect on OPN expression. The inductive effect was attenuated by apyrase and completely inhibited by the Rho kinase inhibitor, as well as by the P2Y1 antagonist. We here propose that stress induces release of ATP, which in turn mediates Rho kinase activation through the P2Y1 receptor, resulting in the up-regulation of OPN. Stress-induced ATP could play a significant role in alveolar bone resorption.
Collapse
Affiliation(s)
- S Wongkhantee
- Department of Anatomy, Graduate School of Oral Biology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | |
Collapse
|
34
|
P2X7 receptor as sensitive flow sensor for ERK activation in osteoblasts. Biochem Biophys Res Commun 2008; 372:486-90. [PMID: 18501702 DOI: 10.1016/j.bbrc.2008.05.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022]
Abstract
The involvement of the P2 receptor in the activation of ERK induced by a short transient fluid flow stimulation in MC3T3-E1 osteoblasts was examined in the current study. The ERK activation induced by this transient fluid flow stimulation was followed by an increase in c-fos mRNA expression. Suramin, a non-selective P2 receptor antagonist, and two different P2X7 receptor (P2X7R) antagonists, ATP analogue (oxidized ATP) and dye (Brilliant blue G), inhibited fluid flow-induced ERK activation. However, the P2Y receptor pathway inhibitor U73122 did not abolish this ERK activation. The P2X7R agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) significantly increased ERK activation and this activation could be completely inhibited by oxidized ATP and Brilliant blue G. Our results suggest that P2X7R is a highly sensitive P2 receptor for fluid flow-induced ERK activation in osteoblasts.
Collapse
|
35
|
Aki Y, Kondo A, Nakamura H, Togari A. Lysophosphatidic acid-stimulated interleukin-6 and -8 synthesis through LPA1 receptors on human osteoblasts. Arch Oral Biol 2008; 53:207-13. [PMID: 17915188 DOI: 10.1016/j.archoralbio.2007.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 06/08/2007] [Accepted: 08/23/2007] [Indexed: 12/01/2022]
Abstract
Using human osteoblastic SaM-1 cells, we investigated the effects of lysophosphatidic acid (LPA) on the production of interleukin (IL)-6 and IL-8, molecules which are capable of stimulating the development of osteoclasts from their haematopoietic precursors, and examined the signal transduction systems involved in their effect on these cells. These human osteoblasts constitutively expressed endothelial differentiation genes (Edg)-2 and Edg-4, which are LPA receptors. LPA increased gene and protein expression of IL-6 and IL-8 in SaM-1 cells. The expression of IL-6 and IL-8 mRNAs was maximal at 1-3h, and the increase in IL-6 and IL-8 synthesis in response to lysophosphatidic acid (1-10 microM) occurred in a concentration-dependent manner. These increases were blocked by Ki16425, an Edg-2/7 antagonist. In addition, LPA caused an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which was inhibited by pretreatment with Ki16425 or 2-aminoethoxy-diphenylborate (2-APB), an inositol 1,4,5-triphosphate (IP(3)) receptor (IP(3)R) blocker. The pretreatment of SaM-1 cells with U-73122, a phospholipase C (PLC) inhibitor, and 2-APB also inhibited the increase in IL-6 and IL-8 synthesis in response to LPA. These findings suggest that extracellular LPA-induced IL-6 and IL-8 synthesis occurred through Edg-2 (LPA(1) receptor) and the activation of PLC and IP(3)-mediated intracellular calcium release in SaM-1 cells.
Collapse
Affiliation(s)
- Yoshio Aki
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | | | | | | |
Collapse
|
36
|
Slow spontaneous [Ca2+] i oscillations reflect nucleotide release from renal epithelia. Pflugers Arch 2007; 455:1105-17. [PMID: 18026749 DOI: 10.1007/s00424-007-0366-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/05/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca(2+) concentration [Ca(2+)](i) through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca(2+)](i) oscillations, a feature suggested to involve nucleotide signalling. In this study, fluo-4 loaded Madin-Darby canine kidney (MDCK) cells are used as a model for quantification and characterisation of spontaneous [Ca(2+)](i) increases in renal epithelia. Spontaneous [Ca(2+)](i) increases occurred randomly as single cell events. During an observation period of 1 min, 10.9 +/- 6.7% (n = 23) of the cells showed spontaneous [Ca(2+)](i) increases. Spontaneous adenosine triphosphate (ATP) release from MDCK cells was detected directly by luciferin/luciferase. Scavenging of ATP by apyrase or hexokinase markedly reduced the [Ca(2+)](i) oscillatory activity, whereas inhibition of ecto-ATPases (ARL67156) enhanced the [Ca(2+)](i) oscillatory activity. The association between spontaneous [Ca(2+)](i) increases and nucleotide signalling was further tested in 132-1N1 cells lacking P2 receptors. These cells hardly showed any spontaneous [Ca(2+)](i) increases. Transfection with either hP2Y(6) or hP2Y(2) receptors revealed a striking degree of oscillations. Similar spontaneous [Ca(2+)](i) increases were observed in freshly isolated, perfused mouse medullary thick ascending limb (mTAL). The oscillatory activity was reduced by basolateral apyrase and substantially lower in mTAL from P2Y(2) knock out mice (0.050 +/- 0.020 events per second, n = 8) compared to the wild type (0.147 +/- 0.018 events per second, n = 9). These findings indicate that renal epithelia spontaneously release nucleotides leading to P2-receptor-dependent [Ca(2+)](i) oscillations. Thus, tonic nucleotide release is likely to modify steady state renal function.
Collapse
|
37
|
Ashraf N, Meyer MH, Frick S, Meyer RA. Evidence for overgrowth after midfemoral fracture via increased RNA for mitosis. Clin Orthop Relat Res 2007; 454:214-22. [PMID: 16924177 DOI: 10.1097/01.blo.0000238783.21478.5d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Middiaphyseal femoral fractures in children and young rats stimulate linear femoral growth, a phenomenon commonly attributed to increased vascularity. To test for changes in mRNA expression of genes related to blood vessels, nerve fibers, cartilage, bone, and cell metabolism, we measured mRNA gene expression for all known rat genes in the physis at various times after diaphyseal fracture. Female Sprague-Dawley rats, 4 weeks of age at surgery, were subjected to a unilateral, simple, transverse, middiaphyseal femoral fracture stabilized with an intramedullary rod. At 0 (intact), 0.1, 0.4, 1, 2, 3, 4, and 6 weeks after fracture, the femoral head with the proximal physis was collected from fractured and intact femora. The RNA was extracted, processed to biotinlabeled cRNA, and hybridized to Affymetrix Rat 230 2.0 GeneChip microarrays. Transcripts from fracture-induced lengthening of the injured femora were compared to those of the intact contralateral femur. In the proximal physis, transcripts related to blood vessels and cartilage formation were down-regulated by fracture. Transcripts related to bone remodeling, nerve axon elongation, cell division, and protein synthesis were up-regulated by fracture. The data support increased mitotic activity in the physis after a midshaft fracture and not increased vascularity.
Collapse
Affiliation(s)
- Nomaan Ashraf
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | | | | | | |
Collapse
|
38
|
Yoshida H, Kobayashi D, Ohkubo S, Nakahata N. ATP stimulates interleukin-6 production via P2Y receptors in human HaCaT keratinocytes. Eur J Pharmacol 2006; 540:1-9. [PMID: 16716291 DOI: 10.1016/j.ejphar.2006.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 03/27/2006] [Accepted: 04/03/2006] [Indexed: 12/20/2022]
Abstract
We evaluated the role of ATP in functions of human HaCaT keratinocytes. ATP was released from HaCaT cells by changing the culture medium. Reverse transcription-polymerase chain reaction analysis revealed that HaCaT cells expressed multiple P2 purinergic receptor mRNAs. UTP was the most potent agonist to increase the intracellular Ca2+ concentration ([Ca2+]i). UTP and ATP caused the accumulation of [3H]inositol phosphates, suggesting that UTP binds to the Gq/11-coupled P2Y receptor. UTP increased IL-6 mRNA and protein levels, and the increases were inhibited by a P2 purinergic receptor antagonist (suramin, 300 microM). While a protein kinase C inhibitor (GF109203X, 10 microM) was without effect, an intracellular free Ca2+ chelator (BAPTA-AM, 50 microM) suppressed UTP-mediated IL-6 induction. These results suggest that 1) ATP is released from HaCaT cells upon physical stimulation and may act as an autocrine molecule, and 2) the stimulation of P2Y receptors causes IL-6 production via mRNA expression through [Ca2+]i elevation.
Collapse
Affiliation(s)
- Hirohide Yoshida
- Department of Cellular Signaling, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
39
|
Persson E, Voznesensky OS, Huang YF, Lerner UH. Increased expression of interleukin-6 by vasoactive intestinal peptide is associated with regulation of CREB, AP-1 and C/EBP, but not NF-kappaB, in mouse calvarial osteoblasts. Bone 2005; 37:513-29. [PMID: 16085472 DOI: 10.1016/j.bone.2005.04.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/31/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
Interleukin-6 (IL-6), and the related cytokines IL-11, leukemia inhibitory factor (LIF) and oncostatin M (OSM), are potent stimulators of osteoclastic bone resorption. In the present study, we have addressed the possibility that the neuropeptide vasoactive intestinal peptide (VIP) may regulate the production of and/or sensitivity to the IL-6 family of cytokines in mouse calvarial osteoblasts. VIP stimulated IL-6 mRNA expression and protein release in a time- and concentration-dependent manner, whereas mRNA expression of the IL-6 receptor, as well as mRNA expressions of IL-11, LIF, OSM and their cognate receptors, were unaffected by VIP. In cells transfected with the IL-6 promoter coupled to luciferase, VIP increased transcriptional activity. The effects of VIP were shared by the related neuropeptide PACAP-38, belonging to the same superfamily of neuropeptides, whereas secretin did not have any effect, indicating that the effects were mediated by VPAC2 receptors. The effects of VIP were potentiated by the cyclic AMP phosphodiesterase inhibitor rolipram and mimicked by forskolin, indicating the involvement of the cyclic AMP/protein kinase A pathway. This was further demonstrated by the facts that the stimulatory effect of VIP on luciferase activity could be reversed by the PKA inhibitors H-89 and KT5720 and was mimicked by cyclic AMP analogues selective for PKA, but not by those selective for Epac. In addition, VIP enhanced the phosphorylation of CREB, as assessed by both immunocytochemical analysis and Western blot. The DNA binding activity of nuclear extracts to C/EBP was increased by VIP, whereas binding to AP-1 was decreased. In contrast, DNA binding to NF-kappaB, as well as nuclear translocation of NF-kappaB and C/EBP, were unaffected by VIP. The mRNA expressions of C/EBPbeta, C/EBPdelta, C/EBPgamma, c-Jun, JunB, c-Fos, Fra-1 and IkappaBalpha and protein level of IkappaBalpha were all unaffected by VIP. These observations, together, demonstrate that VIP stimulates IL-6 production in osteoblasts by a mechanism likely to be mediated by VPAC2 receptors and dependent on cyclic AMP/protein kinase A/CREB activation and also involving the transcription factors C/EBP and AP-1.
Collapse
Affiliation(s)
- Emma Persson
- Department of Oral Cell Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|