1
|
Sarfstein R, Werner H. Tumor suppressor p53 regulates insulin receptor ( INSR) gene expression via direct binding to the INSR promoter. Oncotarget 2020; 11:2424-2437. [PMID: 32637033 PMCID: PMC7321701 DOI: 10.18632/oncotarget.27645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
A significant volume of clinical and epidemiological data provides support to the concept that insulin and the insulin receptor (INSR) have an important role in breast cancer. Tumor suppressor p53 is the most frequently mutated molecule in human cancer. The present study was aimed at evaluating the hypothesis that p53 governs the expression and activation of the INSR gene in breast cancer cells. In addition, the study was designed to investigate the mechanism of action of p53 in the context of INSR gene regulation. The availability of MCF7 breast cancer-derived cell lines with specific disruption of either the insulin-like growth factor-1 receptor (IGF1R) or INSR allowed us to address the impact of the IGF1R and INSR pathways on p53 expression. Data indicate that the INSR gene constitutes a target for p53 action. Wild-type p53 stimulated INSR promoter activity in control cells while disruption of endogenous IGF1R or INSR led to inhibition of promoter activity by p53. Mutant p53 strongly stimulated INSR promoter. Furthermore, p53 directly binds to the INSR promoter in cells with a disrupted IGF1R. Combined, our results identified complex functional and physical interactions between p53 and the INSR pathway. The implications of the p53-INSR interplay in breast cancer needs to be further investigated.
Collapse
Affiliation(s)
- Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Deyev IE, Mitrofanova AV, Zhevlenev ES, Radionov N, Berchatova AA, Popova NV, Serova OV, Petrenko AG. Structural determinants of the insulin receptor-related receptor activation by alkali. J Biol Chem 2013; 288:33884-33893. [PMID: 24121506 DOI: 10.1074/jbc.m113.483172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline medium and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1-333) or L2 domain (residues 334-462) or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (Leu-135, Gly-188, Arg-244, and vicinal His-318 and Lys-319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domain replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted toward alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points.
Collapse
Affiliation(s)
- Igor E Deyev
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia.
| | - Alla V Mitrofanova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| | - Egor S Zhevlenev
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nikita Radionov
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anastasiya A Berchatova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda V Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| | - Oxana V Serova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Müller E, Dunstheimer D, Klammt J, Friebe D, Kiess W, Kratzsch J, Kruis T, Laue S, Pfäffle R, Wallborn T, Heidemann PH. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation. PLoS One 2012; 7:e38220. [PMID: 22693602 PMCID: PMC3365032 DOI: 10.1371/journal.pone.0038220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 05/01/2012] [Indexed: 11/24/2022] Open
Abstract
Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.
Collapse
Affiliation(s)
- Eva Müller
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig, Germany
| | | | - Jürgen Klammt
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Daniela Friebe
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Wieland Kiess
- Department of Pediatrics, University Hospital for Children and Adolescents, Leipzig, Germany
- * E-mail:
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine and Molecular Diagnostics, Leipzig, Germany
| | - Tassilo Kruis
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Sandy Laue
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Tillmann Wallborn
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig, Germany
| | | |
Collapse
|
4
|
Deyev IE, Sohet F, Vassilenko KP, Serova OV, Popova NV, Zozulya SA, Burova EB, Houillier P, Rzhevsky DI, Berchatova AA, Murashev AN, Chugunov AO, Efremov RG, Nikol'sky NN, Bertelli E, Eladari D, Petrenko AG. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab 2011; 13:679-89. [PMID: 21641549 PMCID: PMC3119365 DOI: 10.1016/j.cmet.2011.03.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 12/18/2010] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
Abstract
The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.
Collapse
Affiliation(s)
- Igor E Deyev
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Until 2003 monogenetic aberrations that lead to a child that is born too small for gestational age (SGA) were poorly defined. With the first report of mutations within the insulin-like growth factor type 1 receptor (IGF1R) gene in two non-syndromic patients born SGA, who failed to thrive despite normal or even elevated IGF1 serum concentrations the concept of IGF1 resistance has been established. The identification of additional individuals bearing IGF1R mutations along with comparative, genetic, structural and biochemical studies has provided evidence for the pathogenic impact of the IGF1R mutations on human longitudinal growth. However, the variability in the occurrence of additional clinical manifestations, such as developmental delay, might indicate that the pleiotropic functions of the IGF-IGF1R system are partially redundant. It is apparent that we have just begun to unravel the multifaceted IGF1R actions at the interface of growth control, maintenance of metabolic homeostasis and neurodevelopment and neural protection.
Collapse
Affiliation(s)
- J Klammt
- Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, Leipzig, Germany.
| | | | | |
Collapse
|
6
|
Hanke S, Mann M. The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 2008; 8:519-34. [PMID: 19001411 DOI: 10.1074/mcp.m800407-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The insulin signaling pathway is critical in regulating glucose levels and is associated with diabetes, obesity, and longevity. A tyrosine phosphorylation cascade creates docking sites for protein interactions, initiating subsequent propagation of the signal throughout the cell. The phosphotyrosine interactome of this medically important pathway has not yet been studied comprehensively. We therefore applied quantitative interaction proteomics to exhaustively profile all potential phosphotyrosine-dependent interaction sites in its key players. We targeted and compared insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) as central distributors of the insulin signal, the insulin receptor, the insulin-like growth factor 1 receptor, and the insulin receptor-related receptor. Using the stable isotope labeling by amino acids in cell culture (SILAC) approach with phosphorylated versus non-phosphorylated bait peptides, we found phosphorylation-specific interaction partners for 52 out of 109 investigated sites. In addition, doubly and triply phosphorylated motifs provided insight into the combinatorial effects of phosphorylation events in close proximity to each other. Our results retrieve known interactions and substantially broaden the spectrum of potential interaction partners of IRS-1 and IRS-2. A large number of common interactors rationalize their extensive functional redundancy. However, several proteins involved in signaling and metabolism interact differentially with IRS-1 and IRS-2 and thus provide leads into their different physiological roles. Differences in interactions at the receptor level are reflected in multisite recruitment of SHP2 by the insulin-like growth factor 1 receptor and limited but exclusive interactions with the IRR. In common with other recent reports, our data furthermore hint at non-SH2 or phosphotyrosine-binding domain-mediated phosphotyrosine binding.
Collapse
Affiliation(s)
- Stefan Hanke
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Munich, Germany
| | | |
Collapse
|
7
|
Werner H, Weinstein D, Bentov I. Similarities and differences between insulin and IGF-I: structures, receptors, and signalling pathways. Arch Physiol Biochem 2008; 114:17-22. [PMID: 18465355 DOI: 10.1080/13813450801900694] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Insulin and the insulin-like growth factors (IGF-I, IGF-II) are pleiotropic hormones that have multiple roles in regulating vital metabolic and developmental processes. Although most early data suggested that insulin is mainly involved in metabolic activities (e.g. control of sugar levels) and IGF-I/II control growth and differentiation events (e.g. bone elongation, cell division), today, it is clear that there is cross-talk between the various ligands and receptors of the IGF family. As a result of these complex interactions, the spectrum of activities that were classically assigned to insulin or IGF-I/II has greatly expanded, and the signalling events mediated by the insulin and IGF receptors is the subject of intensive research. This review provides a comparative analysis of the structures, receptors, and signalling pathways of insulin and IGF-I.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
8
|
Yu Y, Kastin AJ, Pan W. Reciprocal interactions of insulin and insulin-like growth factor I in receptor-mediated transport across the blood-brain barrier. Endocrinology 2006; 147:2611-5. [PMID: 16497794 DOI: 10.1210/en.2006-0020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the blood-brain barrier limits free passage of peptides and proteins from the peripheral circulation to the central nervous system, specific transport systems for insulin and IGF-I have been identified. To further determine whether insulin and IGF-I share the same transport system, and if not, whether the two transport systems interact with each other, we performed multiple-time regression analysis in mice after iv injection and in situ brain perfusion of these peptides. Insulin and IGF-I caused reciprocal inhibition of each other's transport, although the effect of insulin was detected only by the in situ brain perfusion system. The interaction took place mainly at the step of cell surface binding as seen in cultured rat brain endothelium 4 brain microvessel endothelial cells. Further studies in 3T3 cells stably overexpressing the insulin receptor showed that the sharing of the transport systems was only partial. We conclude that insulin and IGF-I are mainly transported by their own transport systems, but a small amount can enter the brain by their "noncognate" transporters. The redundancy of their transport systems illustrates the regulatory function of the blood-brain barrier and reflects the importance of blood-borne insulin and IGF-I in the central nervous system.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|