1
|
Zinkle AP, Morgan RT, Nygaard R, Mancia F. Structural insights into polyisoprenyl-binding glycosyltransferases. Structure 2025; 33:639-651. [PMID: 39884274 PMCID: PMC11972162 DOI: 10.1016/j.str.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferases (GTs) catalyze the addition of sugars to diverse substrates facilitating complex glycoconjugate biosynthesis across all domains of life. When embedded in or associated with the membrane, these enzymes often depend on polyisoprenyl-phosphate or -pyrophosphate (PP) lipid carriers, including undecaprenyl phosphate in bacteria and dolichol phosphate in eukaryotes, to transfer glycan moieties. GTs that bind PP substrates (PP-GTs) are functionally diverse but share some common structural features within their family or subfamily, particularly with respect to how they interact with their cognate PP ligands. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided insight into the structures of PP-GTs and the modes by which they bind their PP ligands. Here, we explore the structural landscape of PP-GTs, focusing mainly on those for which there is molecular-level information on liganded states, and highlight how PP coordination modalities may be shared or differ among members of this diverse enzyme class.
Collapse
Affiliation(s)
- Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ryan T Morgan
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Zhou X, Liu B, Liu Y, Shi C, Fratamico PM, Zhang L, Wang D, Zhang J, Cui Y, Xu P, Shi X. Two homologous Salmonella serogroup C1-specific genes are required for flagellar motility and cell invasion. BMC Genomics 2021; 22:507. [PMID: 34225670 PMCID: PMC8259012 DOI: 10.1186/s12864-021-07759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background Salmonella is a major bacterial pathogen associated with a large number of outbreaks of foodborne diseases. Many highly virulent serovars that cause human illness belong to Salmonella serogroup C1, and Salmonella ser. Choleraesuis is a prominent cause of invasive infections in Asia. Comparative genomic analysis in our previous study showed that two homologous genes, SC0368 and SC0595 in Salmonella ser. Choleraesuis were unique to serogroup C1. In this study, two single-deletion mutants (Δ0368 and Δ0595) and one double-deletion mutant (Δ0368Δ0595) were constructed based on the genome. All these mutants and the wild-type strain were subjected to RNA-Seq analysis to reveal functional relationships of the two serogroup C1-specific genes. Results Data from RNA-Seq indicated that deletion of SC0368 resulted in defects in motility through repression of σ28 in flagellar regulation Class 3. Consistent with RNA-Seq data, results from transmission electron microcopy (TEM) showed that flagella were not present in △0368 and △0368△0595 mutants resulting in both swimming and swarming defects. Interestingly, the growth rates of two non-motile mutants △0368 and △0368△0595 were significantly greater than the wild-type, which may be associated with up-regulation of genes encoding cytochromes, enhancing bacterial proliferation. Moreover, the △0595 mutant was significantly more invasive in Caco-2 cells as shown by bacterial enumeration assays, and the expression of lipopolysaccharide (LPS) core synthesis-related genes (rfaB, rfaI, rfaQ, rfaY, rfaK, rfaZ) was down-regulated only in the △0368△0595 mutant. In addition, this study also speculated that these two genes might be contributing to serotype conversion for Salmonella C1 serogroup based on their apparent roles in biosynthesis of LPS and the flagella. Conclusion A combination of biological and transcriptomic (RNA-Seq) analyses has shown that the SC0368 and SC0595 genes are involved in biosynthesis of flagella and complete LPS, as well as in bacterial growth and virulence. Such information will aid to revealing the role of these specific genes in bacterial physiology and evolution within the serogroup C1. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07759-z.
Collapse
Affiliation(s)
- Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pina M Fratamico
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhua Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Liu Y, Lee C, Li F, Trček J, Bähre H, Guo RT, Chen CC, Chernobrovkin A, Zubarev R, Römling U. A Cyclic di-GMP Network Is Present in Gram-Positive Streptococcus and Gram-Negative Proteus Species. ACS Infect Dis 2020; 6:2672-2687. [PMID: 32786278 PMCID: PMC7551669 DOI: 10.1021/acsinfecdis.0c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 01/16/2023]
Abstract
The ubiquitous cyclic di-GMP (c-di-GMP) network is highly redundant with numerous GGDEF domain proteins as diguanylate cyclases and EAL domain proteins as c-di-GMP specific phosphodiesterases comprising those domains as two of the most abundant bacterial domain superfamilies. One hallmark of the c-di-GMP network is its exalted plasticity as c-di-GMP turnover proteins can rapidly vanish from species within a genus and possess an above average transmissibility. To address the evolutionary forces of c-di-GMP turnover protein maintenance, conservation, and diversity, we investigated a Gram-positive and a Gram-negative species, which preserved only one single clearly identifiable GGDEF domain protein. Species of the family Morganellaceae of the order Enterobacterales exceptionally show disappearance of the c-di-GMP signaling network, but Proteus spp. still retained one diguanylate cyclase. As another example, in species of the bovis, pyogenes, and salivarius subgroups as well as Streptococcus suis and Streptococcus henryi of the genus Streptococcus, one candidate diguanylate cyclase was frequently identified. We demonstrate that both proteins encompass PAS (Per-ARNT-Sim)-GGDEF domains, possess diguanylate cyclase catalytic activity, and are suggested to signal via a PilZ receptor domain at the C-terminus of type 2 glycosyltransferase constituting BcsA cellulose synthases and a cellulose synthase-like protein CelA, respectively. Preservation of the ancient link between production of cellulose(-like) exopolysaccharides and c-di-GMP signaling indicates that this functionality is even of high ecological importance upon maintenance of the last remnants of a c-di-GMP signaling network in some of today's free-living bacteria.
Collapse
Affiliation(s)
- Ying Liu
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Changhan Lee
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fengyang Li
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Janja Trček
- Faculty
of Natural Sciences and Mathematics, Department of Biology, University
of Maribor, 2000 Maribor, Slovenia
| | - Heike Bähre
- Research
Core Unit Metabolomics, Hannover Medical
School, D-30625 Hannover, Germany
| | - Rey-Ting Guo
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Chun-Chi Chen
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Alexey Chernobrovkin
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roman Zubarev
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department
of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Ute Römling
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Medrano-Soto A, Ghazi F, Hendargo KJ, Moreno-Hagelsieb G, Myers S, Saier MH. Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS One 2020; 15:e0231085. [PMID: 32320418 PMCID: PMC7176098 DOI: 10.1371/journal.pone.0231085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Here we provide bioinformatic evidence that the Organo-Arsenical Exporter (ArsP), Endoplasmic Reticulum Retention Receptor (KDELR), Mitochondrial Pyruvate Carrier (MPC), L-Alanine Exporter (AlaE), and the Lipid-linked Sugar Translocase (LST) protein families are members of the Transporter-Opsin-G Protein-coupled Receptor (TOG) Superfamily. These families share domains homologous to well-established TOG superfamily members, and their topologies of transmembranal segments (TMSs) are compatible with the basic 4-TMS repeat unit characteristic of this Superfamily. These repeat units tend to occur twice in proteins as a result of intragenic duplication events, often with subsequent gain/loss of TMSs in many superfamily members. Transporters within the ArsP family allow microbial pathogens to expel toxic arsenic compounds from the cell. Members of the KDELR family are involved in the selective retrieval of proteins that reside in the endoplasmic reticulum. Proteins of the MPC family are involved in the transport of pyruvate into mitochondria, providing the organelle with a major oxidative fuel. Members of family AlaE excrete L-alanine from the cell. Members of the LST family are involved in the translocation of lipid-linked glucose across the membrane. These five families substantially expand the range of substrates of transport carriers in the superfamily, although KDEL receptors have no known transport function. Clustering of protein sequences reveals the relationships among families, and the resulting tree correlates well with the degrees of sequence similarity documented between families. The analyses and programs developed to detect distant relatedness, provide insights into the structural, functional, and evolutionary relationships that exist between families of the TOG superfamily, and should be of value to many other investigators.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | | - Scott Myers
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Rismondo J, Haddad TFM, Shen Y, Loessner MJ, Gründling A. GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis. ACTA ACUST UNITED AC 2020; 6:100038. [PMID: 32743150 PMCID: PMC7389260 DOI: 10.1016/j.tcsw.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 11/26/2022]
Abstract
The cell wall polymers wall teichoic acid (WTA) and lipoteichoic acid (LTA) are often modified with glycosyl and D-alanine residues. Recent studies have shown that a three-component glycosylation system is used for the modification of LTA in several Gram-positive bacteria including Bacillus subtilis and Listeria monocytogenes. In the L. monocytogenes 1/2a strain 10403S, the cytoplasmic glycosyltransferase GtlA is thought to use UDP-galactose to produce the C55-P-galactose lipid intermediate, which is transported across the membrane by an unknown flippase. Next, the galactose residue is transferred onto the LTA backbone on the outside of the cell by the glycosyltransferase GtlB. Here we show that GtcA is necessary for the glycosylation of LTA in L. monocytogenes 10403S and B. subtilis 168 and we hypothesize that these proteins act as C55-P-sugar flippases. With this we revealed that GtcA is involved in the glycosylation of both teichoic acid polymers in L. monocytogenes 10403S, namely WTA with N-acetylglucosamine and LTA with galactose residues. These findings indicate that the L. monocytogenes GtcA protein can act on different C55-P-sugar intermediates. Further characterization of GtcA in L. monocytogenes led to the identification of residues essential for its overall function as well as residues, which predominately impact WTA or LTA glycosylation.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Talal F M Haddad
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Qian C, Du Y, Li H, Wu P, Wang L, Wei Y, Cao H, Yin Z, Zhang Y, Zhu Y, Guo X, Liu B. Development of rapid and simple experimental and in silico serotyping systems for Citrobacter. Future Microbiol 2018; 13:1511-1522. [PMID: 30099919 PMCID: PMC6240886 DOI: 10.2217/fmb-2018-0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim: Members of the genus Citrobacter are important opportunistic pathogens responsible for high mortality rate. Therefore, in this study, we aimed to develop efficient and accurate Citrobacter typing schemes for clinical detection and epidemiological surveillance. Materials & methods: Using genomic and experimental analyses, we located the O-antigen biosynthesis gene clusters in Citrobacter genome for the first time, and used comparative genomic analyses to reveal the specific genes in different Citrobacter serotypes. Results: Based on the specific genes in O-antigen biosynthesis gene clusters of Citrobacter, we established experimental and in silico serotyping systems for this bacterium. Conclusion: Both serotyping tools are reliable, and our observations are biologically and clinically relevant for understanding and managing Citrobacter infection.
Collapse
Affiliation(s)
- Chengqian Qian
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Yuhui Du
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Huiying Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Pan Wu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Lu Wang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Hengchun Cao
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Yang Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Yiming Zhu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, PR China.,TEDA Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, PR China
| |
Collapse
|
8
|
Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 2016; 6:37389. [PMID: 27869215 PMCID: PMC5116747 DOI: 10.1038/srep37389] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere.
Collapse
|
9
|
Mann E, Whitfield C. A widespread three-component mechanism for the periplasmic modification of bacterial glycoconjugates. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The diverse structures of bacterial glycoconjugates are generally established during the early stages of synthesis by the activities of nucleotide sugar-dependent glycosyltransferases active in the cytoplasm. However, in some cases, further modifications of varying complexity occur after the glycoconjugate is exported to the periplasm. These processes are distinguished by the involvement of polyprenyl monosphosphoryl donors and require glycosyltransferases possessing GT-C folds. Established prototypes are found in modifications of some bacterial lipopolysaccharides, where 4-amino-4-deoxy-l-arabinose is added to lipid A and glucose side branches are used to modify O-antigens. Here we review the current understanding of these systems and describe similarities to other periplasmic glycan modifications in bacteria and the N-glycosylation pathway for assembly of eukaryotic glycoproteins.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection. PLoS One 2016; 11:e0155115. [PMID: 27171009 PMCID: PMC4869667 DOI: 10.1371/journal.pone.0155115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Hafnia alvei is a facultative and rod-shaped gram-negative bacterium
that belongs to the Enterobacteriaceae family. Although it has been
more than 50 years since the genus was identified, very little is known about
variations among Hafnia species. Diversity in O-antigens
(O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to
different hosts and situations and variability in the environment. Antigenic
variation is also an important factor in pathogenicity that has been used to define
clones within a number of species. The genes that are required to synthesize OPS are
always clustered within the bacterial chromosome. A serotyping scheme including 39
O-serotypes has been proposed for H. alvei, but it
has not been correlated with known OPS structures, and no previous report has
described the genetic features of OPS. In this study, we obtained the genome
sequences of 21 H. alvei strains (as defined by
previous immunochemical studies) with different lipopolysaccharides. This is the
first study to show that the O-antigen gene cluster in H.
alvei is located between mpo and
gnd in the chromosome. All 21 of the OPS gene clusters contain
both the wzx gene and the wzy gene and display a
large number of polymorphisms. We developed an O serotype-specific
wzy-based suspension array to detect all 21 of the distinct OPS
forms we identified in H. alvei. To the best of our
knowledge, this is the first report to identify the genetic features of
H. alvei antigenic variation and to develop a
molecular technique to identify and classify different serotypes.
Collapse
|
11
|
Ardiccioni C, Clarke OB, Tomasek D, Issa HA, von Alpen DC, Pond HL, Banerjee S, Rajashankar KR, Liu Q, Guan Z, Li C, Kloss B, Bruni R, Kloppmann E, Rost B, Manzini MC, Shapiro L, Mancia F. Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 2016; 7:10175. [PMID: 26729507 PMCID: PMC4728340 DOI: 10.1038/ncomms10175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.
Collapse
Affiliation(s)
- Chiara Ardiccioni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Oliver B. Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Habon A. Issa
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Desiree C. von Alpen
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Heather L. Pond
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Qun Liu
- New York Structural Biology Center, X4 Beamlines, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chijun Li
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - M. Chiara Manzini
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
12
|
GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis. J Bacteriol 2015; 197:3686-97. [PMID: 26369580 DOI: 10.1128/jb.00628-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacterium tuberculosis possesses a thick and highly hydrophobic cell wall principally composed of a mycolyl-arabinogalactan-peptidoglycan complex, which is critical for survival and virulence. DprE1 is a well-characterized component of decaprenyl-phospho-ribose epimerase, which produces decaprenyl-phospho-arabinose (DPA) for the biosynthesis of mycobacterial arabinans. Upstream of dprE1 lies rv3789, which encodes a short transmembrane protein of the GtrA family, whose members are often involved in the synthesis of cell surface polysaccharides. We demonstrate that rv3789 and dprE1 are cotranscribed from a common transcription start site situated 64 bp upstream of rv3789. Topology mapping revealed four transmembrane domains in Rv3789 and a cytoplasmic C terminus consistent with structural models built using analysis of sequence coevolution. To investigate its role, we generated an unmarked rv3789 deletion mutant in M. tuberculosis. The mutant was characterized by impaired growth and abnormal cell morphology, since the cells were shorter and more swollen than wild-type cells. This phenotype likely stems from the decreased incorporation of arabinan into arabinogalactan and was accompanied by an accumulation of DPA. A role for Rv3789 in arabinan biosynthesis was further supported by its interaction with the priming arabinosyltransferase AftA, as demonstrated by a two-hybrid approach. Taken together, the data suggest that Rv3789 does not act as a DPA flippase but, rather, recruits AftA for arabinogalactan biosynthesis. IMPORTANCE Upstream of the essential dprE1 gene, encoding a key enzyme of the decaprenyl phospho-arabinose (DPA) pathway, lies rv3789, coding for a short transmembrane protein of unknown function. In this study, we demonstrated that rv3789 and dprE1 are cotranscribed from a common transcription start site located 64 bp upstream of rv3789 in M. tuberculosis. Furthermore, the deletion of rv3789 led to a reduction in arabinan content and to an accumulation of DPA, confirming that Rv3789 plays a role in arabinan biosynthesis. Topology mapping, structural modeling, and protein interaction studies suggest that Rv3789 acts as an anchor protein recruiting AftA, the first arabinosyl transferase. This investigation provides deeper insight into the mechanism of arabinan biosynthesis in mycobacteria.
Collapse
|
13
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
14
|
Jakhetia R, Talukder KA, Verma NK. Isolation, characterization and comparative genomics of bacteriophage SfIV: a novel serotype converting phage from Shigella flexneri. BMC Genomics 2013; 14:677. [PMID: 24090466 PMCID: PMC3851460 DOI: 10.1186/1471-2164-14-677] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shigella flexneri is the major cause of shigellosis in the developing countries. The O-antigen component of the lipopolysaccharide is one of the key virulence determinants required for the pathogenesis of S. flexneri. The glucosyltransferase and/or acetyltransferase genes responsible for the modification of the O-antigen are encoded by temperate serotype converting bacteriophage present in the S. flexneri genome. Several serotype converting phages have previously been isolated and characterized, however, attempts to isolate a serotype converting phage which encodes the modification genes of serotypes 4a strain have not been successful. RESULTS In this study, a novel temperate serotype converting bacteriophage SfIV was isolated. Lysogenisation of phage SfIV converted serotype Y strain to serotype 4a. Electron microscopy indicated that SfIV belongs to Myoviridae family. The 39,758 bp genome of phage SfIV encompasses 54 open reading frames (orfs). Protein level comparison of SfIV with other serotype converting phages of S. flexneri revealed that SfIV is similar to phage SfII and SfV. The comparative analysis also revealed that SfIV phage contained five proteins which were not found in any other phages of S. flexneri. These proteins were: a tail fiber assembly protein, two hypothetical proteins with no clear function, and two other unknown proteins which were encoded by orfs present on a moron, that presumably got introduced in SfIV genome from another species via a transposon. These unique proteins of SfIV may play a role in the pathogenesis of the host. CONCLUSIONS This study reports the isolation and complete genome sequence analysis of bacteriophage SfIV. The SfIV phage has a host range significantly different from the other phages of Shigella. Comparative genome analysis identified several proteins unique to SfIV, which may potentially be involved in the survival and pathogenesis of its host. These findings will further our understanding on the evolution of these phages, and will also facilitate studies on development of new phage vectors and therapeutic agents to control infections caused by S. flexneri.
Collapse
Affiliation(s)
- Richa Jakhetia
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Bldg, 134 Linnaeus Way, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
15
|
A putative bactoprenol glycosyltransferase, CsbB, in Bacillus subtilis activates SigM in the absence of co-transcribed YfhO. Biochem Biophys Res Commun 2013; 436:6-11. [PMID: 23632331 DOI: 10.1016/j.bbrc.2013.04.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022]
Abstract
Bacteria are equipped with complex cell surface structures, such as cell walls. How they maintain cell surface integrity through cell wall metabolism during growth and adaptation to unfavorable environmental conditions is still elusive. In the Gram-positive soil bacterium Bacillus subtilis, one extracytoplasmic function (ECF) sigma factor, SigM, is believed to play a primary role in cell surface integrity. Here, we find that expression of CsbB, which is known to be involved in the extracellular stress response, causes constitutive activation of SigM when YfhO, a membrane protein with unknown function, is lost. CsbB has similarity with the well-characterized bactoprenol glucosyltransferase GtrB found in Gram-negative bacteria. Substitution of a single amino acid residue at the putative catalytic site of CsbB abolishes this constitutive activation, and expression of Escherichia coli GtrB in B. subtilis causes similar effects as expression of CsbB, suggesting that SigM is activated by the glycosyltransferase activity of CsbB. A comparison with the Gtr system in Gram-negative bacteria suggests that accumulation of glycosylated bactoprenol catalyzed by CsbB reduces the bactoprenol pool in the absence of YfhO. Reduction of bactoprenol synthesis causes similar effects as expression of CsbB. We propose that it is the shortage of available bactoprenol within a cell that induces SigM activity.
Collapse
|
16
|
Rusden AD, Stephenson DP, Verma NK. Topological investigation of glucosyltransferase V in Shigella flexneri using the substituted cysteine accessibility method. Biochemistry 2013; 52:2655-61. [PMID: 23534399 DOI: 10.1021/bi400168h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modification of the lipopolysaccharide O-antigen of Shigella converts the serotype, which is significant as acquired immune responses are serotype specific. Glucosyltransferases (Gtrs) modify the O-antigen by the addition of glucosyl-groups; however the precise mechanism of O-antigen modification is not fully understood. This study aims to substantiate inferences made on the GtrV topological structure using the substituted cysteine accessibility method (SCAM). Twenty-one amino acid residues were tested to clarify three features of GtrV: the extramembrane regions, a proposed reentrant loop, and a membrane border region. Overall, the results agreed with a previous topology proposed for GtrV. The topology of GtrV consists of 11 extramembrane regions with a cytoplasmic N-terminus, periplasmic C-terminus and 9 transmembrane (TM) helices. The existence of a reentrant loop between TM helices IV and V was verified, and the cytoplasmic membrane border region of TM helix II was examined in depth.
Collapse
Affiliation(s)
- Anthony D Rusden
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | |
Collapse
|
17
|
Larrouy-Maumus G, Škovierová H, Dhouib R, Angala SK, Zuberogoitia S, Pham H, Villela AD, Mikušová K, Noguera A, Gilleron M, Valentínová L, Korduláková J, Brennan PJ, Puzo G, Nigou J, Jackson M. A small multidrug resistance-like transporter involved in the arabinosylation of arabinogalactan and lipoarabinomannan in mycobacteria. J Biol Chem 2012; 287:39933-41. [PMID: 23038254 DOI: 10.1074/jbc.m112.400986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of the major cell envelope glycoconjugates of Mycobacterium tuberculosis is topologically split across the plasma membrane, yet nothing is known of the transporters required for the translocation of lipid-linked sugar donors and oligosaccharide intermediates from the cytoplasmic to the periplasmic side of the membrane in mycobacteria. One of the mechanisms used by prokaryotes to translocate lipid-linked phosphate sugars across the plasma membrane relies on translocases that share resemblance with small multidrug resistance transporters. The presence of an small multidrug resistance-like gene, Rv3789, located immediately upstream from dprE1/dprE2 responsible for the formation of decaprenyl-monophosphoryl-β-D-arabinose (DPA) in the genome of M. tuberculosis led us to investigate its potential involvement in the formation of the major arabinosylated glycopolymers, lipoarabinomannan (LAM) and arabinogalactan (AG). Disruption of the ortholog of Rv3789 in Mycobacterium smegmatis resulted in a reduction of the arabinose content of both AG and LAM that accompanied the accumulation of DPA in the mutant cells. Interestingly, AG and LAM synthesis was restored in the mutant not only upon expression of Rv3789 but also upon that of the undecaprenyl phosphate aminoarabinose flippase arnE/F genes from Escherichia coli. A bacterial two-hybrid system further indicated that Rv3789 interacts in vivo with the galactosyltransferase that initiates the elongation of the galactan domain of AG. Biochemical and genetic evidence is thus consistent with Rv3789 belonging to an AG biosynthetic complex, where its role is to reorient DPA to the periplasm, allowing this arabinose donor to then be used in the buildup of the arabinan domains of AG and LAM.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nair A, Korres H, Verma NK. Topological characterisation and identification of critical domains within glucosyltransferase IV (GtrIV) of Shigella flexneri. BMC BIOCHEMISTRY 2011; 12:67. [PMID: 22188643 PMCID: PMC3259042 DOI: 10.1186/1471-2091-12-67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022]
Abstract
Background The three bacteriophage genes gtrA, gtrB and gtr(type) are responsible for O-antigen glucosylation in Shigella flexneri. Both gtrA and gtrB have been demonstrated to be highly conserved and interchangeable among serotypes while gtr(type) was found to be specific to each serotype, leading to the hypothesis that the Gtr(type) proteins are responsible for attaching glucosyl groups to the O-antigen in a site- and serotype- specific manner. Based on the confirmed topologies of GtrI, GtrII and GtrV, such interaction and attachment of the glucosyl groups to the O-antigen has been postulated to occur in the periplasm. Results In this study, the topology of GtrIV was experimentally determined by creating different fusions between GtrIV and a dual-reporter protein, PhoA/LacZ. This study shows that GtrIV consists of 8 transmembrane helices, 2 large periplasmic loops, 2 small cytoplasmic N- and C- terminal ends and a re-entrant loop that occurs between transmembrane helices III and IV. Though this topology differs from that of GtrI, GtrII, GtrV and GtrX, it is very similar to that of GtrIc. Furthermore, both the N-terminal periplasmic and the C-terminal periplasmic loops are important for GtrIV function as shown via a series of loop deletion experiments and the creation of chimeric proteins between GtrIV and its closest structural homologue, GtrIc. Conclusion The current study provides the basis for elucidating the structure and mechanism of action of this important O-antigen modifying glucosyltransferase.
Collapse
Affiliation(s)
- Anesh Nair
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
19
|
Liu B, Zhang L, Zhu X, Shi C, Chen J, Liu W, He X, Shi X. PCR identification of Salmonella serogroups based on specific targets obtained by comparative genomics. Int J Food Microbiol 2011; 144:511-8. [DOI: 10.1016/j.ijfoodmicro.2010.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 11/01/2010] [Accepted: 11/07/2010] [Indexed: 11/28/2022]
|
20
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
21
|
Ramiscal RR, Tang SS, Korres H, Verma NK. Structural and functional divergence of the newly identified GtrIc from its Gtr family of conserved Shigella flexneri serotype-converting glucosyltransferases. Mol Membr Biol 2010; 27:114-22. [PMID: 20095950 DOI: 10.3109/09687680903552250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosyltransferases (Gtrs) and O-acetyltransferase (Oac) are integral membrane proteins embedded within the cytoplasmic membrane of Shigella flexneri. Gtrs and Oac are responsible for unidirectional host serotype conversion by altering the epitopic properties of the bacterial surface lipopolysaccharide (LPS) O-antigen. In this study, we present the membrane topology of a recently recognized Gtr, GtrIc, which is known to mediate S. flenxeri serotype switching from 1a to 1c. The GtrIc topology is shown to deviate from those typically seen in S. flexneri Gtrs. GtrIc has 11 hydrophilic loops, 10 transmembrane helices, a double intramembrane dipping loop 5, and a cytoplasmic N- and C-terminus. Along with a unique membrane topology, the identification of non-critical Gtr-conserved peptide motifs within large periplasmic loops (N-terminal D/ExD/E and C-terminal KK), which have previously been proven essential for the activity of other Gtrs, challenge current opinions of a similar mechanism for enzyme function between members of the S. flexneri Gtr family.
Collapse
Affiliation(s)
- Roybel R Ramiscal
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
22
|
Moscoso JA, Korres H, George DT, Verma NK. Identification of active site residues in the Shigella flexneri glucosyltransferase GtrV. Mol Membr Biol 2010; 27:104-13. [PMID: 20334579 DOI: 10.3109/09687680903581267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotype-specific glucosyltransferase, GtrV, is responsible for glucosylation of the O-antigen repeating unit of Shigella flexneri serotype 5a strains. GtrV is an integral inner membrane protein with two essential periplasmic loops: the large Loop 2 and the C-terminal Loop 10. In this study, the full length of the Loop 2 was shown to be necessary for GtrV function. Site-directed mutagenesis within this loop revealed that conserved aromatic and charged amino acids have a critical role in the formation of the active site. Sequential deletions of the C-terminal end indicated that this region may be essential for assembly of the protein in the cytoplasmic membrane. The highly conserved FWAED motif is thought to form the substrate-binding site and was found to be critical in GtrV and GtrX, a serotype-specific glucosyltransferase with homology to GtrV. The data presented constitutes a targeted analysis of the formation of the GtrV active site and highlights the essential role of the large periplasmic Loop 2 in its function.
Collapse
Affiliation(s)
- Joana A Moscoso
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology & Environment, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
23
|
King JD, Vinogradov E, Preston A, Li J, Maskell DJ. Post-assembly modification of Bordetella bronchiseptica O polysaccharide by a novel periplasmic enzyme encoded by wbmE. J Biol Chem 2008; 284:1474-83. [PMID: 19015265 PMCID: PMC2615507 DOI: 10.1074/jbc.m807729200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bordetella bronchiseptica is a pathogen of humans and animals that
colonizes the respiratory tract. It produces a lipopolysaccharide O antigen
that contains a homopolymer of
2,3-dideoxy-2,3-diacetamido-l-galacturonic acid
(l-GalNAc3NAcA). Some of these sugars are found in the uronamide
form (l-GalNAc3NAcAN), and there is no discernible pattern in the
distribution of amides along the chain. A B. bronchiseptica wbmE
mutant expresses an O polysaccharide unusually rich in uronamides. The WbmE
protein localizes to the periplasm and catalyzes the deamidation of
uronamide-rich O chains in lipopolysaccharide purified from the mutant, to
attain a wild-type uronamide/uronic acid ratio. WbmE is a member of the
papain-like transglutaminase superfamily, and this categorization is
consistent with a deamidase role. The periplasmic location of WbmE and its
acceptance of complete lipopolysaccharide as substrate indicate that it
operates at a late stage in lipopolysaccharide biosynthesis, after
polymerization and export of the O chain from the cytoplasm. This is the first
report of such a modification of O antigen after assembly. The expression of
wbmE is controlled by the Bordetella virulence gene
two-component regulatory system, BvgAS, suggesting that this deamidation is a
novel mechanism by which these bacteria modify their cell surface charge in
response to environmental stimuli.
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Thanweer F, Tahiliani V, Korres H, Verma NK. Topology and identification of critical residues of the O-acetyltransferase of serotype-converting bacteriophage, SF6, of Shigella flexneri. Biochem Biophys Res Commun 2008; 375:581-5. [PMID: 18755141 DOI: 10.1016/j.bbrc.2008.08.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
Abstract
The modification of the LPS O-antigen, seen in the diverse serotypes of Shigella flexneri is brought about by the glucosyltransferases (Gtr) and the O-acetyltransferase (Oac). In this study, we establish the membrane topology of Oac using the dual reporter PhoA-LacZalpha. We have determined that Oac is an integral membrane protein with 10 transmembrane regions. The hydrophilic N- and C-termini are oriented in the cytoplasm. Functionally important cytoplasmic and periplasmic loops have also been identified. Furthermore, cytoplasmic residues R73 and R75R76 were found to be critical to Oac function.
Collapse
Affiliation(s)
- Farzaana Thanweer
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, ACT 0200, Australia
| | | | | | | |
Collapse
|
25
|
Urushibata Y, Ebisu S, Matsui I. A thermostable dolichol phosphoryl mannose synthase responsible for glycoconjugate synthesis of the hyperthermophilic archaeon Pyrococcus horikoshii. Extremophiles 2008; 12:665-76. [PMID: 18563288 DOI: 10.1007/s00792-008-0173-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
Dolichol phosphoryl mannose synthase (DPM synthase) is an essential enzyme in the synthesis of N- and O-linked glycoproteins and the glycosylphosphatidyl-inositol anchor. An open reading frame, PH0051, from the hyperthermophilic archaeon Pyrococcus horikoshii encodes a DPM synthase ortholog, PH0051p. A full-length version of PH0051p was produced using an E. coli in vitro translation system and its thermostable activity was confirmed with a DPM synthesis assay, although the in vitro productivity was not sufficient for further characterization. Then, a yeast expression vector coding for the N-terminal catalytic domain of PH0051p was constructed. The N-terminal domain, named DPM(1-237), was successfully expressed, and turned out to be a membrane-bound form in Saccharomyces cerevisiae cells, even without its hydrophobic C-terminal domain. The membrane-bound DPM(1-237) was solubilized with a detergent and purified to homogeneity. The purified DPM(1-237) showed thermostability at up to 75 degrees C and an optimum temperature of 60 degrees C. The truncated mutant DPM(1-237) required Mg(2+) and Mn(2+) ions as cofactors the same as eukaryotic DPM synthases. By site-directed mutagenesis, Asp(89) and Asp(91) located at the most conserved motif, DXD, were confirmed as the catalytic residues, the latter probably bound to a cofactor, Mg(2+). DPM(1-237) was able to utilize both acceptor lipids, dolichol phosphate and the prokaryotic carrier lipid C(55)-undecaprenyl phosphate, with Km values of 1.17 and 0.59 microM, respectively. The DPM synthase PH0051p seems to be a key component of the pathway supplying various lipid-linked phosphate sugars, since P. horikoshii could synthesize glycoproteins as well as the membrane-associated PH0051p in vivo.
Collapse
Affiliation(s)
- Yuji Urushibata
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
26
|
Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 2007; 189:7417-25. [PMID: 17675385 PMCID: PMC2168447 DOI: 10.1128/jb.00375-07] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We fully annotated two large plasmids, pMOL28 (164 open reading frames [ORFs]; 171,459 bp) and pMOL30 (247 ORFs; 233,720 bp), in the genome of Cupriavidus metallidurans CH34. pMOL28 contains a backbone of maintenance and transfer genes resembling those found in plasmid pSym of C. taiwanensis and plasmid pHG1 of C. eutrophus, suggesting that they belong to a new class of plasmids. Genes involved in resistance to the heavy metals Co(II), Cr(VI), Hg(II), and Ni(II) are concentrated in a 34-kb region on pMOL28, and genes involved in resistance to Ag(I), Cd(II), Co(II), Cu(II), Hg(II), Pb(II), and Zn(II) occur in a 132-kb region on pMOL30. We identified three putative genomic islands containing metal resistance operons flanked by mobile genetic elements, one on pMOL28 and two on pMOL30. Transcriptomic analysis using quantitative PCR and microarrays revealed metal-mediated up-regulation of 83 genes on pMOL28 and 143 genes on pMOL30 that coded for all known heavy metal resistance proteins, some new heavy metal resistance proteins (czcJ, mmrQ, and pbrU), membrane proteins, truncated transposases, conjugative transfer proteins, and many unknown proteins. Five genes on each plasmid were down-regulated; for one of them, chrI localized on pMOL28, the down-regulation occurred in the presence of five cations. We observed multiple cross-responses (induction of specific metal resistance by other metals), suggesting that the cellular defense of C. metallidurans against heavy metal stress involves various regulons and probably has multiple stages, including a more general response and a more metal-specific response.
Collapse
Affiliation(s)
- Sébastien Monchy
- Molecular & Cellular Biology, Institute for Health, Environment & Safety, Center of Studies for Nuclear Energy, SCK CEN, B-2400, Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Ren H, Dover LG, Islam ST, Alexander DC, Chen JM, Besra GS, Liu J. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 2007; 63:1345-59. [PMID: 17302813 DOI: 10.1111/j.1365-2958.2007.05603.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipooligosaccharides (LOSs) are antigenic glycolipids that are present in some species of Mycobacterium including the Canetti strain of M. tuberculosis. The core LOS structures from several mycobacterial organisms have been established, but the biosynthetic pathways of LOSs remain unknown. In this study, we describe two transposon insertion mutants of M. marinum that exhibit altered colony morphology. Cell wall analysis reveals that the MRS1271 mutant is defective in the synthesis of LOS-II, whereas the MRS1178 mutant accumulates an intermediate between LOS-I and -II. The genetic lesions were localized to two genes, MM2309 and MM2332. MM2309 encodes a UDP-glucose dehydrogenase that is involved in the synthesis of d-xylose. MM2332 is predicted to encode a decarboxylase. These two genes and a previously identified losA gene are localized in a gene cluster likely to be involved in the biosynthesis of LOSs. Our results also show that LOSs play an important role in sliding motility, biofilm formation, and infection of host macrophages. Taken together, our studies have identified, for the first time, a LOS biosynthetic locus. This is an important step in assessing the differential distribution of LOSs among Mycobacterium species and understanding the role of LOSs in mycobacterial virulence.
Collapse
Affiliation(s)
- Huiping Ren
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Berg S, Kaur D, Jackson M, Brennan PJ. The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 2007; 17:35-56R. [PMID: 17261566 DOI: 10.1093/glycob/cwm010] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.
Collapse
Affiliation(s)
- Stefan Berg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
29
|
Korres H, Verma NK. Identification of essential loops and residues of glucosyltransferase V (GtrV) of Shigella flexneri. Mol Membr Biol 2007; 23:407-19. [PMID: 17060158 DOI: 10.1080/09687860600849853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipopolysaccharide (LPS), particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-antigen modification is mediated by glucosyltransferase (gtr) genes encoded by temperate serotype-converting bacteriophages. The gtrV and gtrX genes encode the GtrV and GtrX glucosyltransferases, respectively. These are integral membrane proteins, which catalyze the transfer of a glucosyl residue via an alpha1,3 linkage to rhamnose II and rhamnose I of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a and X, respectively. Essential regions in the topology of GtrV protein were identified by in vivo recombination and a PCR-mediated approach. A series of GtrX-GtrV and GtrV-GtrX chimeric proteins were constructed based on the fact that GtrV and GtrX share sequence similarity. Analysis of their respective serotype conversion abilities led to the identification of two important periplasmic loops: loops No 2 and No 10 located in the N- and C-termini, respectively. Within these two loops, three conserved motifs were identified; two in loop No 2 and one in loop No 10. These conserved motifs contain acidic residues which were shown to be critical for GtrV function.
Collapse
Affiliation(s)
- Haralambos Korres
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, Australia
| | | |
Collapse
|