1
|
A Genetic Screen in Drosophila To Identify Novel Regulation of Cell Growth by Phosphoinositide Signaling. G3-GENES GENOMES GENETICS 2020; 10:57-67. [PMID: 31704710 PMCID: PMC6945015 DOI: 10.1534/g3.119.400851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are lipid signaling molecules that regulate several conserved sub-cellular processes in eukaryotes, including cell growth. Phosphoinositides are generated by the enzymatic activity of highly specific lipid kinases and phosphatases. For example, the lipid PIP3, the Class I PI3 kinase that generates it and the phosphatase PTEN that metabolizes it are all established regulators of growth control in metazoans. To identify additional functions for phosphoinositides in growth control, we performed a genetic screen to identify proteins which when depleted result in altered tissue growth. By using RNA-interference mediated depletion coupled with mosaic analysis in developing eyes, we identified and classified additional candidates in the developing Drosophila melanogaster eye that regulate growth either cell autonomously or via cell-cell interactions. We report three genes: Pi3K68D, Vps34 and fwd that are important for growth regulation and suggest that these are likely to act via cell-cell interactions in the developing eye. Our findings define new avenues for the understanding of growth regulation in metazoan tissue development by phosphoinositide metabolizing proteins.
Collapse
|
2
|
Leibiger B, Moede T, Paschen M, Yunn NO, Lim JH, Ryu SH, Pereira T, Berggren PO, Leibiger IB. PI3K-C2α Knockdown Results in Rerouting of Insulin Signaling and Pancreatic Beta Cell Proliferation. Cell Rep 2015; 13:15-22. [PMID: 26387957 DOI: 10.1016/j.celrep.2015.08.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 11/26/2022] Open
Abstract
Insulin resistance is a syndrome that affects multiple insulin target tissues, each having different biological functions regulated by insulin. A remaining question is to mechanistically explain how an insulin target cell/tissue can be insulin resistant in one biological function and insulin sensitive in another at the same time. Here, we provide evidence that in pancreatic β cells, knockdown of PI3K-C2α expression results in rerouting of the insulin signal from insulin receptor (IR)-B/PI3K-C2α/PKB-mediated metabolic signaling to IR-B/Shc/ERK-mediated mitogenic signaling, which allows the β cell to switch from a highly glucose-responsive, differentiated state to a proliferative state. Our data suggest the existence of IR-cascade-selective insulin resistance, which allows rerouting of the insulin signal within the same target cell. Hence, factors involved in the rerouting of the insulin signal represent tentative therapeutic targets in the treatment of insulin resistance.
Collapse
Affiliation(s)
- Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meike Paschen
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Na-Oh Yunn
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jong Hoon Lim
- Aptamer Initiative Program, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Ho Ryu
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; Aptamer Initiative Program, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Teresa Pereira
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637 553, Singapore.
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden.
| |
Collapse
|
3
|
Yoon S, Han E, Choi YC, Kee H, Jeong Y, Yoon J, Baek K. Inhibition of cell proliferation and migration by miR-509-3p that targets CDK2, Rac1, and PIK3C2A. Mol Cells 2014; 37:314-21. [PMID: 24802056 PMCID: PMC4012080 DOI: 10.14348/molcells.2014.2360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022] Open
Abstract
CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.
Collapse
Affiliation(s)
- Sena Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| | - Eunji Han
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| | - Young-Chul Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| | - Honghwan Kee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701,
Korea
| |
Collapse
|
4
|
Falasca M, Maffucci T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 2012; 443:587-601. [PMID: 22507127 DOI: 10.1042/bj20120008] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Class II isoforms of PI3K (phosphoinositide 3-kinase) are still the least investigated and characterized of all PI3Ks. In the last few years, an increased interest in these enzymes has improved our understanding of their cellular functions. However, several questions still remain unanswered on their mechanisms of activation, their specific downstream effectors and their contribution to physiological processes and pathological conditions. Emerging evidence suggests that distinct PI3Ks activate different signalling pathways, indicating that their functional roles are probably not redundant. In the present review, we discuss the recent advances in our understanding of mammalian class II PI3Ks and the evidence suggesting their involvement in human diseases.
Collapse
Affiliation(s)
- Marco Falasca
- Inositide Signalling Group, Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | | |
Collapse
|
5
|
Liu Z, Sun C, Zhang Y, Ji Z, Yang G. Phosphatidylinositol 3-Kinase-C2β Inhibits Cisplatin-Mediated Apoptosis via the Akt Pathway in Oesophageal Squamous Cell Carcinoma. J Int Med Res 2011; 39:1319-32. [PMID: 21986133 DOI: 10.1177/147323001103900419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A major problem in treating oesophageal squamous cell carcinoma (ESCC) with cisplatin is the development of drug resistance. In order to determine whether phosphatidylinositol 3-kinase (PI3K)-C2β (encoded by the PIK3C2B gene) reduced the sensitivity of ESCC to cisplatin, transfected Eca109 cells that overexpressed PIK3C2B were produced. Additionally, PI3K-C2β-siRNA was used to silence endogenous PI3K-C2β in EC9706 cisplatin-resistant cells. The relationship between PIK3C2B expression and clinicopathological characteristics was also investigated in samples from 61 patients. The overexpression of PIK3C2B in Eca109 cells significantly inhibited cisplatin-induced apoptosis and cleavage of caspase-3. Knockdown of PI3K-C2β enhanced cisplatin-induced apoptosis in EC9706 cells. PIK3C2B expression was associated with an increased level of phosphorylated Akt. Based on the tumour samples, expression of PIK3C2B was associated with tumour metastasis and in vitro assay suggested that it mediated cell migration. These results indicated that PI3K-C2β, via the Akt signalling pathway, might play a key role in cisplatin resistance and that targeting this pathway might be useful in treating cisplatin-resistant tumours.
Collapse
Affiliation(s)
- Z Liu
- Department of Oncology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - C Sun
- Department of Infectious Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Z Ji
- Henan Academy of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| | - G Yang
- Henan Academy of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Harris DP, Vogel P, Wims M, Moberg K, Humphries J, Jhaver KG, DaCosta CM, Shadoan MK, Xu N, Hansen GM, Balakrishnan S, Domin J, Powell DR, Oravecz T. Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function. Mol Cell Biol 2011; 31:63-80. [PMID: 20974805 PMCID: PMC3019860 DOI: 10.1128/mcb.00468-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/23/2010] [Accepted: 10/13/2010] [Indexed: 01/06/2023] Open
Abstract
An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function.
Collapse
Affiliation(s)
- David P Harris
- Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Eun LY, Song BW, Cha MJ, Song H, Kim IK, Choi E, Chang W, Lim S, Choi EJ, Ham O, Lee SY, Byun KH, Jang Y, Hwang KC. Overexpression of phosphoinositide-3-kinase class II alpha enhances mesenchymal stem cell survival in infarcted myocardium. Biochem Biophys Res Commun 2010; 402:272-279. [PMID: 20937252 DOI: 10.1016/j.bbrc.2010.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 11/21/2022]
Abstract
The efficacy of mesenchymal stem cell (MSC) therapy for myocardial regeneration is limited by the poor survival of stem cells after transplantation into the infarcted heart. To improve the cell survival of MSCs in the infarcted heart, MSCs were genetically engineered to overexpress phosphoinositide-3-kinase class II alpha (PI3K-C2α). PI3K-C2α overexpression increased PI3K expression and the cell viability of MSCs. Furthermore, levels of survival-related phosphorylation were elevated in PI3K-C2α-MSCs. But, the level of apoptotic proteins downregulated and the number of PI-positive cells decreased in PI3K-C2α-MSCs compared to hypoxic MSCs. Nine rats per group had 1×10(6) cells (20 μl PBS) transplanted after myocardial infarction. One week after transplantation, infarct size and area of fibrosis were reduced in the PI3K-C2α-MSC-transplanted group. The number of TUNEL positive cells declined, while the mean microvessel count per field was higher in the PI3K-C2α-MSC group than the MSC-injected group. Heart function was improved in the PI3K-C2α-MSCs group as assessed using a Millar catheter at 3weeks after transplantation. These findings suggest that overexpression of PI3K-C2α in MSCs can assist cell survival and enhance myocardial regeneration.
Collapse
Affiliation(s)
- Lucy Youngmin Eun
- Division of Pediatric Cardiology, Department of Pediatrics, Kwandong University College of Medicine, Myongji Hospital Cardiac Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The α-isoform of class II phosphoinositide 3-kinase is necessary for the activation of ERK but not Akt/PKB. Mol Cell Biochem 2010; 346:95-101. [PMID: 20924651 DOI: 10.1007/s11010-010-0596-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/18/2010] [Indexed: 01/02/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are key enzymes that activate intracellular signaling molecules when a number of different growth factors bind to cell surface receptors. PI3Ks are divided into three classes (I, II, III), and enzymes of each class have different tissue specificities and physiological functions. The α-isoform (PI3K-C2α) of class II PI3Ks is considered ubiquitous and preferentially activated by insulin. Our previous study showed that suppression of PI3K-C2α leads to apoptotic cell death. The aim of this study is to determine whether depletion of PI3K-C2α affects ERK or PKB/Akt activity following stimulation with serum and insulin growth factors in Chinese hamster ovary cells expressing human insulin receptors (CHO-IR) and human HepG2 liver cells. Different antisense oligonucleotides (ODNs), which were designed based on the sequence of the C2 domain of the human PI3K-C2α gene, were transfected into cells to inhibit PI3K-C2α expression. Insulin- or serum-induced stimulation of ERK was significantly suppressed by depletion of PI3K-C2α, whereas phosphorylation of IRS-1 and the stimulation of PKB/Akt by insulin were not affected. The number of apoptotic cells was also increased by depletion of PI3K-C2α protein levels. Taken together, our data indicate that PI3K-C2α may be a crucial factor in the stimulation of ERK activity in response to serum or insulin, whereas it is less important for the stimulation of PKB/Akt activity in response to insulin.
Collapse
|
9
|
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11:329-41. [PMID: 20379207 DOI: 10.1038/nrm2882] [Citation(s) in RCA: 1377] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) function early in intracellular signal transduction pathways and affect many biological functions. A further level of complexity derives from the existence of eight PI3K isoforms, which are divided into class I, class II and class III PI3Ks. PI3K signalling has been implicated in metabolic control, immunity, angiogenesis and cardiovascular homeostasis, and is one of the most frequently deregulated pathways in cancer. PI3K inhibitors have recently entered clinical trials in oncology. A better understanding of how the different PI3K isoforms are regulated and control signalling could uncover their roles in pathology and reveal in which disease contexts their blockade could be most beneficial.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, UK.
| | | | | | | |
Collapse
|
10
|
|
11
|
Ng SKL, Neo SY, Yap YW, Karuturi RKM, Loh ESL, Liau KH, Ren EC. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation. Biochem Biophys Res Commun 2009; 387:310-5. [PMID: 19591801 DOI: 10.1016/j.bbrc.2009.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/02/2009] [Indexed: 02/07/2023]
Abstract
Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2alpha) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2alpha mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2alpha was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2alpha can modulate HCC cell growth.
Collapse
|
12
|
Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 2009; 48:307-43. [PMID: 19580826 DOI: 10.1016/j.plipres.2009.06.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phosphoinositides are lipids that are present in the cytoplasmic leaflet of a cell's plasma and internal membranes and play pivotal roles in the regulation of a wide variety of cellular processes. Phosphoinositides are molecularly diverse due to variable phosphorylation of the hydroxyl groups of their inositol rings. The rapid and reversible configuration of the seven known phosphoinositide species is controlled by a battery of phosphoinositide kinases and phosphoinositide phosphatases, which are thus critical for phosphoinositide isomer-specific localization and functions. Significantly, a given phosphoinositide generated by different isozymes of these phosphoinositide kinases and phosphatases can have different biological effects. In mammals, close to 50 genes encode the phosphoinositide kinases and phosphoinositide phosphatases that regulate phosphoinositide metabolism and thus allow cells to respond rapidly and effectively to ever-changing environmental cues. Understanding the distinct and overlapping functions of these phosphoinositide-metabolizing enzymes is important for our knowledge of both normal human physiology and the growing list of human diseases whose etiologies involve these proteins. This review summarizes the structural and biological properties of all the known mammalian phosphoinositide kinases and phosphoinositide phosphatases, as well as their associations with human disorders.
Collapse
Affiliation(s)
- Takehiko Sasaki
- Department of Pathology and Immunology, Akita University, Graduate School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Shuttleworth S, Silva F, Tomassi C, Cecil A, Hill T, Rogers H, Townsend P. Progress in the design and development of phosphoinositide 3-kinase (PI3K) inhibitors for the treatment of chronic diseases. PROGRESS IN MEDICINAL CHEMISTRY 2009; 48:81-131. [PMID: 21544958 DOI: 10.1016/s0079-6468(09)04803-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stephen Shuttleworth
- Karus Therapeutics Ltd., 2 Venture Road, Southampton Science Park, Southampton, S016 7NP, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Elis W, Triantafellow E, Wolters NM, Sian KR, Caponigro G, Borawski J, Gaither LA, Murphy LO, Finan PM, Mackeigan JP. Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death. Mol Cancer Res 2008; 6:614-23. [PMID: 18403640 DOI: 10.1158/1541-7786.mcr-07-0262] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the phosphoinositide 3-kinase (PI3K) family collectively control multiple cellular responses, including proliferation, growth, chemotaxis, and survival. These diverse effects can partly be attributed to the broad range of downstream effectors being regulated by the products of these lipid kinases, the 3'-phosphoinositides. However, an additional layer of complexity is introduced by the existence of multiple PI3K enzyme isoforms. Much has been learned over the last years on the roles of the classes I and III PI3K members in cellular signaling, but little is known about the isoform-specific tasks done by the class II PI3Ks (C2alpha, beta, and gamma). In this study, we used quantitative reverse transcription-PCR and RNA interference in mammalian cells to gain further insight into the function of these lesser studied PI3K enzymes. We find that PI3K-C2alpha, but not PI3K-C2beta, has an important role in controlling cell survival and by using a panel of RNA interference reagents, we were able to determine a critical threshold of PI3K-C2alpha mRNA levels, below which the apoptotic program is switched on, via the intrinsic cell death pathway. In addition, knockdown of PI3K-C2alpha to levels that by themselves do not induce apoptosis sensitize cells to the anticancer agent Taxol (paclitaxel). Lastly, we report that lowering the levels of PI3K-C2alpha in a number of cancer cell lines reduces their proliferation and cell viability, arguing that PI3K inhibitors targeting not only the class Ialpha isoform but also class IIalpha may contribute to an effective anticancer strategy.
Collapse
Affiliation(s)
- Winfried Elis
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hellwinkel OJC, Rogmann JP, Asong LE, Luebke AM, Eichelberg C, Ahyai S, Isbarn H, Graefen M, Huland H, Schlomm T. A comprehensive analysis of transcript signatures of the phosphatidylinositol-3 kinase/protein kinase B signal-transduction pathway in prostate cancer. BJU Int 2008; 101:1454-60. [PMID: 18336616 DOI: 10.1111/j.1464-410x.2008.07540.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To assess the gene activities of various important members of the phosphatidylinositol 3 kinase (PIK3)/protein kinase B (PKB/Akt) pathway (involved in the promotion and regulation of cellular metabolism, proliferation and apoptosis) for alterations in prostate carcinoma. PATIENTS, SUBJECTS AND METHODS Using quantitative real-time reverse-transcription polymerase chain reaction, we analysed the transcript levels of 12 genes involved in the PIK3/PKB pathway in microdissected tumour tissues from 20 patients with varying stages of prostate cancer, assessing differences from adjacent normal tissues and from a pool of prostate tissues from healthy controls. RESULTS In cancer samples with a high Gleason grade, the PIK3/PKB pathway was principally affected by marked decreases in expression over almost all the investigated stages of the pathway. These changes were in effectors of the pathway, especially PIK3 p85 alpha (PIK3R1) and integrin-linked kinase, and the pathway target fork-head box protein (FOXO)-1A, while the transcript quantities of regulators, e.g. phosphatase/tensin homologue (PTEN), were decreased in a smaller proportion of the patients. Transcript amounts of FOXO-1A and FOXO-3A were significantly higher in normal tumour-adjacent tissues than in the healthy controls. CONCLUSIONS Down-regulation of the PIK3/PKB pathway by repression of involved effector and regulator genes at all stages of the molecular pathway could represent a marker for the formation of highly de-differentiated prostate cancers from low-grade tumour foci. Also, parts of the pathway are deviant in normal tumour-adjacent tissue; this might represent a reaction to neighbouring tumours or be a sign of pre-cancerous biological alterations.
Collapse
Affiliation(s)
- Olaf J C Hellwinkel
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Maira SM, Voliva C, Garcia-Echeverria C. Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Expert Opin Ther Targets 2008; 12:223-38. [DOI: 10.1517/14728222.12.2.223] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Medina-Tato DA, Ward SG, Watson ML. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 2007; 121:448-61. [PMID: 17614878 PMCID: PMC2265972 DOI: 10.1111/j.1365-2567.2007.02663.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The family of lipid kinases termed phosphoinositide-3-kinase (PI3K) is known to contribute at multiple levels to innate and adaptive immune responses, and is hence an attractive target for drug discovery in inflammatory and autoimmune disease, including respiratory diseases. The development of isoform-selective pharmacological inhibitors, targeted gene manipulation and short interfering RNA (siRNA) target validation have facilitated a better understanding of the role that each member of this family of kinases plays in the physiology and pathology of the respiratory system. In this review, we will evaluate the evidence for the roles of specific PI3K isoforms in the lung and airways, and discuss their potential as targets for novel drug therapies.
Collapse
|