1
|
Lemire BD, Uppuluri P. Coding Sequence Insertions in Fungal Genomes are Intrinsically Disordered and can Impart Functionally-Important Properties on the Host Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535715. [PMID: 37066283 PMCID: PMC10104129 DOI: 10.1101/2023.04.06.535715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Insertion and deletion mutations (indels) are important mechanisms of generating protein diversity. Indels in coding sequences are under considerable selective pressure to maintain reading frames and to preserve protein function, but once generated, indels provide raw material for the acquisition of new protein properties and functions. We reported recently that coding sequence insertions in the Candida albicans NDU1 protein, a mitochondrial protein involved in the assembly of the NADH:ubiquinone oxidoreductase are imperative for respiration, biofilm formation and pathogenesis. NDU1 inserts are specific to CTG-clade fungi, absent in human ortholog and successfully harnessed as drug targets. Here, we present the first comprehensive report investigating indels and clade-defining insertions (CDIs) in fungal proteomes. We investigated 80 ascomycete proteomes encompassing CTG clade species, the Saccharomycetaceae family, the Aspergillaceae family and the Herpotrichiellaceae (black yeasts) family. We identified over 30,000 insertions, 4,000 CDIs and 2,500 clade-defining deletions (CDDs). Insert sizes range from 1 to over 1,000 residues in length, while maximum deletion length is 19 residues. Inserts are strikingly over-represented in protein kinases, and excluded from structural domains and transmembrane segments. Inserts are predicted to be highly disordered. The amino acid compositions of the inserts are highly depleted in hydrophobic residues and enriched in polar residues. An indel in the Saccharomyces cerevisiae Sth1 protein, the catalytic subunit of the RSC (Remodel the Structure of Chromatin) complex is predicted to be disordered until it forms a ß-strand upon interaction. This interaction performs a vital role in RSC-mediated transcriptional regulation, thereby expanding protein function.
Collapse
Affiliation(s)
- Bernard D. Lemire
- Department of Biochemistry, University of Alberta, Edmonton, Canada (retired)
| | - Priya Uppuluri
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID. Mol Immunol 2019; 116:63-72. [PMID: 31622795 DOI: 10.1016/j.molimm.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 01/27/2023]
Abstract
Somatic hypermutation (SHM) of Ig genes is initiated by activation-induced cytidine deaminase (AID) and requires target gene transcription. A splice isoform of SRSF1, SRSF1-3, is necessary for AID-dependent SHM of IgV genes. Nevertheless, its exact molecular mechanism of action in SHM remains unknown. Our in silico studies show that, unlike SRSF1, SRSF1-3 lacks a strong nuclear localization domain. We show that the absence of RS domain in SRSF1-3 affects its nuclear localization, as compared to SRSF1. Consequently, SRSF1-3 is predominantly present in the cytoplasm. Remarkably, co-immunoprecipitation studies showed that SRSF1-3 interacts with Topoisomerase 1 (TOP1), a crucial regulator of SHM that assists in generating ssDNA for AID activity. Moreover, the immunofluorescence studies confirmed that SRSF1-3 and TOP1 are co-localized in the nucleus. Furthermore, Proximity Ligation Assay corroborated the direct interaction between SRSF1-3 and TOP1. An interaction between SRSF1-3 and TOP1 suggests that SRSF1-3 likely influences the TOP1 activity and consequently can aid in SHM. Accordingly, SRSF1-3 probably acts as a link between TOP1 and SHM, by spatially regulating TOP1 activity at the Ig locus. We also confirmed the interaction between SRSF1-3 and AID in chicken B-cells. Thus, SRSF1-3 shows dual-regulation of SHM, via interacting with AID as well as TOP1.
Collapse
|
3
|
Shanle EK, Andrews FH, Meriesh H, McDaniel SL, Dronamraju R, DiFiore JV, Jha D, Wozniak GG, Bridgers JB, Kerschner JL, Krajewski K, Martín GM, Morrison AJ, Kutateladze TG, Strahl BD. Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes Dev 2015; 29:1795-800. [PMID: 26341557 PMCID: PMC4573853 DOI: 10.1101/gad.269977.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The YEATS domain, found in a number of chromatin-associated proteins, has recently been shown to have the capacity to bind histone lysine acetylation. Here, we show that the YEATS domain of Taf14, a member of key transcriptional and chromatin-modifying complexes in yeast, is a selective reader of histone H3 Lys9 acetylation (H3K9ac). Structural analysis reveals that acetylated Lys9 is sandwiched in an aromatic cage formed by F62 and W81. Disruption of this binding in cells impairs gene transcription and the DNA damage response. Our findings establish a highly conserved acetyllysine reader function for the YEATS domain protein family and highlight the significance of this interaction for Taf14.
Collapse
Affiliation(s)
- Erin K Shanle
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Forest H Andrews
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hashem Meriesh
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Stephen L McDaniel
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA; Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599 USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Julia V DiFiore
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA; Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599 USA
| | - Deepak Jha
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Glenn G Wozniak
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA; Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599 USA
| | - Joseph B Bridgers
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Jenny L Kerschner
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA; Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| | - Glòria Mas Martín
- Department of Biology, Stanford University, Stanford, California 94305 USA
| | - Ashby J Morrison
- Department of Biology, Stanford University, Stanford, California 94305 USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA; Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599 USA; Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 USA
| |
Collapse
|
4
|
Atias N, Kupiec M, Sharan R. Systematic identification and correction of annotation errors in the genetic interaction map of Saccharomyces cerevisiae. Nucleic Acids Res 2015; 44:e50. [PMID: 26602688 PMCID: PMC4797274 DOI: 10.1093/nar/gkv1284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The yeast mutant collections are a fundamental tool in deciphering genomic organization and function. Over the last decade, they have been used for the systematic exploration of ∼6 000 000 double gene mutants, identifying and cataloging genetic interactions among them. Here we studied the extent to which these data are prone to neighboring gene effects (NGEs), a phenomenon by which the deletion of a gene affects the expression of adjacent genes along the genome. Analyzing ∼90,000 negative genetic interactions observed to date, we found that more than 10% of them are incorrectly annotated due to NGEs. We developed a novel algorithm, GINGER, to identify and correct erroneous interaction annotations. We validated the algorithm using a comparative analysis of interactions from Schizosaccharomyces pombe. We further showed that our predictions are significantly more concordant with diverse biological data compared to their mis-annotated counterparts. Our work uncovered about 9500 new genetic interactions in yeast.
Collapse
Affiliation(s)
- Nir Atias
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Ishikawa T, Krzysko KA, Kowalska-Loth B, Skrajna AM, Czubaty A, Girstun A, Cieplak MK, Lesyng B, Staron K. Activities of topoisomerase I in its complex with SRSF1. Biochemistry 2012; 51:1803-16. [PMID: 22320324 DOI: 10.1021/bi300043t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human DNA topoisomerase I (topo I) catalyzes DNA relaxation and phosphorylates SRSF1. Whereas the structure of topo I complexed with DNA has been resolved, the structure of topo I in the complex with SRSF1 and structural determinants of topo I activities in this complex are not known. The main obstacle to resolving the structure is a contribution of unfolded domains of topo I and SRSF1 in formation of the complex. To overcome this difficulty, we employed a three-step strategy: identifying the interaction regions, modeling the complex, and validating the model with biochemical methods. The binding sites in both topo I and SRSF1 are localized in the structured regions as well as in the unfolded domains. One observes cooperation between the binding sites in topo I but not in SRSF1. Our results indicate two features of the unfolded RS domain of SRSF1 containing phosphorylated residues that are critical for the kinase activity of topo I: its spatial arrangement relative to topo I and the organization of its sequence. The efficiency of phosphorylation of SRSF1 depends on the length and flexibility of the spacer between the two RRM domains that uniquely determine an arrangement of the RS domain relative to topo I. The spacer also influences inhibition of DNA nicking, a prerequisite for DNA relaxation. To be phosphorylated, the RS domain has to include a short sequence recognized by topo I. A lack of this sequence in the mutants of SRSF1 or its spatial inaccessibility in SRSF9 makes them inadequate as topo I/kinase substrates.
Collapse
Affiliation(s)
- Takao Ishikawa
- Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Manita D, Toba Y, Takakusagi Y, Matsumoto Y, Kusayanagi T, Takakusagi K, Tsukuda S, Takada K, Kanai Y, Kamisuki S, Sakaguchi K, Sugawara F. Camptothecin (CPT) directly binds to human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and inhibits the hnRNP A1/topoisomerase I interaction. Bioorg Med Chem 2011; 19:7690-7. [PMID: 22071521 DOI: 10.1016/j.bmc.2011.09.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/29/2011] [Indexed: 12/20/2022]
Abstract
Camptothecin (CPT) is an anti-tumor natural product that forms a ternary complex with topoisomerase I (top I) and DNA (CPT-top I-DNA). In this study, we identified the direct interaction between CPT and human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) using the T7 phage display technology. On an avidin-agarose bead pull down assay, hnRNP A1 protein was selectively pulled down in the presence of C20-biotinylated CPT derivative (CPT-20-B) both in vitro and in vivo. The interaction was also confirmed by an analysis on a quartz-crystal microbalance (QCM) device, yielding a K(D) value of 82.7 nM. A surface plasmon resonance (SPR) analysis revealed that CPT inhibits the binding of hnRNP A1 to top I (K(D): 260 nM) in a non-competitive manner. Moreover, an in vivo drug evaluation assay using Drosophila melanogaster showed that the knockout of the hnRNP A1 homolog Hrb87F gene showed high susceptibility against 5-50 μM of CPT as compared to a wild-type strain. Such susceptibility was specific for CPT and not observed after treatment with other cytotoxic drugs. Collectively, our data suggests that CPT directly binds to hnRNP A1 and non-competitively inhibits the hnRNP A1/top I interaction in vivo. The knockout strain loses the hnRNP A1 homolog as a both CPT-binding partner and naïve brakes of top I, which enhances the formation of the CPT-top I-DNA ternary complexes and subsequently sensitizes the growth inhibitory effect of CPT in D. melanogaster.
Collapse
Affiliation(s)
- Daisuke Manita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The SR protein B52/SRp55 is required for DNA topoisomerase I recruitment to chromatin, mRNA release and transcription shutdown. PLoS Genet 2010; 6:e1001124. [PMID: 20862310 PMCID: PMC2940736 DOI: 10.1371/journal.pgen.1001124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression. DNA Topoisomerase I (Topo I) is a very well known enzyme capable of removing DNA topological constrains during transcription. In mammals, Topo I also harbours an intrinsic protein kinase activity required to achieve specific phosphorylation of factors in charge of maturating the transcript and exporting it from the transcription site in the nucleus to the cytoplasm. In this report, we have used Drosophila genetics to describe the surprising finding that Topo I is not directly recruited to active transcription sites by DNA but rather by an indirect interaction with its protein target of phosphorylation which in turn is bound to nascent transcripts at gene loci. Furthermore, we demonstrate that the delivery of Topo I to an activated heat shock gene is essential for efficient release of the mRNA from its transcription site and functions to turn off transcription of the gene. This study brings a new model for the long unanswered question of how genes are turned off and provides evidence that Topo I is at the heart of the mechanism by which DNA and RNA processes are coordinately regulated during development to avoid genomic instability.
Collapse
|
8
|
Solier S, Barb J, Zeeberg BR, Varma S, Ryan MC, Kohn KW, Weinstein JN, Munson PJ, Pommier Y. Genome-wide analysis of novel splice variants induced by topoisomerase I poisoning shows preferential occurrence in genes encoding splicing factors. Cancer Res 2010; 70:8055-65. [PMID: 20817775 DOI: 10.1158/0008-5472.can-10-2491] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA splicing is required to remove introns from pre-mRNA, and alternative splicing generates protein diversity. Topoisomerase I (Top1) has been shown to be coupled with splicing by regulating serine/arginine-rich splicing proteins. Prior studies on isolated genes also showed that Top1 poisoning by camptothecin (CPT), which traps Top1 cleavage complexes (Top1cc), can alter RNA splicing. Here, we tested the effect of Top1 inhibition on splicing at the genome-wide level in human colon carcinoma HCT116 and breast carcinoma MCF7 cells. The RNA of HCT116 cells treated with CPT for various times was analyzed with ExonHit Human Splice Array. Unlike other exon array platforms, the ExonHit arrays include junction probes that allow the detection of splice variants with high sensitivity and specificity. We report that CPT treatment preferentially affects the splicing of splicing-related factors, such as RBM8A, and generates transcripts coding for inactive proteins lacking key functional domains. The splicing alterations induced by CPT are not observed with cisplatin or vinblastine and are not simply due to reduced Top1 activity, as Top1 downregulation by short interfering RNA did not alter splicing like CPT treatment. Inhibition of RNA polymerase II (Pol II) hyperphosphorylation by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) blocked the splicing alteration induced by CPT, which suggests that the rapid Pol II hyperphosphorylation induced by CPT interferes with normal splicing. The preferential effect of CPT on genes encoding splicing factors may explain the abnormal splicing of a large number of genes in response to Top1cc.
Collapse
Affiliation(s)
- Stéphanie Solier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proc Natl Acad Sci U S A 2010; 107:16119-24. [PMID: 20805487 DOI: 10.1073/pnas.1004653107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein modification by conjugation of small ubiquitin-related modifier (SUMO) is involved in diverse biological functions, such as transcription regulation, subcellular partitioning, stress response, DNA damage repair, and chromatin remodeling. Here, we show that the serine/arginine-rich protein SF2/ASF, a factor involved in splicing regulation and other RNA metabolism-related processes, is a regulator of the sumoylation pathway. The overexpression of this protein stimulates, but its knockdown inhibits SUMO conjugation. SF2/ASF interacts with Ubc9 and enhances sumoylation of specific substrates, sharing characteristics with already described SUMO E3 ligases. In addition, SF2/ASF interacts with the SUMO E3 ligase PIAS1 (protein inhibitor of activated STAT-1), regulating PIAS1-induced overall protein sumoylation. The RNA recognition motif 2 of SF2/ASF is necessary and sufficient for sumoylation enhancement. Moreover, SF2/ASF has a role in heat shock-induced sumoylation and promotes SUMO conjugation to RNA processing factors. These results add a component to the sumoylation pathway and a previously unexplored role for the multifunctional SR protein SF2/ASF.
Collapse
|
10
|
Malanga M, Czubaty A, Girstun A, Staron K, Althaus FR. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I. J Biol Chem 2008; 283:19991-8. [PMID: 18495665 DOI: 10.1074/jbc.m709495200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SR-protein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Maria Malanga
- Department of Structural and Functional Biology, University Federico II, Via Cinthia, Monte S Angelo, Naples, Italy.
| | | | | | | | | |
Collapse
|
11
|
Girstun A, Kowalska-Loth B, Czubaty A, Klocek M, Staroń K. Fragment responsible for translocation in the N-terminal domain of human topoisomerase I. Biochem Biophys Res Commun 2008; 366:250-7. [DOI: 10.1016/j.bbrc.2007.11.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/23/2007] [Indexed: 11/17/2022]
|
12
|
Trzcińska-Daneluti AM, Górecki A, Czubaty A, Kowalska-Loth B, Girstun A, Murawska M, Lesyng B, Staroń K. RRM Proteins Interacting with the Cap Region of Topoisomerase I. J Mol Biol 2007; 369:1098-112. [PMID: 17481653 DOI: 10.1016/j.jmb.2007.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.
Collapse
|
13
|
Capranico G, Ferri F, Fogli MV, Russo A, Lotito L, Baranello L. The effects of camptothecin on RNA polymerase II transcription: Roles of DNA topoisomerase I. Biochimie 2007; 89:482-9. [PMID: 17336444 DOI: 10.1016/j.biochi.2007.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 01/15/2007] [Indexed: 11/22/2022]
Abstract
Eukaryotic DNA topoisomerase I is active in transcribed chromatin domains to modulate transcription-generated DNA torsional tension. Camptothecin and other agents targeting DNA topoisomerase I are used in the treatment of human solid cancers with significant clinical efficacy. Major progress has been achieved in recent years in the understanding of enzyme structures and basic cellular functions of DNA topoisomerase I. Nevertheless, the precise enzyme functions and mechanisms during transcription-related processes remain unclear. The current understanding of the molecular action of camptothecin emphasizes the drug action against the enzyme and the production of irreversible breaks in the cellular DNA. However, the high drug potency is hardly fully explained by the DNA damage outcome only. In the recent past, several unexpected findings have been reported in relation to the role of eukaryotic topoisomerase I during transcription. In particular, the function of DNA topoisomerase I and the molecular effects of its inhibition on transcription-coupled processes constitute a very active research area. Here, we will briefly review relevant investigations on topoisomerase I involvement in different stages of transcription, discussing both enzyme functions and drug effects on molecular processes.
Collapse
Affiliation(s)
- Giovanni Capranico
- Department of Biochemistry, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|