1
|
Zu Y, Du J, Xu Y, Niu M, Hong C, Yang C. Change in p53 nuclear localization in response to extracellular matrix stiffness. SMART MEDICINE 2024; 3:e20240026. [PMID: 39776592 PMCID: PMC11669774 DOI: 10.1002/smmd.20240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 01/11/2025]
Abstract
Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes. Here we investigated the effect of extracellular matrix stiffness on mouse articular chondrocyte phenotype, growth, and subcellular p53 localization. Chondrocytes were seeded on collagen-coated substrates varying in elasticity: 0.5 and 100 kPa. Immunocytochemical staining and immunoblotting showed that a softer substrate significantly increased p53 nuclear localization in chondrocytes. Furthermore, we identified microRNA-532 (miR-532) as a potential p53 target gene to influence cell function, indicating a new target for tissue engineering. These findings provide insight into the influence of physical cues on cell phenotype maintenance and could help improve understanding of cartilage-related pathologies such as osteoarthritis.
Collapse
Affiliation(s)
- Yan Zu
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jing Du
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Yipu Xu
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
- Department of General Dentistry and Emergency Dental CareBeijing Stomatological HospitalCapital Medical UniversityBeijingChina
| | - Mengying Niu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Canlin Hong
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Chun Yang
- Institute of Biomechanics and Medical EngineeringSchool of Aerospace EngineeringTsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Li B, Baima Y, De J, Wen D, Liu Y, Basang Z, Jiang N. Hypoxic stress caused apoptosis of MDBK cells by p53/BCL6-mitochondrial apoptosis pathway. Anim Biotechnol 2024; 35:2299241. [PMID: 38178593 DOI: 10.1080/10495398.2023.2299241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Ji De
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Zhuzha Basang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| |
Collapse
|
3
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
4
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
5
|
Kim JS, Lim H, Seo JY, Kang KR, Yu SK, Kim CS, Kim DK, Kim HJ, Seo YS, Lee GJ, You JS, Oh JS. GPR183 Regulates 7α,25-Dihydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell. Molecules 2022; 27:4798. [PMID: 35956750 PMCID: PMC9369580 DOI: 10.3390/molecules27154798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
7α,25-dihydroxycholesterol (7α,25-DHC) is an oxysterol synthesized from 25-hydroxycholesterol by cytochrome P450 family 7 subfamily B member 1 (CYP7B1) and is a monooxygenase (oxysterol-7α-hydroxylase) expressed under inflammatory conditions in various cell types. In this study, we verified that 7α,25-DHC-induced oxiapoptophagy is mediated by apoptosis, oxidative stress, and autophagy in L929 mouse fibroblasts. MTT assays and live/dead cell staining revealed that cytotoxicity was increased by 7α,25-DHC in L929 cells. Consequentially, cells with condensed chromatin and altered morphology were enhanced in L929 cells incubated with 7α,25-DHC for 48 h. Furthermore, apoptotic population was increased by 7α,25-DHC exposure through the cascade activation of caspase-9, caspase-3, and poly (ADP-ribose) polymerase in the intrinsic pathway of apoptosis in these cells. 7α,25-DHC upregulated reactive oxygen species (ROS) in L929 cells. Expression of autophagy biomarkers, including beclin-1 and LC3, was significantly increased by 7α,25-DHC treatment in L929 cells. 7α,25-DHC inhibits the phosphorylation of Akt associated with autophagy and increases p53 expression in L929 cells. In addition, inhibition of G-protein-coupled receptor 183 (GPR183), a receptor of 7α,25-DHC, using GPR183 specific antagonist NIBR189 suppressed 7α,25-DHC-induced apoptosis, ROS production, and autophagy in L929 cells. Collectively, GPR183 regulates 7α,25-DHC-induced oxiapoptophagy in L929 cells.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Chun Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju 61452, Korea; (J.-S.K.); (H.L.); (J.-Y.S.); (K.-R.K.); (S.-K.Y.); (C.S.K.); (D.K.K.); (H.-J.K.)
| | - Yo-Seob Seo
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Gyeong-Je Lee
- Department of Prosthodontics, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Ji-Su Oh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
6
|
Kim YS, Lee YG, Kim MT, Lee HJ. Treatment With Glycogen Synthase Kinase 3β Inhibitor Decreases Apoptotic and Autophagic Reactions in Rat Rotator Cuff Tears. Orthop J Sports Med 2021; 9:23259671211060771. [PMID: 34901295 PMCID: PMC8652192 DOI: 10.1177/23259671211060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Apoptosis and autophagy are known to be correlated with the extent of damage in torn rotator cuffs, and there is no biological evidence for self-recovery or healing of the rotator cuff tear. Purpose: To establish in a rat model of partial- and full-thickness rotator cuff tears how a glycogen synthase kinase 3β (GSK-3β) inhibitor affects the expression of apoptotic and autophagic markers. Study Design: Controlled laboratory study. Methods: Twelve-week-old Sprague Dawley rats were divided into 3 groups (n = 16 per group). Group 1 acted as the control, with no treatment; group 2 received partial-thickness (right side) and full-thickness (left side) rotator cuff tears only; and group 3 received the same rotator cuff injuries, with GSK-3β inhibitor injected afterward. The tendons from each group were harvested 42 days after surgery. Evaluation of gene expression, immunohistochemistry, and TUNEL staining (terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling) were performed for the following markers: caspases 3, 8, and 9 as well as Bcl-2 (B-cell lymphoma 2); BAX (Bcl-2-associated X protein); beclin 1; p53; and GSK-3β; which represented apoptotic and autophagic reactions. Statistical analysis was performed using 1-way analysis of variance. Results: In the group 2 rats with partial- and full-thickness tears, there were significant increases in the mRNA levels (fold changes) of all 8 markers as compared with group 1 (control). All these increased markers showed significant downregulation by the GSK-3β inhibitor in partial-thickness tears. However, the response to the GSK-3β inhibitor in full-thickness tears was not as prominent as in partial-thickness tears. The number of TUNEL-positive cells in group 2 (partial, 35.08% ± 1.625% [mean ± SE]; full, 46.92% ± 1.319%) was significantly higher than in group 1 (18.02% ± 1.036%; P < .01) and group 3 (partial, 28.04% ± 2.607% [P < .01]; full, 38.97% ± 2.772% [P < .01]), and immunohistochemistry revealed increased expression of all the markers in group 2 as compared with control. Conclusion: The apoptotic and autophagic activity induced in a rat model of an acute rotator cuff tear was downregulated after treatment with a GSK-3β inhibitor, particularly with partial-thickness rotator cuff tears. Clinical Relevance: A GSK-3β inhibitor may be able to modulate deterioration in a torn rotator cuff.
Collapse
Affiliation(s)
- Yang-Soo Kim
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun-Gyoung Lee
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Tae Kim
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo-Jin Lee
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Geng Y, Li L, Liu P, Chen Z, Shen A, Zhang L. TMT-Based Quantitative Proteomic Analysis Identified Proteins and Signaling Pathways Involved in the Response to Xanthatin Treatment in Human HT-29 Colon Cancer Cells. Anticancer Agents Med Chem 2021; 22:887-896. [PMID: 34488591 DOI: 10.2174/1871520621666210901101510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Xanthatin is a plant-derived bioactive sesquiterpene lactone from the Xanthium strumarium L., and it has been used as a traditional Chinese medicine. Recently, many studies have reported that xanthatin has anticancer activity. However, a comprehensive understanding of the mechanism underlying the antitumor effects of xanthatin is still lacking. OBJECTIVE To systematically and comprehensively identify the underlying mechanisms of xanthatin on cancer cells, quantitative proteomic techniques were performed. METHODS Xanthatin induced HT-29 colon cancer cells death was detected by lactate dehydrogenase (LDH) release cell death assay. Differentially abundant proteins in two groups (control groups and xanthatin treatment groups) of human HT-29 colon cancer cells were identified using tandem mass tag (TMT) quantitative proteomic techniques. All the significant differentially abundant proteins were generally characterized by performing hierarchical clustering, Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We chose Western blot analysis to validate the candidate proteins in the proteomics results. RESULTS A total of 5637 proteins were identified, of which 397 significantly differentially abundant proteins in the groups were quantified. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we found that p53-related signaling played an important role in xanthatin-treated HT-29 colon cancer cells. p53-upregulated modulator of apoptosis (Puma), Sestrin-2 and p14ARF, which were selected from among p53-related signaling proteins, were further validated, and the results were consistent with the tandem mass tag quantitative proteomic results. CONCLUSION We first investigated the molecular mechanism underlying the effects of xanthatin treatment on HT-29 colon cancer cells using tandem mass tag quantitative proteomic methods and provided a global comprehensive understanding of the antitumor effects of xanthatin. However, it is necessary to further confirm the function of the differentially abundant proteins and the potentially associated signaling pathways.
Collapse
Affiliation(s)
- Yadi Geng
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Ping Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032. China
| | - Zhaolin Chen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Aizong Shen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lei Zhang
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| |
Collapse
|
8
|
Zhang Y, Wu Q, Niu G, Liu J, Cao F, An X, Cao B. EGF-Induced miR-223 Modulates Goat Mammary Epithelial Cell Apoptosis and Inflammation via ISG15. Front Cell Dev Biol 2021; 9:660933. [PMID: 34277608 PMCID: PMC8277964 DOI: 10.3389/fcell.2021.660933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
The health of mammary gland is essential for lactation. Epidermal growth factor (EGF) is reported to play an important role in lactation initiation and miR-223 is a conserved microRNA in anti-inflammation. In this study, EGF was found to induce a higher expression of miR-223 in goat mammary epithelial cell (gMEC). The downstream genes of miR-223 were screened by RNA sequencing, including Interferon-stimulated gene product 15 (ISG15), a pivotal immune responder, which was detected to be downregulated by EGF and miR-223. Due to the correlation between inflammation and apoptosis, the gMEC apoptosis modulated by EGF, miR-223, and ISG15 was investigated, and the protein expressions of Bcl-2/Bax, Caspase 3 and p53 were examined to evaluate the apoptosis of gMEC. The protein expressions of p-STAT3/STAT3, PR, FOXC1, and HOXA10, which had been shown to be related to inflammation, were detected to assess the inflammation of gMEC. This study provided a regulation axis, EGF/miR-223/ISG15, and illustrated its regulation to gMEC apoptosis and inflammation.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Medical College, Qinghai University, Xining, China
| | - Guanglin Niu
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jidan Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Fangjun Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
9
|
PUMA and NOXA Expression in Tumor-Associated Benign Prostatic Epithelial Cells Are Predictive of Prostate Cancer Biochemical Recurrence. Cancers (Basel) 2020; 12:cancers12113187. [PMID: 33138186 PMCID: PMC7692508 DOI: 10.3390/cancers12113187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Given that treatment decisions in prostate cancer (PC) are often based on risk, there remains a need to find clinically relevant prognostic biomarkers to stratify PC patients. We evaluated PUMA and NOXA expression in benign and tumor regions of the prostate using immunofluorescence techniques and determined their prognostic significance in PC. METHODS PUMA and NOXA expression levels were quantified on six tissue microarrays (TMAs) generated from radical prostatectomy samples (n = 285). TMAs were constructed using two cores of benign tissue and two cores of tumor tissue from each patient. Association between biomarker expression and biochemical recurrence (BCR) at 3 years was established using log-rank (LR) and multivariate Cox regression analyses. RESULTS Kaplan-Meier analysis showed a significant association between BCR and extreme levels (low or high) of PUMA expression in benign epithelial cells (LR = 8.831, p = 0.003). Further analysis revealed a significant association between high NOXA expression in benign epithelial cells and BCR (LR = 14.854, p < 0.001). The combination of extreme PUMA and high NOXA expression identified patients with the highest risk of BCR (LR = 16.778, p < 0.001) in Kaplan-Meier and in a multivariate Cox regression analyses (HR: 2.935 (1.645-5.236), p < 0.001). CONCLUSIONS The combination of PUMA and NOXA protein expression in benign epithelial cells was predictive of recurrence following radical prostatectomy and was independent of PSA at diagnosis, Gleason score and pathologic stage.
Collapse
|
10
|
Antiapoptotic Effect of β1 Blockers in Ascending Thoracic Aortic Smooth Muscle Cells: The Role of HSP70 Expression. J Cardiovasc Pharmacol 2019; 72:86-96. [PMID: 29738368 DOI: 10.1097/fjc.0000000000000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heat shock proteins (HSPs) play an important role in the cellular adaptation to stress, a requisite for cell survival. The aortic wall appears to be a target for increased expression of HSPs during surgical stress. We aimed to define the expression and function of aortic HSP70 in 31 patients with normal ascending thoracic aortic diameter who underwent aortic valve replacement due to aortic valve stenosis and in 35 patients with dilated ascending thoracic aorta who underwent replacement of an ascending thoracic aortic aneurysm. To elucidate responsible signaling mechanisms we used an in vitro model of rat hypoxic aortic vascular smooth muscle cell (AVSMC) cultures. We demonstrated an increase in AVSMC HSP70 and an attenuation of the apoptotic markers (TUNEL-positive nuclei, caspase-3 activity, Bax/Bcl2 ratio) in aortic wall tissue specimens from both aortic valve stenosis and ascending thoracic aortic aneurysm patients on β1 blockade with metoprolol. In vitro, metoprolol treatment of hypoxic rat AVSMCs increased nitric oxide (NO) production, induced heat shock factor 1 transport to the nucleus, upregulated HSP70, decreased p53 phosphorylation and attenuated apoptosis. Blockade of NO production, resulted in decreased HSP70 and prevented the metoprolol-induced anti-apoptotic response of hypoxic AVSMCs. We demonstrate an anti-apoptotic effect of metoprolol dependent on NO-induced HSP70 expression, and thus augmentation of HSP70 expression should be considered as a therapeutic approach to limit apoptosis in the human ascending thoracic aorta of patients undergoing cardiac surgery.
Collapse
|
11
|
Calcium signaling and cell cycle: Progression or death. Cell Calcium 2017; 70:3-15. [PMID: 28801101 DOI: 10.1016/j.ceca.2017.07.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects.
Collapse
|
12
|
Huang CY, Yu LCH. Pathophysiological mechanisms of death resistance in colorectal carcinoma. World J Gastroenterol 2015; 21:11777-11792. [PMID: 26557002 PMCID: PMC4631976 DOI: 10.3748/wjg.v21.i41.11777] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Colon cancers develop adaptive mechanisms to survive under extreme conditions and display hallmarks of unlimited proliferation and resistance to cell death. The deregulation of cell death is a key factor that contributes to chemoresistance in tumors. In a physiological context, balance between cell proliferation and death, and protection against cell damage are fundamental processes for maintaining gut epithelial homeostasis. The mechanisms underlying anti-death cytoprotection and tumor resistance often bear common pathways, and although distinguishing them would be a challenge, it would also provide an opportunity to develop advanced anti-cancer therapeutics. This review will outline cell death pathways (i.e., apoptosis, necrosis, and necroptosis), and discuss cytoprotective strategies in normal intestinal epithelium and death resistance mechanisms of colon tumor. In colorectal cancers, the intracellular mechanisms of death resistance include the direct alteration of apoptotic and necroptotic machinery and the upstream events modulating death effectors such as tumor suppressor gene inactivation and pro-survival signaling pathways. The autocrine, paracrine and exogenous factors within a tumor microenvironment can also instigate resistance against apoptotic and necroptotic cell death in colon cancers through changes in receptor signaling or transporter uptake. The roles of cyclooxygenase-2/prostaglandin E2, growth factors, glucose, and bacterial lipopolysaccharides in colorectal cancer will be highlighted. Targeting anti-death pathways in the colon cancer tissue might be a promising approach outside of anti-proliferation and anti-angiogenesis strategies for developing novel drugs to treat refractory tumors.
Collapse
|
13
|
Kim AD, Han X, Piao MJ, Hewage SRKM, Hyun CL, Cho SJ, Hyun JW. Esculetin induces death of human colon cancer cells via the reactive oxygen species-mediated mitochondrial apoptosis pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:982-989. [PMID: 25818986 DOI: 10.1016/j.etap.2015.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
The present study investigated the apoptotic effects of esculetin, a coumarin derivative, on the human colon cancer cell line HT-29. Esculetin had cytotoxic effects on HT-29 cells in a dose- and time-dependent manner; treatment with 55 μg/mL esculetin reduced cell viability by 50%. Esculetin induced apoptosis, as evidenced by apoptotic body formation, an increased percentage of cells in sub-G1 phase, and DNA fragmentation. Moreover, esculetin increased mitochondrial membrane depolarization, released cytochrome c into cytosol, and modulated the expression of apoptosis-associated proteins, resulting in reduced expression of B cell lymphoma-2, increased expression of Bcl-2-associated X protein, and activation of caspase-9 and caspase-3. Esculetin induced the formation of reactive oxygen species; however, treatment with an antioxidant reduced the apoptotic cell death induced by esculetin treatment. In addition, esculetin activated mitogen-activated protein kinases and specific inhibitors of these kinases abrogated the reduction in cell viability induced by esculetin treatment.
Collapse
Affiliation(s)
- Areum Daseul Kim
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Xia Han
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | | | - Chang Lim Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Suk Ju Cho
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
14
|
Mfouo-Tynga I, Houreld NN, Abrahamse H. Induced cell death pathway post photodynamic therapy using a metallophthalocyanine photosensitizer in breast cancer cells. Photomed Laser Surg 2014; 32:205-11. [PMID: 24661060 DOI: 10.1089/pho.2013.3650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Zinc phthalocyanine (ZnPcSmix) was used as the photosensitizer (PS) in this study to investigate the cell death patterns as a result of photodynamic therapy (PDT) in a breast cancer cell line (MCF-7) in vitro using a 680 nm diode laser at a fluence of 5 J/cm(2). BACKGROUND PDT is a noninvasive form of cancer therapy, successfully applied for the treatment of various cancer types. METHODS Flow cytometry using Annexin V-fluorescein isothiocyanate (FITC), a cell death immunosorbent assay (ELISA), and gene expression analysis following ZnPcSmix mediated PDT were performed to determine the induced cell death pathways. RESULTS The apoptotic cells abounded after the treatment, nuclear fragmentation was seen as oligonucleosomal degradation and increased expression of the B-cell lymphoma 2 (Bcl-2), DNA fragmentation factor alpha (DFFA1), and caspase 2 (CASP2) genes, indicated that apoptosis is the main induced mode of cell death. CONCLUSIONS ZnPcSmix mediated PDT led to an apoptotic cell death pathway and the PS used showed its ability to stimulate and initiate programmed cell death.
Collapse
Affiliation(s)
- Ivan Mfouo-Tynga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Doornfontein, South Africa
| | | | | |
Collapse
|
15
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5:336-48. [PMID: 21795128 DOI: 10.1016/j.molonc.2011.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 01/30/2023] Open
Abstract
The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) - our novel experimental data and 5 published datasets - to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles we recorded from 5 cancerous and non-cancerous human cell lines after exposure to 5 Gy of IR, most of the responses were cell line-specific. Computational analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively. Computational promoter analysis of the six datasets disclosed that a statistically significant number of the induced genes contained p53 binding site signatures. p53-mediated regulation had previously been documented for subsets of these gene groups, making our lists a source of novel potential p53 targets. Real-time qPCR and chromatin immunoprecipitation (ChIP) assays validated the IR-induced p53-dependent induction and p53 binding to the respective promoters of 11 selected genes. Our results demonstrate the power of a combined computational and experimental approach to identify new transcriptional targets in the DNA damage response network.
Collapse
Affiliation(s)
- Sharon Rashi-Elkeles
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Room 1022, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen RH, Chang CT, Wang TY, Huang WL, Tsai CH, Tsai FJ. p53 codon 72 proline/arginine polymorphism and autoimmune thyroid diseases. J Clin Lab Anal 2008; 22:321-6. [PMID: 18803266 DOI: 10.1002/jcla.20249] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
p53 protein participates in the processes of apoptosis, which is involved in a number of immunological reactions. In order to test whether the p53 gene could be used as a genetic marker for the prediction of the development of autoimmune thyroid diseases (AITD), we screened, by using polymerase chain reaction (PCR) analysis, for the C (CCC)/G (CGC) polymorphism at the p53 codon 72 (Pro 72/Arg 72) to determine the genotypes of 107 Hashimoto's thyroiditis (HT) and 90 Graves' disease (GD) patients, and 105 normal controls. The data demonstrated that, for the genotype analysis, HT patients featured an enhanced numerical ratio for the Arg/Arg homozygous genotype (33.7%) and a diminished ratio for the Arg/Pro heterozygous genotype (41.1%) at the p53 codon 72 than was the case for normal controls (Arg/Arg: 17.1% and Arg/Pro: 61.9%; P=0.005). The odds ratio for the risk of the Arg/Arg genotype's appearance, compared with that of the Arg/Pro and Pro/Pro genotypes combined, for the HT patient group was 2.450 (95% confidence interval: 1.274-4.716). With respect to allelic analysis, we did not observe significant difference in the frequency of appearance of the Arg allelic variant and the Pro allelic variant for the p53 codon 72 when comparing the HT patient group with the control group (P=0.208). On the other hand, GD patients presented no significant difference in distribution for both genotype and allelic frequencies (P=0.344 and 0.245, respectively) when compared with normal controls. In conclusion, HT patients feature a greater ratio of arginine homozygosity at p53 codon 72 than in the case for normal subjects. The p53 codon 72 proline/arginine polymorphism may be a genetic marker to predict the increased susceptibility of development of HT.
Collapse
Affiliation(s)
- Rong-Hsing Chen
- Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma X, Lu Y, Wang G, Zhou J, Ma D. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells. Biochem Biophys Res Commun 2008; 375:205-9. [PMID: 18706395 DOI: 10.1016/j.bbrc.2008.07.161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Diverse types of voltage-gated potassium (K+) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca2+-activated K+ channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC50=31.1 microM, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21(Cip1) expression in a p53-dependent manner.
Collapse
Affiliation(s)
- Xiaobing Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Teles A, Rosenstock T, Okuno C, Lopes G, Bertoncini C, Smaili S. Increase in bax expression and apoptosis are associated in Huntington's disease progression. Neurosci Lett 2008; 438:59-63. [DOI: 10.1016/j.neulet.2008.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 12/22/2022]
|
20
|
Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L, Araujo N, Pinna G, Larochette N, Zamzami N, Modjtahedi N, Harel-Bellan A, Kroemer G. Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 2008; 27:4221-32. [DOI: 10.1038/onc.2008.63] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Han X, Wang F, Yao W, Xing H, Weng D, Song X, Chen G, Xi L, Zhu T, Zhou J, Xu G, Wang S, Meng L, Iadecola C, Wang G, Ma D. Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis. Apoptosis 2007; 12:1837-46. [PMID: 17624594 DOI: 10.1007/s10495-007-0101-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasma membrane potassium (K+) channels are required for tumor cell proliferation and apoptosis. However, the signal transduction mechanisms underlying K+ channel-dependent tumor cell proliferation or apoptosis remains elusive. Using HeLa and A2780 cells as study models, we tested the hypothesis that apoptotic proteins are linked with K+ channel-dependent tumor cell cycle and apoptosis. The patch-clamping study using the whole-cell mode revealed two components of voltage-gated outward K+ currents: one is sensitive to either tetraethylammonium (TEA) or tetrandrine (Tet), a maxi-conductance Ca2+-activated K+ (BK) channel blocker, and the other is sensitive to 4-aminopyridine (4-AP), a delayed rectifier K+ channel blocker. MTT and flow cytometry assays showed that TEA, Tet, or iberiotoxin (Ibtx), a selective BK channel blocker, inhibited HeLa and A2780 cell proliferation in a dose-dependent manner with G1 phase arrest. Pretreatment with TEA or Tet also induced apoptosis in HeLa and A2780 cells. However, glibenclamide (Gli), an ATP-sensitive K+ channel blocker, did not influence K+ currents, proliferation or apoptosis. Western blot analyses showed that while pretreatment of TEA and Tet produced an increase in expressions of p53, p21, and Bax, pretreatment of these two agents led to a decrease in expressions of heat shock protein (hsp)90alpha, hsp90beta, and hsp70. Our results indicate that the blockade of BK channels results in tumor cell apoptosis and cycle arrest at G1 phase, and the transduction pathway underlying the anti-proliferative effects is linked to the increased expression of apoptotic protein p53 and the decreased expression of its chaperone proteins hsp.
Collapse
Affiliation(s)
- Xiaobing Han
- Cancer Biology Reseach Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bruchhaus I, Roeder T, Rennenberg A, Heussler VT. Protozoan parasites: programmed cell death as a mechanism of parasitism. Trends Parasitol 2007; 23:376-83. [PMID: 17588817 DOI: 10.1016/j.pt.2007.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/27/2007] [Accepted: 06/06/2007] [Indexed: 12/25/2022]
Abstract
Programmed cell death (PCD) is a potent mechanism to remove parasitized cells, but it has also been shown that protozoan parasites can induce or inhibit apoptosis in host cells. In recent years, it has become clear that unicellular parasites can also undergo PCD, meaning that they commit suicide in response to various stimuli. This review focuses on the role of protozoan PCD and on the interaction between protozoan parasites and the host cell death machinery from the perspective of parasite survival strategies.
Collapse
Affiliation(s)
- Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
23
|
Salunga TL, Cui ZG, Shimoda S, Zheng HC, Nomoto K, Kondo T, Takano Y, Selmi C, Alpini G, Gershwin ME, Tsuneyama K. Oxidative stress-induced apoptosis of bile duct cells in primary biliary cirrhosis. J Autoimmun 2007; 29:78-86. [PMID: 17544621 DOI: 10.1016/j.jaut.2007.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 12/18/2022]
Abstract
There has been a relative paucity of effort at defining effector mechanisms of biliary damage in PBC. We hypothesize that biliary cells are destroyed secondary to the immunologic relationships of inflammation and biliary epithelial apoptosis and, in particular, that biliary damage is a result of reduced levels of glutathione-S-transferase (GST), the production of hypochlorous acid (HOCl) and its association with eosinophil peroxidase (EPO). To address this issue, we examined the expression of EPO and GST in PBC and control livers and demonstrated an increase of EPO within the portal areas of PBC. We also demonstrated that macrophages have evidence of phagocytosed EPO. Furthermore, we studied the influence of HOCl on apoptosis in cultured human biliary epithelial cells (BEC) as well as the associated activity of Bcl-2, Bax, p-JNK, JNK, p53, Fas and caspase-3. HOC1-induced apoptosis in BEC in a dose-dependent fashion increased the activity of caspase-3 and the expression of p53 and p-JNK. Pretreatment with l-buthionine-(S,R)-sulfoximine, a glutathione (GSH) inhibitor, potentiated the sensitivity of BEC to HOCl-induced apoptosis. We conclude that intracellular GSH reduction leads directly to BEC apoptosis. Modulation of these events will be critical to reduce immune-mediated destruction.
Collapse
Affiliation(s)
- Thucydides L Salunga
- Department of Pathology I, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Velez-Pardo C, Morales AT, Del Rio MJ, Olivera-Angel M. Endogenously generated hydrogen peroxide induces apoptosis via mitochondrial damage independent of NF-kappaB and p53 activation in bovine embryos. Theriogenology 2007; 67:1285-96. [PMID: 17353043 DOI: 10.1016/j.theriogenology.2007.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/01/2007] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) has been implicated as a key molecule in arresting embryonic development; however, its mechanism of action is not fully established. The aim of the present study was to determine the chronological generation of H(2)O(2) from oocyte to morula, and to examine the relationship of H(2)O(2) with loss of mitochondrial membrane potential, nuclear factor kappa-B (NF-kappaB), p53, caspase-3 activation, and cell death in bovine embryos in vitro. Accordingly, superoxide anion radicals were detected between 32 and 120 h after in vitro fertilization, but higher percentages of oxygen radicals were found in non-competent embryos (n=73, 22 to 34%) than in competent embryos (n=73, 0 to 1%; P<0.005). Similarly, H(2)O(2) levels were higher in non-competent embryos (n=249, 39 to 71%) than in competent embryos (n=278, 0 to 3.4%) at all developmental stages tested (P<0.005). The percentage of cells with apoptotic morphology were higher in non-competent embryos (n=411, 3 to 54%) than in competent embryos (n=306, 0 to 0.6%; P<0.005). Based on assessment of mitochondrial membrane potential, competent embryos (n=305) had the highest percentages of JC-1 staining (31 to 50%) when compared with non-competent embryos (n=411; 1 to 15%, P<0.005). The percentage of activation of general caspases was different in non-competent embryos (n=291, 15 to 57%) when compared to competent embryos (n=304, 0 to 0.5%; P<0.005). Pharmacological inhibition of caspase-3, NF-kappaB and p53 triggered aberrant embryo cytoplasmic fragmentation with and without nuclei. We concluded that the sequential mechanism of O(2)(-) and H(2)O(2) generation, mitochondrial damage, caspase activation, and apoptotic morphology might be responsible for the developmental arrest of preimplantation embryos.
Collapse
Affiliation(s)
- Carlos Velez-Pardo
- School of Medicine, Department of Internal Medicine, Neuroscience Research Group, University of Antioquia, Calle 62 #52-59, SIU-Lab 411/412, Medellin, Colombia.
| | | | | | | |
Collapse
|
25
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
26
|
Shibue T, Suzuki S, Okamoto H, Yoshida H, Ohba Y, Takaoka A, Taniguchi T. Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J 2006; 25:4952-62. [PMID: 17024184 PMCID: PMC1618103 DOI: 10.1038/sj.emboj.7601359] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 08/30/2006] [Indexed: 12/25/2022] Open
Abstract
The activation of tumor suppressor p53 induces apoptosis or cell cycle arrest depending on the state and type of cell, but it is not fully understood how these different responses are regulated. Here, we show that Puma and Noxa, the well-known p53-inducible proapoptotic members of the Bcl-2 family, differentially participate in dual pathways of the induction of apoptosis. In normal cells, Puma but not Noxa induces mitochondrial outer membrane permeabilization (MOMP), and this function is mediated in part by a pathway that involves calcium release from the endoplasmic reticulum (ER) and the subsequent caspase activation. However, upon E1A oncoprotein expression, cells also become susceptible to MOMP induction by Noxa, owing to their sensitization to the ER-independent pathway. These findings offer a new insight into differential cellular responses induced by p53, and may have therapeutic implications in cancer.
Collapse
Affiliation(s)
- Tsukasa Shibue
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Saori Suzuki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideaki Okamoto
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yusuke Ohba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akinori Takaoka
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Tel.: +81 3 5841 3375/73; Fax: +81 3 5841 3450; E-mail:
| |
Collapse
|
27
|
Thompson JS, Asmis R, Glass J, Liu H, Wilson C, Nelson B, Brown SA, Stromberg AJ. P53 status influences regulation of HSPs and ribosomal proteins by PDTC and radiation. Biochem Biophys Res Commun 2006; 343:435-42. [PMID: 16546138 DOI: 10.1016/j.bbrc.2006.02.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 02/25/2006] [Indexed: 01/13/2023]
Abstract
Pyrrolidine dithiocarbamate (PDTC) is a thiol-containing compound that can act under varying conditions as an anti-oxidant or pro-oxidant. Utilizing microarrays, we determined the effect of PDTC +/- ionizing radiation (IR) on the expression of heat shock protein (HSP) genes in isolated B6/129 wild-type (WT) and p53-/- spleen cells. Extremely significant microarrays demonstrated that PDTC, but not IR, markedly up-regulated the expression of the majority of detectable HSP genes in WT and many to a significantly greater degree in p53-/- deficient cells. Determination of the glutathione/glutathione disulfide ratio indicated that PDTC was acting as a pro-oxidant under these conditions. From these data we conclude that the clinical use of "antioxidants" with radiotherapy or chemotherapy must be very carefully based on knowledge of the p53 status of their intended normal and tumor target cells.
Collapse
Affiliation(s)
- John S Thompson
- Veterans Affairs Medical Center, Lexington Kentucky, 40502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Minezaki Y, Homma K, Kinjo AR, Nishikawa K. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 2006; 359:1137-49. [PMID: 16697407 DOI: 10.1016/j.jmb.2006.04.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 12/11/2022]
Abstract
Human transcriptional regulation factors, such as activators, repressors, and enhancer-binding factors are quite different from their prokaryotic counterparts in two respects: the average sequence in human is more than twice as long as that in prokaryotes, while the fraction of sequence aligned to domains of known structure is 31% in human transcription factors (TFs), less than half of that in bacterial TFs (72%). Intrinsically disordered (ID) regions were identified by a disorder-prediction program, and were found to be in good agreement with available experimental data. Analysis of 401 human TFs with experimental evidence from the Swiss-Prot database showed that as high as 49% of the entire sequence of human TFs is occupied by ID regions. More than half of the human TFs consist of a small DNA binding domain (DBD) and long ID regions frequently sandwiching unassigned regions. The remaining TFs have structural domains in addition to DBDs and ID regions. Experimental studies, particularly those with NMR, revealed that the transactivation domains in unbound TFs are usually unstructured, but become structured upon binding to their partners. The sequences of human and mouse TF orthologues are 90.5% identical despite a high incidence of ID regions, probably reflecting important functional roles played by ID regions. In general ID regions occupy a high fraction in TFs of eukaryotes, but not in prokaryotes. Implications of this dichotomy are discussed in connection with their functional roles in transcriptional regulation and evolution.
Collapse
Affiliation(s)
- Yoshiaki Minezaki
- Laboratory of Gene-Product Informatics, Center For Information Biology & DNA Data Bank of Japan, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|