1
|
Horstmeier HJ, Bork S, Nagel MF, Keller W, Sproß J, Diepold N, Ruppel M, Kottke T, Niemann HH. The NADH-dependent flavin reductase ThdF follows an ordered sequential mechanism though crystal structures reveal two FAD molecules in the active site. J Biol Chem 2025; 301:108128. [PMID: 39725031 PMCID: PMC11795597 DOI: 10.1016/j.jbc.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation, and halogenation. The monooxygenase components require a separate flavin reductase which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase. Thal exhibits some limitations in terms of halogenation efficiency, also caused by unproductive enzyme-substrate complexes with reduced flavin adenine dinucleotide (FAD). Since the reductase components have an important regulatory function for the activity and efficiency of the monooxygenase by controlling the supply of reduced flavin, here, we studied the so far uncharacterized flavin reductase ThdF from the same gene cluster in S. albogriseolus, which potentially cooperates with Thal. A crystal structure of ThdF in complex with both substrates, FAD and NADH, revealed their orientation for hydride transfer. We obtained two further ThdF structures with two FAD molecules bound to the active site, suggesting a ping-pong bi-bi mechanism. In contrast, steady-state enzyme kinetics clearly showed that ThdF catalyzes flavin reduction via an ordered sequential mechanism, with FAD being bound first and FADH2 released last. Compared to related flavin reductases, ThdF has a low kcat and low KM value. The inhibition of ThdF by NAD+ might limit Thal's halogenation activity when the cellular NADH level is low. These results provide first insights into how the efficiency of Thal could be controlled by flavin reduction at the reductase ThdF.
Collapse
Affiliation(s)
- Hendrik J Horstmeier
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Simon Bork
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Marius F Nagel
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Willy Keller
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Jens Sproß
- Industrial Organic Chemistry and Biotechnology - Mass Spectrometry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Niklas Diepold
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Marie Ruppel
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Gonzalez R, Soule J, Phan N, Wicht DK, Dowling DP. Structural, biophysical, and biochemical insights into C-S bond cleavage by dimethylsulfone monooxygenase. Proc Natl Acad Sci U S A 2024; 121:e2401858121. [PMID: 39531498 PMCID: PMC11588060 DOI: 10.1073/pnas.2401858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sulfur is an essential element for life. Bacteria can obtain sulfur from inorganic sulfate; but in the sulfur starvation-induced response, Pseudomonads employ two-component flavin-dependent monooxygenases (TC-FMOs) from the msu and sfn operons to assimilate sulfur from environmental compounds including alkanesulfonates and dialkylsulfones. Here, we report binding studies of oxidized FMN to enzymes involved within the P. fluorescens enzymatic pathway responsible for converting dimethylsulfone (DMSO2) to sulfite. In this catabolic pathway, SfnG serves as the initial TC-FMO for sulfur assimilation, which is investigated in detail by solving the 2.6-Å resolution crystal structure of unliganded SfnG and the 1.75-Å resolution crystal structure of the SfnG ternary complex containing FMN and DMSO2. We find that SfnG adopts a (β/α)8 barrel fold with a distinct quaternary configuration from other tetrameric class C TC-FMOs. To probe the unexpected tetramer arrangement, structural heterogeneity is assessed by chromatography and light scattering to confirm ligand binding correlates with a tetramer. Binding of FMN and DMSO2 accompanies ordering of the active site, with DMSO2 bound on the si-face of the flavin. A previously unobserved protein backbone conformation is found within the oxygen-binding site on the re-face of the flavin. Functional assays and the positioning of ligands with respect to the oxygen-binding site are consistent with use of an N5-(hydro)peroxyflavin pathway. Biochemical endpoint assays and docking studies reveal SfnG breaks the C-S bond of a range of dialkylsulfones.
Collapse
Affiliation(s)
- Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts, Boston, MA02125
| | - Jess Soule
- Department of Chemistry, University of Massachusetts, Boston, MA02125
| | - Ngan Phan
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA02108
| | - Denyce K. Wicht
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA02108
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts, Boston, MA02125
| |
Collapse
|
3
|
Liew JJM, Wicht DK, Gonzalez R, Dowling DP, Ellis HR. Current understanding of enzyme structure and function in bacterial two-component flavin-dependent desulfonases: Cleaving C-S bonds of organosulfur compounds. Arch Biochem Biophys 2024; 758:110048. [PMID: 38848996 DOI: 10.1016/j.abb.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The inherent structural properties of enzymes are critical in defining catalytic function. Often, studies to evaluate the relationship between structure and function are limited to only one defined structural element. The two-component flavin-dependent desulfonase family of enzymes involved in bacterial sulfur acquisition utilize a comprehensive range of structural features to carry out the desulfonation of organosulfur compounds. These metabolically essential two-component FMN-dependent desulfonase systems have been proposed to utilize oligomeric changes, protein-protein interactions for flavin transfer, and common mechanistic steps for carbon-sulfur bond cleavage. This review is focused on our current functional and structural understanding of two-component FMN-dependent desulfonase systems from multiple bacterial sources. Mechanistic and structural comparisons from recent independent studies provide fresh insights into the overall functional properties of these systems and note areas in need of further investigation. The review acknowledges current studies focused on evaluating the structural properties of these enzymes in relationship to their distinct catalytic function. The role of these enzymes in maintaining adequate sulfur levels, coupled with the conserved nature of these enzymes in diverse bacteria, underscore the importance in understanding the functional and structural nuances of these systems.
Collapse
Affiliation(s)
- Jeremy J M Liew
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Denyce K Wicht
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, 02108, USA
| | - Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
4
|
Zhou S, Zhu R, Niu X, Zhao Y, Deng Y. Metabolic engineering of Paracoccus denitrificans for dual degradation of sulfamethoxazole and ammonia nitrogen. Microbiol Spectr 2023; 11:e0014623. [PMID: 37732744 PMCID: PMC10581052 DOI: 10.1128/spectrum.00146-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Sulfamethoxazole (SMX), as one of the most widely used sulfonamide antibiotics, has been frequently detected in the aqueous environment, posing potential risks to the environment and human health. Although microbial degradation methods have been widely applied, some issues remain, including low degradation efficiency and poor environmental adaptability. In this regard, constructing efficient degrading bacteria by metabolic engineering is an ideal solution to these challenges. In this study, we used Paracoccus denitrificans DYTN-1, a superior nitrogen removal environment strain, as chassis to construct an SMX degradation pathway, obtaining a new bacteria for simultaneous degradation of SMX and removal of ammonia nitrogen. In doing this, we first identified and characterized four native promoters of P. denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. After degradation pathway expression level optimization and FMN reductase optimization, SMX degradation efficiency was significantly improved. The constructed P. d-pIAB4-PCS-sutR strain exhibited superior co-degradation of SMX and ammonia nitrogen contaminants with degradation rates of 44% and 71%, respectively. This study could pave the way for SMX degradation engineered strain design and evolution of environmental bioremediation. IMPORTANCE The abuse of sulfamethoxazole (SMX) had led to an increased accumulation in the environment, resulting in the disruption of the structure of microbial communities, further disrupting the bio-degradation process of other pollutants, such as ammonia nitrogen. To solve this challenge, we first identified and characterized four native promoters of Paracoccus denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. Then SMX degradation efficiency was significantly improved with degradation pathway expression level optimization and FMN reductase optimization. Finally, the superior nitrogen removal environment strain, P. denitrificans DYTN-1, obtained an SMX degradation function. This pioneering study of metabolic engineering to enhance the SMX degradation in microorganisms could pave the way for designing the engineered strains of SMX and nitrogen co-degradation and the environmental bioremediation.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Rongrong Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoqian Niu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Aloh CH, Zeczycki TN, Ellis HR. Oligomeric Changes Regulate Flavin Transfer in Two-Component FMN Reductases Involved in Sulfur Metabolism. Biochemistry 2023; 62:2751-2762. [PMID: 37651343 DOI: 10.1021/acs.biochem.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The FMN reductases (SsuE and MsuE of the alkanesulfonate monooxygenase systems) supply reduced flavin to their partner monooxygenases for the desulfonation of alkanesulfonates. Flavin reductases that comprise two-component systems must be able to regulate both flavin reduction and transfer. One mechanism to control these distinct processes is through changes in the oligomeric state of the enzymes. Despite their similar overall structures, SsuE and MsuE showed clear differences in their oligomeric states in the presence of substrates. The oligomeric state of SsuE was converted from a tetramer to a dimer/tetramer equilibrium in the presence of FMN or NADPH in analytical ultracentrifugation studies. Conversely, MsuE shifted from a dimer to a single tetrameric state with FMN, and the NADPH substrate did not induce a similar oligomeric shift. There was a fast tetramer to dimer equilibrium shift occurring at the dimer/dimer interface in H/D-X investigations with apo SsuE. Formation of the SsuE/FMN complex slowed the tetramer/dimer conversion, leading to a slower exchange along the dimer/dimer interface. The oligomeric shift of the MsuE/FMN complex from a dimer to a distinct tetramer showed a decrease in H/D-X in the region around the π-helices at the dimer/dimer interface. Both SsuE and MsuE showed a comparable and significant increase in the melting temperature with the addition of FMN, indicating the conformers formed by each FMN-bound enzyme had increased stability. A mechanism that supports the different structural shifts is rationalized by the different roles these enzymes play in providing reduced flavin to single or multiple monooxygenase enzymes.
Collapse
Affiliation(s)
- Chioma H Aloh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
6
|
Somai S, Yue K, Acevedo O, Ellis HR. Shorter Alkanesulfonate Carbon Chains Destabilize the Active Site Architecture of SsuD for Desulfonation. Biochemistry 2023; 62:85-94. [PMID: 36534405 DOI: 10.1021/acs.biochem.2c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria have evolved to utilize alternative organosulfur sources when sulfur is limiting. The SsuE/SsuD and MsuE/MsuD enzymes expressed when sulfur sources are restricted, are responsible for providing specific bacteria with sulfur in the form of alkanesulfonates. In this study, we evaluated why two structurally and functionally similar FMNH2-dependent monooxygenase enzymes (MsuD and SsuD) are needed for the acquisition of alkanesulfonates in some bacteria. In desulfonation assays, MsuD was able to utilize the entire range of alkanesulfonates (C1-C10). However, SsuD was not able to utilize smaller alkanesulfonate substrates. Interestingly, SsuD had a similar binding affinity for methanesulfonate (MES) (15 ± 1 μM) as MsuD (12 ± 1 μM) even though SsuD was not able to catalyze the desulfonation of the MES substrate. SsuD and MsuD showed decreased proteolytic susceptibility in the presence of FMNH2 with MES and octanesulfonate (OCS). Tighter loop closure was observed for the MsuD/FMNH2 complex with MES and OCS compared to SsuD under comparable conditions. Analysis of the SsuD/FMNH2/MES structure using accelerated molecular dynamics simulations found three different conformations for MES, demonstrating the instability of the bound structure. Even when MES was bound in a similar fashion to OCS within the active site, the smaller alkane chain resulted in a shift of FMNH2 so that it was no longer in a position to catalyze the desulfonation of MES. The active site of SsuD requires a longer alkane chain to maintain the appropriate architecture for desulfonation.
Collapse
Affiliation(s)
- Shruti Somai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina27834, United States
| | - Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida33146, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
7
|
Lee JM, Jin CZ, Kang MK, Park SH, Park DJ, Kim DG, Kim CJ. Nocardioides humilatus sp. nov., isolated from farmland soil in the Republic of Korea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.004928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain positive, aerobic, irregularly rod-shaped, non-spore-forming bacterium, designated as BN130099T, was isolated from farmland soil sampled in Goesan-gun, Chungbuk, Republic of Korea. Phylogenetic analysis of its 16S rRNA gene sequence showed that the strain is closely related to
Nocardioides pelophilus
KACC 19192T with 98.11 % similarity. The DNA G+C content of strain BN130099T was 68.84 mol% (draft genome sequence). The genome sequence of BN130099T displayed key enzymes involved in bioremediation of organic pollutants and biosynthetic clusters of saquayamycin. The strain contained ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan and MK-8(H4) as the major respiratory quinone. The predominant fatty acid was iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol. The results of physiological and biochemical characterization allowed the phenotypic differentiation of strain BN130099T from
N. pelophilus
KACC 19192T. The strain represents a novel species of the genus
Nocardioides
, for which we propose the name Nocardioides humilatus sp. nov. The type strain is BN130099T (=KCTC 49079T=CCTCC AB 2018135T).
Collapse
Affiliation(s)
- Jong Min Lee
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Chun-Zhi Jin
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Kyoung Kang
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So Hee Park
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Jin Park
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Chang-Jin Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Matthews A, Schönfelder J, Lagies S, Schleicher E, Kammerer B, Ellis HR, Stull F, Teufel R. Bacterial flavoprotein monooxygenase YxeK salvages toxic S-(2-succino)-adducts via oxygenolytic C-S bond cleavage. FEBS J 2021; 289:787-807. [PMID: 34510734 DOI: 10.1111/febs.16193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023]
Abstract
Thiol-containing nucleophiles such as cysteine react spontaneously with the citric acid cycle intermediate fumarate to form S-(2-succino)-adducts. In Bacillus subtilis, a salvaging pathway encoded by the yxe operon has recently been identified for the detoxification and exploitation of these compounds as sulfur sources. This route involves acetylation of S-(2-succino)cysteine to N-acetyl-2-succinocysteine, which is presumably converted to oxaloacetate and N-acetylcysteine, before a final deacetylation step affords cysteine. The critical oxidative cleavage of the C-S bond of N-acetyl-S-(2-succino)cysteine was proposed to depend on the predicted flavoprotein monooxygenase YxeK. Here, we characterize YxeK and verify its role in S-(2-succino)-adduct detoxification and sulfur metabolism. Detailed biochemical and mechanistic investigation of YxeK including 18 O-isotope-labeling experiments, homology modeling, substrate specificity tests, site-directed mutagenesis, and (pre-)steady-state kinetics provides insight into the enzyme's mechanism of action, which may involve a noncanonical flavin-N5-peroxide species for C-S bond oxygenolysis.
Collapse
Affiliation(s)
| | | | - Simon Lagies
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry, University of Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Germany
| | - Holly R Ellis
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Germany
| |
Collapse
|
9
|
Ito K, Takagi K, Kataoka R, Kiyota H. Biochemical characterization of NADH:FMN oxidoreductase HcbA3 from Nocardioides sp. PD653 in catalyzing aerobic HCB dechlorination. JOURNAL OF PESTICIDE SCIENCE 2020; 45:125-131. [PMID: 32913414 PMCID: PMC7453296 DOI: 10.1584/jpestics.d20-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Nocardioides sp. PD653 genes hcbA1, hcbA2, and hcbA3 encode enzymes that catalyze the oxidative dehalogenation of hexachlorobenzene (HCB), which is one of the most recalcitrant persistent organic pollutants (POPs). In this study, HcbA1, HcbA2, and HcbA3 were heterologously expressed and characterized. Among the flavin species tested, HcbA3 showed the highest affinity for FMN with a K d value of 0.75±0.17 µM. Kinetic assays revealed that HcbA3 followed a ping-pong bi-bi mechanism for the reduction of flavins. The K m for NADH and FMN was 51.66±11.58 µM and 4.43±0.69 µM, respectively. For both NADH and FMN, the V max and k cat were 2.21±0.86 µM and 66.74±5.91 sec-1, respectively. We also successfully reconstituted the oxidative dehalogenase reaction in vitro, which consisted of HcbA1, HcbA3, FMN, and NADH, suggesting that HcbA3 may be the partner reductase component for HcbA1 in Nocardioides sp. PD653.
Collapse
Affiliation(s)
- Koji Ito
- Hazardous Chemical Division, Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organisation, Kannondai, Tsukuba-city, Ibaraki, Japan
| | - Kazuhiro Takagi
- Hazardous Chemical Division, Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organisation, Kannondai, Tsukuba-city, Ibaraki, Japan
| | - Ryota Kataoka
- Department of Environmental Sciences, University of Yamanashi, Kofu-city, Yamanashi, Japan
| | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Tsushima, Okayama-city, Okayama, Japan
| |
Collapse
|
10
|
Microbial Degradation of Pyridine: a Complete Pathway in Arthrobacter sp. Strain 68b Deciphered. Appl Environ Microbiol 2020; 86:AEM.00902-20. [PMID: 32471913 DOI: 10.1128/aem.00902-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/23/2020] [Indexed: 11/20/2022] Open
Abstract
Pyridine and its derivatives constitute the majority of heterocyclic aromatic compounds that occur largely as a result of human activities and contribute to environmental pollution. It is known that they can be degraded by various bacteria in the environment; however, the degradation of unsubstituted pyridine has not yet been completely resolved. In this study, we present data on the pyridine catabolic pathway in Arthrobacter sp. strain 68b at the level of genes, enzymes, and metabolites. The pyr gene cluster, responsible for the degradation of pyridine, was identified in a catabolic plasmid, p2MP. The pathway of pyridine metabolism consisted of four enzymatic steps and ended by the formation of succinic acid. The first step in the degradation of pyridine proceeds through a direct ring cleavage catalyzed by a two-component flavin-dependent monooxygenase system, encoded by pyrA (pyridine monooxygenase) and pyrE genes. The genes pyrB, pyrC, and pyrD were found to encode (Z)-N-(4-oxobut-1-enyl)formamide dehydrogenase, amidohydrolase, and succinate semialdehyde dehydrogenase, respectively. These enzymes participate in the subsequent steps of pyridine degradation. The metabolites of these enzymatic reactions were identified, and this allowed us to reconstruct the entire pyridine catabolism pathway in Arthrobacter sp. 68b.IMPORTANCE The biodegradation pathway of pyridine, a notorious toxicant, is relatively unexplored, as no genetic data related to this process have ever been presented. In this paper, we describe the plasmid-borne pyr gene cluster, which includes the complete set of genes responsible for the degradation of pyridine. A key enzyme, the monooxygenase PyrA, which is responsible for the first step of the catabolic pathway, performs an oxidative cleavage of the pyridine ring without typical activation steps such as reduction or hydroxylation of the heterocycle. This work provides new insights into the metabolism of N-heterocyclic compounds in nature.
Collapse
|
11
|
Sedláček V, Kučera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol Microbiol 2019; 112:166-183. [PMID: 30977245 DOI: 10.1111/mmi.14260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2019] [Indexed: 01/25/2023]
Abstract
Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.
Collapse
Affiliation(s)
- Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
12
|
Robbins JM, Ellis HR. Investigations of two-component flavin-dependent monooxygenase systems. Methods Enzymol 2019; 620:399-422. [DOI: 10.1016/bs.mie.2019.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
McFarlane JS, Hagen RA, Chilton AS, Forbes DL, Lamb AL, Ellis HR. Not as easy as π: An insertional residue does not explain the π-helix gain-of-function in two-component FMN reductases. Protein Sci 2018; 28:123-134. [PMID: 30171650 DOI: 10.1002/pro.3504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 11/08/2022]
Abstract
The π-helix located at the tetramer interface of two-component FMN-dependent reductases contributes to the structural divergence from canonical FMN-bound reductases within the NADPH:FMN reductase family. The π-helix in the SsuE FMN-dependent reductase of the alkanesulfonate monooxygenase system has been proposed to be generated by the insertion of a Tyr residue in the conserved α4-helix. Variants of Tyr118 were generated, and their X-ray crystal structures determined, to evaluate how these alterations affect the structural integrity of the π-helix. The structure of the Y118A SsuE π-helix was converted to an α-helix, similar to the FMN-bound members of the NADPH:FMN reductase family. Although the π-helix was altered, the FMN binding region remained unchanged. Conversely, deletion of Tyr118 disrupted the secondary structural properties of the π-helix, generating a random coil region in the middle of helix 4. Both the Y118A and Δ118 SsuE SsuE variants crystallize as a dimer. The MsuE FMN reductase involved in the desulfonation of methanesulfonates is structurally similar to SsuE, but the π-helix contains a His insertional residue. Exchanging the π-helix insertional residue of each enzyme did not result in equivalent kinetic properties. Structure-based sequence analysis further demonstrated the presence of a similar Tyr residue in an FMN-bound reductase in the NADPH:FMN reductase family that is not sufficient to generate a π-helix. Results from the structural and functional studies of the FMN-dependent reductases suggest that the insertional residue alone is not solely responsible for generating the π-helix, and additional structural adaptions occur to provide the altered gain of function.
Collapse
Affiliation(s)
- Jeffrey S McFarlane
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Richard A Hagen
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| | - Annemarie S Chilton
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Dianna L Forbes
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| | - Audrey L Lamb
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Holly R Ellis
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| |
Collapse
|
14
|
Musila JM, L Forbes D, Ellis HR. Functional Evaluation of the π-Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System. Biochemistry 2018; 57:4469-4477. [PMID: 29979040 DOI: 10.1021/acs.biochem.8b00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A subgroup of enzymes in the NAD(P)H:FMN reductase family is comprised of flavin reductases from two-component monooxygenase systems. The diverging structural feature in these FMN reductases is a π-helix centrally located at the tetramer interface that is generated by the insertion of an amino acid in a conserved α4 helix. The Tyr insertional residue of SsuE makes specific contacts across the dimer interface that may assist in the altered mechanistic properties of this enzyme. The Y118F SsuE variant maintained the π-π stacking interactions at the tetramer interface and had kinetic parameters similar to those of wild-type SsuE. Substitution of the π-helical residue (Tyr118) to Ala or Ser transformed the enzymes into flavin-bound SsuE variants that could no longer support flavin reductase and desulfonation activities. These variants existed as dimers and could form protein-protein interactions with SsuD even though flavin transfer was not sustained. The ΔY118 SsuE variant was flavin-free as purified and did not undergo the tetramer to dimer oligomeric shift with the addition of flavin. The absence of desulfonation activity can be attributed to the inability of ΔY118 SsuE to promote flavin transfer and undergo the requisite oligomeric changes to support desulfonation. Results from these studies provide insights into the role of the SsuE π-helix in promoting flavin transfer and oligomeric changes that support protein-protein interactions with SsuD.
Collapse
Affiliation(s)
- Jonathan M Musila
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Dianna L Forbes
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Holly R Ellis
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| |
Collapse
|
15
|
Musila JM, Ellis HR. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix. Biochemistry 2016; 55:6389-6394. [DOI: 10.1021/acs.biochem.6b00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan M. Musila
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department
of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
16
|
Vrzheshch PV. The accuracy of the rapid equilibrium assumption in steady-state enzyme kinetics in the case of a multipath arbitrary enzyme mechanism with a number of equilibrium segments. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System. J Bacteriol 2016; 198:1281-93. [PMID: 26858101 DOI: 10.1128/jb.00982-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The general stress response (GSR) system of the intracellular pathogen Brucella abortus controls the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required for B. abortus survival under nonoptimal growth conditions in vitro and for maintenance of chronic infection in an in vivo mouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined. bab1_1070 is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditions in vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However, B. abortus WrbA-related protein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductase in vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion of wrpA (ΔwrpA) does not compromise cell survival under acute oxidative stress in vitro or attenuate infection in cell-based or mouse models. However, a ΔwrpA strain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulates B. abortus interaction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose that B. abortus WrpA represents a functionally distinct member of the diverse flavodoxin family. IMPORTANCE Brucella abortus is an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system of B. abortus controls the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We present in vitro and in vivo functional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activity in vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.
Collapse
|
18
|
Dayal PV, Singh H, Busenlehner LS, Ellis HR. Exposing the Alkanesulfonate Monooxygenase Protein–Protein Interaction Sites. Biochemistry 2015; 54:7531-8. [DOI: 10.1021/acs.biochem.5b00935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paritosh V. Dayal
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Harsimran Singh
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Laura S. Busenlehner
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Holly R. Ellis
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
19
|
Vrzheshch PV. The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is a function of equilibrium segment structure and properties. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Sucharitakul J, Tinikul R, Chaiyen P. Mechanisms of reduced flavin transfer in the two-component flavin-dependent monooxygenases. Arch Biochem Biophys 2014; 555-556:33-46. [DOI: 10.1016/j.abb.2014.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
21
|
Driggers CM, Dayal PV, Ellis HR, Karplus PA. Crystal Structure of Escherichia coli SsuE: Defining a General Catalytic Cycle for FMN Reductases of the Flavodoxin-like Superfamily. Biochemistry 2014; 53:3509-19. [DOI: 10.1021/bi500314f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camden M. Driggers
- Department
of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural
and Life Sciences Building, Corvallis, Oregon 97331, United States
| | - Paritosh V. Dayal
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural
and Life Sciences Building, Corvallis, Oregon 97331, United States
| |
Collapse
|
22
|
Armacost K, Musila J, Gathiaka S, Ellis HR, Acevedo O. Exploring the Catalytic Mechanism of Alkanesulfonate Monooxygenase Using Molecular Dynamics. Biochemistry 2014; 53:3308-17. [DOI: 10.1021/bi5002085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kira Armacost
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jonathan Musila
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Symon Gathiaka
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Orlando Acevedo
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
23
|
Robbins JM, Ellis HR. Steady-state kinetic isotope effects support a complex role of Arg226 in the proposed desulfonation mechanism of alkanesulfonate monooxygenase. Biochemistry 2013; 53:161-8. [PMID: 24321058 DOI: 10.1021/bi401234e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkanesulfonate monooxygenase system catalyzes the desulfonation of alkanesulfonates through proposed acid-base mechanistic steps that involves the abstraction of a proton from the alkane peroxyflavin intermediate and protonation of the FMN-O(-) intermediate. Both solvent and kinetic isotope studies were performed to define the proton transfer steps involved in the SsuD reaction. Substitution of the protium at the C1 position of octanesulfonate with deuterium resulted in an observed primary isotope effect of 3.0 ± 0.2 on the kcat parameter, supporting abstraction of the α-proton from the alkane peroxyflavin as the rate-limiting step in catalysis. Previous studies implicated Arg226 as the acid involved in the reprotonation of the hydroxyflavin intermediate. Solvent isotope kinetic studies gave an inverse isotope effect on (D2O)kcat of 0.75 ± 0.04 with no observable effect on (D2O)kcat/Km. This resulted in equivalent solvent isotope effects on (D2O)kcat and (D2O)(kcat)D, suggesting a solvent equilibrium isotope effect on a step occurring after the first irreversible step through product release. Data from proton inventory studies on kcat were best fit to a dome-shaped curve consistent with a conformational change to an open conformation during product release. The solvent isotope effect data coupled with the corresponding proton inventory results support and extend our previous observations that Arg226 donates a proton to the FMN-O(-) intermediate, triggering a conformational change that opens the enzyme to solvation and promotes product release.
Collapse
Affiliation(s)
- John M Robbins
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | | |
Collapse
|
24
|
Tinikul R, Pitsawong W, Sucharitakul J, Nijvipakul S, Ballou DP, Chaiyen P. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Biochemistry 2013; 52:6834-43. [PMID: 24004065 DOI: 10.1021/bi4006545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial luciferase (LuxAB) is a two-component flavin mononucleotide (FMN)-dependent monooxygenase that catalyzes the oxidation of reduced FMN (FMNH(-)) and a long-chain aliphatic aldehyde by molecular oxygen to generate oxidized FMN, the corresponding aliphatic carboxylic acid, and concomitant emission of light. The LuxAB reaction requires a flavin reductase to generate FMNH(-) to serve as a luciferin in its reaction. However, FMNH(-) is unstable and can react with oxygen to generate H2O2, so that it is important to transfer it efficiently to LuxAB. Recently, LuxG has been identified as a NADH:FMN oxidoreductase that supplies FMNH(-) to luciferase in vivo. In this report, the mode of transfer of FMNH(-) between LuxG from Photobacterium leiognathi TH1 and LuxABs from both P. leiognathi TH1 and Vibrio campbellii (PlLuxAB and VcLuxAB, respectively) was investigated using single-mixing and double-mixing stopped-flow spectrophotometry. The oxygenase component of p-hydroxyphenylacetate hydroxylase (C2) from Acinetobacter baumannii, which has no structural similarity to LuxAB, was used to measure the kinetics of release of FMNH(-) from LuxG. With all FMNH(-) acceptors used (C2, PlLuxAB, and VcLuxAB), the kinetics of FMN reduction on LuxG were the same, showing that LuxG releases FMNH(-) with a rate constant of 4.5-6 s(-1). Our data showed that the kinetics of binding of FMNH(-)to PlLuxAB and VcLuxAB and the subsequent reactions with oxygen were the same with either free FMNH(-) or FMNH(-) generated in situ by LuxG. These results strongly suggest that no complexes between LuxG and the various species are necessary to transfer FMNH(-) to the acceptors. The kinetics of the overall reactions and the individual rate constants correlate well with a free diffusion model for the transfer of FMNH(-) from LuxG to either LuxAB.
Collapse
Affiliation(s)
- Ruchanok Tinikul
- Mahidol University , Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | | | | | | | | | | |
Collapse
|
25
|
Morrison E, Kantz A, Gassner GT, Sazinsky MH. Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction. Biochemistry 2013; 52:6063-75. [PMID: 23909369 DOI: 10.1021/bi400763h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two-component flavoprotein styrene monooxygenase (SMO) from Pseudomonas putida S12 catalyzes the NADH- and FAD-dependent epoxidation of styrene to styrene oxide. In this study, we investigate the mechanism of flavin reduction and transfer from the reductase (SMOB) to the epoxidase (NSMOA) component and report our findings in light of the 2.2 Å crystal structure of SMOB. Upon rapidly mixing with NADH, SMOB forms an NADH → FADox charge-transfer intermediate and catalyzes a hydride-transfer reaction from NADH to FAD, with a rate constant of 49.1 ± 1.4 s(-1), in a step that is coupled to the rapid dissociation of NAD(+). Electrochemical and equilibrium-binding studies indicate that NSMOA binds FADhq ∼13-times more tightly than SMOB, which supports a vectoral transfer of FADhq from the reductase to the epoxidase. After binding to NSMOA, FADhq rapidly reacts with molecular oxygen to form a stable C(4a)-hydroperoxide intermediate. The half-life of apoSMOB generated in the FAD-transfer reaction is increased ∼21-fold, supporting a protein-protein interaction between apoSMOB and the peroxide intermediate of NSMOA. The mechanisms of FAD dissociation and transport from SMOB to NSMOA were probed by monitoring the competitive reduction of cytochrome c in the presence and absence of pyridine nucleotides. On the basis of these studies, we propose a model in which reduced FAD binds to SMOB in equilibrium between an unreactive, sequestered state (S state) and more reactive, transfer state (T state). The dissociation of NAD(+) after the hydride-transfer reaction transiently populates the T state, promoting the transfer of FADhq to NSMOA. The binding of pyridine nucleotides to SMOB-FADhq shifts the FADhq-binding equilibrium from the T state to the S state. Additionally, the 2.2 Å crystal structure of SMOB-FADox reported in this work is discussed in light of the pyridine nucleotide-gated flavin-transfer and electron-transfer reactions.
Collapse
Affiliation(s)
- Eliot Morrison
- Department of Chemistry and Biochemistry, San Francisco State University , San Francisco, California, United States
| | | | | | | |
Collapse
|
26
|
Ferrario V, Braiuca P, Tessaro P, Knapic L, Gruber C, Pleiss J, Ebert C, Eichhorn E, Gardossi L. Elucidating the structural and conformational factors responsible for the activity and substrate specificity of alkanesulfonate monooxygenase. J Biomol Struct Dyn 2012; 30:74-88. [PMID: 22571434 DOI: 10.1080/07391102.2012.674268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The mechanism and substrate specificity of alkanesulfonate monooxygenase (SsuD) was investigated by combining molecular dynamics simulations, docking, and a comprehensive quantitative structure activity relationships (QSAR) analysis. The FMNH(2) dependent monooxygenase undergoes a dynamic conformational change of the active site, passing from a closed to an open state. As a consequence, substrates have access to the active site and the cofactor is then regenerated by the associated oxidoreductase FMN reductase SsuE.. Computational analysis of the interaction of SsuD with FMNH(2) based on molecular docking and multiple 20 ns molecular dynamics simulations pointed out that the conformational change is mainly driven by salt bridge formation between Arg297 and Glu20 or Asp111. A set of substrates accepted by SsuD were described by means of ALMOND chemical descriptors and a partial least square (PLS) mathematical model was constructed. The PLS model correlates the structure of substrates and enzyme activity, namely kinetic properties (k (cat)/K (M)). Therefore, information coming from the PLS analysis goes beyond the simple ability of the enzyme to recognize the substrate, but includes the factors that affect the capacity of the enzyme to reduce the activation energy of the rate determining step of the reaction. The two principal components of the model are able to describe both steric and electronic factors and, more importantly, their interactions. Indeed, interactions of factors appear to affect significantly the ability of SsuD of transforming efficiently a substrate.
Collapse
Affiliation(s)
- V Ferrario
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134. Int J Mol Sci 2012; 13:9769-9784. [PMID: 22949829 PMCID: PMC3431827 DOI: 10.3390/ijms13089769] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022] Open
Abstract
2,4,5-TCP 4-monooxygenase (TftD) and 2,4,6-TCP 4-monooxygenase (TcpA) have been discovered in the biodegradation of 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP). TcpA and TftD belong to the reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenases and both use 2,4,6-TCP as a substrate; however, the two enzymes produce different end products. TftD catalyzes a typical monooxygenase reaction, while TcpA catalyzes a typical monooxygenase reaction followed by a hydrolytic dechlorination. We have previously reported the 3D structure of TftD and confirmed the catalytic residue, His289. Here we have determined the crystal structure of TcpA and investigated the apparent differences in specificity and catalysis between these two closely related monooxygenases through structural comparison. Our computational docking results suggest that Ala293 in TcpA (Ile292 in TftD) is possibly responsible for the differences in substrate specificity between the two monooxygenases. We have also identified that Arg101 in TcpA could provide inductive effects/charge stabilization during hydrolytic dechlorination. The collective information provides a fundamental understanding of the catalytic reaction mechanism and the parameters for substrate specificity. The information may provide guidance for designing bioremediation strategies for polychlorophenols, a major group of environmental pollutants.
Collapse
Affiliation(s)
- Robert P. Hayes
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; E-Mails: (R.P.H.); (B.N.W.); (A.K.S.); (M.N.)
| | - Brian N. Webb
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; E-Mails: (R.P.H.); (B.N.W.); (A.K.S.); (M.N.)
| | - Arun Kumar Subramanian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; E-Mails: (R.P.H.); (B.N.W.); (A.K.S.); (M.N.)
| | - Mark Nissen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; E-Mails: (R.P.H.); (B.N.W.); (A.K.S.); (M.N.)
| | - Andrew Popchock
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
| | - Luying Xun
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (L.X.); (C.K.); Tel.: +1-509-335-2787 (L.X.); +1-509-335-1523 (C.K.); Fax: +1-509-335-9688 (L.X.); +1-509-335-8867 (C.K.)
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; E-Mails: (R.P.H.); (B.N.W.); (A.K.S.); (M.N.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (L.X.); (C.K.); Tel.: +1-509-335-2787 (L.X.); +1-509-335-1523 (C.K.); Fax: +1-509-335-9688 (L.X.); +1-509-335-8867 (C.K.)
| |
Collapse
|
28
|
Identification of critical steps governing the two-component alkanesulfonate monooxygenase catalytic mechanism. Biochemistry 2012; 51:6378-87. [PMID: 22775358 DOI: 10.1021/bi300138d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkanesulfonate monooxygenase enzyme (SsuD) catalyzes the oxygenolytic cleavage of a carbon-sulfur bond from sulfonated substrates. A mechanism involving acid-base catalysis has been proposed for the desulfonation mechanism by SsuD. In the proposed mechanism, base catalysis is involved in abstracting a proton from the alkane peroxyflavin intermediate, while acid catalysis is needed for the protonation of the FMNO(-) intermediate. The pH profiles of k(cat) indicate that catalysis by SsuD requires a group with a pK(a) of 6.6 ± 0.2 to be deprotonated and a second group with a pK(a) of 9.5 ± 0.1 to be protonated. The upper pK(a) value was not present in the pH profiles of k(cat)/K(m). Several conserved amino acid residues (His228, His11, His333, Cys54, and Arg226) have been identified as having potential catalytic importance due to the similar spatial arrangements with close structural and functional relatives of SsuD. Substitutions to these amino acid residues were generated, and the pH dependencies were evaluated and compared to wild-type SsuD. Although a histidine residue was previously proposed to be the active site base, the His variants possessed similar steady-state kinetic parameters as wild-type SsuD. Interestingly, R226A and R226K SsuD variants possessed undetectable activity, and there was no detectable formation of the C4a-(hydro)peroxyflavin intermediate for the Arg226 SsuD variants. Guanidinium rescue with the R226A SsuD variant resulted in the recovery of 1.5% of the wild-type SsuD k(cat) value. These results implicate Arg226 playing a critical role in catalysis and provide essential insights into the mechanistic steps that guide the SsuD desulfonation process.
Collapse
|
29
|
Xiong J, Ellis HR. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:898-906. [DOI: 10.1016/j.bbapap.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
|
30
|
Ellis HR. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg Chem 2011; 39:178-84. [DOI: 10.1016/j.bioorg.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022]
|
31
|
Carpenter RA, Xiong J, Robbins JM, Ellis HR. Functional Role of a Conserved Arginine Residue Located on a Mobile Loop of Alkanesulfonate Monooxygenase. Biochemistry 2011; 50:6469-77. [DOI: 10.1021/bi200429d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Russell A. Carpenter
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jingyuan Xiong
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - John M. Robbins
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
32
|
Vrzheshch PV. The quasi-equilibrium assumption for Bi-Bi ordered bisubstrate enzymatic reaction. How to discriminate the mechanism correctly. BIOCHEMISTRY. BIOKHIMIIA 2011; 75:1374-82. [PMID: 21314605 DOI: 10.1134/s000629791011009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Application of the quasi-equilibrium assumption for the steady-state kinetics of bisubstrate irreversible enzymatic reactions in the case of ordered binding of substrates (Bi-Bi ordered mechanism) is considered. The necessary and sufficient conditions for application of the quasi-equilibrium assumption have been found and accuracy of this assumption has been numerically evaluated. The limitations on application of the quasi-equilibrium assumption have been shown and errors of its application have been analyzed. It is shown that possible discrimination of substrate binding order using asymmetrical expressions grounded on the quasi-equilibrium assumption is inconsistent because such asymmetrical expressions arise from incorrect application of the quasi-equilibrium assumption. Moreover, it has been proved in the general case that mechanisms generating such substrate-asymmetrical expressions for the steady-state rate of enzymatic reaction do not exist. The error source when using graphical interpretation for discrimination of mechanisms of bisubstrate enzymatic reactions has been determined. The strategy to avoid such errors is pointed out.
Collapse
Affiliation(s)
- P V Vrzheshch
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
33
|
Ellis HR. The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys 2010; 497:1-12. [PMID: 20193654 DOI: 10.1016/j.abb.2010.02.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
The FMN-dependent two-component monooxygenase systems catalyze a diverse range of reactions. These two-component systems are composed of an FMN reductase enzyme and a monooxygenase enzyme that catalyze the oxidation of various substrates. The role of the reductase is to supply reduced flavin to the monooxygenase enzyme, while the monooxygenase enzyme utilizes the reduced flavin to activate molecular oxygen. Unlike flavoproteins with a tightly or covalently bound prosthetic group, these enzymes catalyze the reductive and oxidative half-reaction on two separate enzymes. An interesting feature of these enzymes is their ability to transfer reduced flavin from the reductase to the monooxygenase enzyme. This review covers the reported mechanistic and structural properties of these enzyme systems, and evaluates the mechanism of flavin transfer.
Collapse
Affiliation(s)
- Holly R Ellis
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
34
|
Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 2010; 493:26-36. [DOI: 10.1016/j.abb.2009.11.028] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
|
35
|
Catalytic role of a conserved cysteine residue in the desulfonation reaction by the alkanesulfonate monooxygenase enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:97-105. [DOI: 10.1016/j.bbapap.2009.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 11/19/2022]
|
36
|
Webb BN, Ballinger JW, Kim E, Belchik SM, Lam KS, Youn B, Nissen MS, Xun L, Kang C. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Biol Chem 2009; 285:2014-27. [PMID: 19915006 DOI: 10.1074/jbc.m109.056135] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Burkholderia cepacia AC1100 completely degrades 2,4,5-trichlorophenol, in which an FADH(2)-dependent monooxygenase (TftD) and an NADH:FAD oxidoreductase (TftC) catalyze the initial steps. TftD oxidizes 2,4,5-trichlorophenol (2,4,5-TCP) to 2,5-dichloro-p-benzoquinone, which is chemically reduced to 2,5-dichloro-p-hydroquinone (2,5-DiCHQ). Then, TftD oxidizes the latter to 5-chloro-2-hydroxy-p-benzoquinone. In those processes, TftC provides all the required FADH(2). We have determined the crystal structures of dimeric TftC and tetrameric TftD at 2.0 and 2.5 A resolution, respectively. The structure of TftC was similar to those of related flavin reductases. The stacked nicotinamide:isoalloxazine rings in TftC and sequential reaction kinetics suggest that the reduced FAD leaves TftC after NADH oxidation. The structure of TftD was also similar to the known structures of FADH(2)-dependent monooxygenases. Its His-289 residue in the re-side of the isoalloxazine ring is within hydrogen bonding distance with a hydroxyl group of 2,5-DiCHQ. An H289A mutation resulted in the complete loss of activity toward 2,5-DiCHQ and a significant decrease in catalytic efficiency toward 2,4,5-TCP. Thus, His-289 plays different roles in the catalysis of 2,4,5-TCP and 2,5-DiCHQ. The results support that free FADH(2) is generated by TftC, and TftD uses FADH(2) to separately transform 2,4,5-TCP and 2,5-DiCHQ. Additional experimental data also support the diffusion of FADH(2) between TftC and TftD without direct physical interaction between the two enzymes.
Collapse
Affiliation(s)
- Brian N Webb
- Department of Chemistry, WashingtonState University,Pullman, Washington 99164-4660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nissen MS, Youn B, Knowles BD, Ballinger JW, Jun SY, Belchik SM, Xun L, Kang C. Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem 2008; 283:28710-20. [PMID: 18701448 DOI: 10.1074/jbc.m804535200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EDTA has become a major organic pollutant in the environment because of its extreme usage and resistance to biodegradation. Recently, two critical enzymes, EDTA monooxygenase (EmoA) and NADH:FMN oxidoreductase (EmoB), belonging to the newly established two-component flavin-diffusible monooxygenase family, were identified in the EDTA degradation pathway in Mesorhizobium sp. BNC1. EmoA is an FMNH2-dependent enzyme that requires EmoB to provide FMNH2 for the conversion of EDTA to ethylenediaminediacetate. To understand the molecular basis of this FMN-mediated reaction, the crystal structures of the apo-form, FMN.FMN complex, and FMN.NADH complex of EmoB were determined at 2.5 angstroms resolution. The structure of EmoB is a homotetramer consisting of four alpha/beta-single-domain monomers of five parallel beta-strands flanked by five alpha-helices, which is quite different from those of other known two-component flavin-diffusible monooxygenase family members, such as PheA2 and HpaC, in terms of both tertiary and quaternary structures. For the first time, the crystal structures of both the FMN.FMN and FMN.NADH complexes of an NADH:FMN oxidoreductase were determined. Two stacked isoalloxazine rings and nicotinamide/isoalloxazine rings were at a proper distance for hydride transfer. The structures indicated a ping-pong reaction mechanism, which was confirmed by activity assays. Thus, the structural data offer detailed mechanistic information for hydride transfer between NADH to an enzyme-bound FMN and between the bound FMNH2 and a diffusible FMN.
Collapse
Affiliation(s)
- Mark S Nissen
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim SH, Hisano T, Iwasaki W, Ebihara A, Miki K. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Proteins 2008; 70:718-30. [PMID: 17729270 DOI: 10.1002/prot.21534] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The two-component enzyme, 4-hydroxyphenylacetate 3-monooxygenase, catalyzes the conversion of 4-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. In the overall reaction, the oxygenase component (HpaB) introduces a hydroxyl group into the benzene ring of 4-hydroxyphenylacetate using molecular oxygen and reduced flavin, while the reductase component (HpaC) provides free reduced flavins for HpaB. The crystal structures of HpaC from Thermus thermophilus HB8 in the ligand-free form, the FAD-containing form, and the ternary complex with FAD and NAD(+) were determined. In the ligand-free form, two large grooves are present at the dimer interface, and are occupied by water molecules. A structural analysis of HpaC containing FAD revealed that FAD has a low occupancy, indicating that it is not tightly bound to HpaC. This was further confirmed in flavin dissociation experiments, showing that FAD can be released from HpaC. The structure of the ternary complex revealed that FAD and NAD(+) are bound in the groove in the extended and folded conformation, respectively. The nicotinamide ring of NAD(+) is sandwiched between the adenine ring of NAD(+) and the isoalloxazine ring of FAD. The distance between N5 of the isoalloxazine ring and C4 of the nicotinamide ring is about 3.3 A, sufficient to permit hydride transfer. The structures of these three states are essentially identical, however, the side chains of several residues show small conformational changes, indicating an induced fit upon binding of NADH. Inactivity with respect to NADPH can be explained as instability of the binding of NADPH with the negatively charged 2'-phosphate group buried inside the complex, as well as a possible repulsive effect by the dipole of helix alpha1. A comparison of the binding mode of FAD with that in PheA2 from Bacillus thermoglucosidasius A7, which contains FAD as a prosthetic group, reveals remarkable conformational differences in a less conserved loop region (Gly83-Gly94) involved in the binding of the AMP moiety of FAD. These data suggest that variations in the affinities for FAD in the reductases of the two-component flavin-diffusible monooxygenase family may be attributed to difference in the interaction between the AMP moiety of FAD and the less conserved loop region which possibly shows structural divergence.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- SPring-8 Center, RIKEN Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
39
|
Gao B, Ellis HR. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:359-67. [PMID: 17289450 DOI: 10.1016/j.bbapap.2006.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/08/2006] [Accepted: 12/20/2006] [Indexed: 11/17/2022]
Abstract
The alkanesulfonate monooxygenase system from Escherichia coli is involved in scavenging sulfur from alkanesulfonates under sulfur starvation. An FMN reductase (SsuE) catalyzes the reduction of FMN by NADPH, and the reduced flavin is transferred to the monooxygenase (SsuD). Rapid reaction kinetic analyses were performed to define the microscopic steps involved in SsuE catalyzed flavin reduction. Results from single-wavelength analyses at 450 and 550 nm showed that reduction of FMN occurs in three distinct phases. Following a possible rapid equilibrium binding of FMN and NADPH to SsuE (MC-1) that occurs before the first detectable step, an initial fast phase (241 s(-1)) corresponds to the interaction of NADPH with FMN (CT-1). The second phase is a slow conversion (11 s(-1)) to form a charge-transfer complex of reduced FMNH(2) with NADP(+) (CT-2), and represents electron transfer from the pyridine nucleotide to the flavin. The third step (19 s(-1)) is the decay of the charge-transfer complex to SsuE with bound products (MC-2) or product release from the CT-2 complex. Results from isotope studies with [(4R)-(2)H]NADPH demonstrates a rate-limiting step in electron transfer from NADPH to FMN, and may imply a partial rate-limiting step from CT-2 to MC-2 or the direct release of products from CT-2. While the utilization of flavin as a substrate by the alkanesulfonate monooxygenase system is novel, the mechanism for flavin reduction follows an analogous reaction path as standard flavoproteins.
Collapse
Affiliation(s)
- Benlian Gao
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
40
|
Li X, Tu SC. Activity coupling of Vibrio harveyi luciferase and flavin reductase (FRP): Oxygen as a probe. Arch Biochem Biophys 2006; 454:26-31. [PMID: 16949542 DOI: 10.1016/j.abb.2006.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Several lines of evidence have been reported previously to document the ability of the Vibrio harveyi NADPH-specific flavin reductase FRP to directly transfer reduced riboflavin-5'-phosphate to luciferase for bioluminescence. This study aimed at characterizing further the kinetic properties of FRP in such a direct channeling system and investigating whether the complete direct transfer of reduced flavin was the exclusive pathway in the FRP:luciferase coupled bioluminescence reaction. To these ends, a new kinetic approach of oxygen variation was employed. Results indicated that increases in oxygen concentration led to gradual decreases of the peak bioluminescence intensity, K(m,FMN), and K(m,NADPH) of FRP in the coupled reaction. In comparison with theoretical schemes, these findings indicated that the FRP:luciferase coupled reaction can utilize reduced flavin by both free diffusion and direct transfer. The upper limits of the true K(m,FMN) and K(m,NADPH) of FRP in the direct transfer system were determined.
Collapse
Affiliation(s)
- Xi Li
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | |
Collapse
|
41
|
Abdurachim K, Ellis HR. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli. J Bacteriol 2006; 188:8153-9. [PMID: 16997955 PMCID: PMC1698193 DOI: 10.1128/jb.00966-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component alkanesulfonate monooxygenase system utilizes reduced flavin as a substrate to catalyze a unique desulfonation reaction during times of sulfur starvation. The importance of protein-protein interactions in the mechanism of flavin transfer was analyzed in these studies. The results from affinity chromatography and cross-linking experiments support the formation of a stable complex between the flavin mononucleotide (FMN) reductase (SsuE) and monooxygenase (SsuD). Interactions between the two proteins do not lead to overall conformational changes in protein structure, as indicated by the results from circular dichroism spectroscopy in the far-UV region. However, subtle changes in the flavin environment of FMN-bound SsuE that occur in the presence of SsuD were identified by circular dichroism spectroscopy in the visible region. These data are supported by the results from fluorescent spectroscopy experiments, where a dissociation constant of 0.0022 +/- 0.0010 muM was obtained for the binding of SsuE to SsuD. Based on these studies, the stoichiometry for protein-protein interactions is proposed to involve a 1:1 monomeric association of SsuE with SsuD.
Collapse
Affiliation(s)
- Kholis Abdurachim
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849.
| | | |
Collapse
|
42
|
Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch Biochem Biophys 2005; 442:102-16. [PMID: 16140257 DOI: 10.1016/j.abb.2005.07.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/21/2005] [Accepted: 07/25/2005] [Indexed: 11/25/2022]
Abstract
Styrene monooxygenase (SMO) from Pseudomonas putida S12 is a two-component flavoenzyme composed of the NADH-specific flavin reductase, SMOB, and FAD-specific styrene epoxidase, SMOA. Here, we report the cloning, and expression of native and histidine-tagged versions of SMOA and SMOB and studies of the flavin transfer and styrene oxygenation reactions. In the reductive half-reaction, SMOB catalyzes the two-electron reduction of FAD with a turnover number of 3200 s(-1). Single turnover studies of the reaction of reduced SMOA with substrates indicate the formation of a stable oxygen intermediate with the absorbance characteristics of a flavin hydroperoxide. Based on the results of numerical simulations of the steady-state mechanism of SMO, we find that the observed coupling of NADH and styrene oxidation can be best explained by a model, which includes both the direct transfer and passive diffusion of reduced FAD from SMOB to SMOA.
Collapse
Affiliation(s)
- Auric Kantz
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132-4163, USA
| | | | | | | | | |
Collapse
|
43
|
Gao B, Bertrand A, Boles WH, Ellis HR, Mallett TC. Crystallization and preliminary X-ray crystallographic studies of the alkanesulfonate FMN reductase from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:837-40. [PMID: 16511173 PMCID: PMC1978109 DOI: 10.1107/s1744309105024206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/28/2005] [Indexed: 11/10/2022]
Abstract
The alkanesulfonate FMN reductase (SsuE) from Escherichia coli catalyzes the reduction of FMN by NADPH to provide reduced flavin for the monooxygenase (SsuD) enzyme. The vapor-diffusion technique yielded single crystals that grow as hexagonal rods and diffract to 2.9 A resolution using synchrotron X-ray radiation. The protein crystallizes in the primitive hexagonal space group P622. The SsuE protein lacks any cysteine or methionine residues owing to the role of the SsuE enzyme in the acquisition of sulfur during sulfate starvation. Therefore, substitution of two leucine residues (Leu114 and Leu165) to methionine was performed to obtain selenomethionine-containing SsuE for MAD phasing. The selenomethionine derivative of SsuE has been expressed and purified and crystals of the protein have been obtained with and without bound FMN. These preliminary studies should lead to the structure solution of SsuE. It is anticipated that this new protein structure will provide detailed structural information on specific active-site regions of the protein and insight into the mechanism of flavin reduction and transfer of reduced flavin.
Collapse
Affiliation(s)
- Benlian Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Adam Bertrand
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - William H. Boles
- Center for Structural Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Holly R. Ellis
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - T. Conn Mallett
- Center for Structural Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|