1
|
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B 2022; 12:558-580. [PMID: 35256934 PMCID: PMC8897153 DOI: 10.1016/j.apsb.2021.09.019] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
Collapse
Key Words
- 1,3-BPG, 1,3-bisphosphoglycerate
- 2-DG, 2-deoxy-d-glucose
- 3-BrPA, 3-bromopyruvic acid
- ACC, acetyl-CoA carboxylase
- ACLY, adenosine triphosphate (ATP) citrate lyase
- ACS, acyl-CoA synthease
- AKT, protein kinase B
- AML, acute myeloblastic leukemia
- AMPK, adenosine mono-phosphate-activated protein kinase
- ASS1, argininosuccinate synthase 1
- ATGL, adipose triacylglycerol lipase
- CANA, canagliflozin
- CPT, carnitine palmitoyl-transferase
- CYP4, cytochrome P450s (CYPs) 4 family
- Cancer therapy
- DNL, de novo lipogenesis
- EMT, epithelial-to-mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular-signal regulated kinase
- FABP1, fatty acid binding protein 1
- FASN, fatty acid synthase
- FBP1, fructose-1,6-bisphosphatase 1
- FFA, free fatty acid
- Fatty acid β-oxidation
- G6PD, glucose-6-phosphate dehydrogenase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GLS1, renal-type glutaminase
- GLS2, liver-type glutaminase
- GLUT1, glucose transporter 1
- GOT1, glutamate oxaloacetate transaminase 1
- Glutamine metabolism
- Glycolysis
- HCC, hepatocellular carcinoma
- HIF-1α, hypoxia-inducible factor-1 alpha
- HK, hexokinase
- HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HSCs, hepatic stellate cells
- Hepatocellular carcinoma
- IDH2, isocitrate dehydrogenase 2
- LCAD, long-chain acyl-CoA dehydrogenase
- LDH, lactate dehydrogenase
- LPL, lipid lipase
- LXR, liver X receptor
- MAFLD, metabolic associated fatty liver disease
- MAGL, monoacyglycerol lipase
- MCAD, medium-chain acyl-CoA dehydrogenase
- MEs, malic enzymes
- MMP9, matrix metallopeptidase 9
- Metabolic dysregulation
- NADPH, nicotinamide adenine nucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OTC, ornithine transcarbamylase
- PCK1, phosphoenolpyruvate carboxykinase 1
- PFK1, phosphofructokinase 1
- PGAM1, phosphoglycerate mutase 1
- PGK1, phosphoglycerate kinase 1
- PI3K, phosphoinositide 3-kinase
- PKM2, pyruvate kinase M2
- PPARα, peroxisome proliferator-activated receptor alpha
- PPP, pentose phosphate pathway
- Pentose phosphate pathway
- ROS, reactive oxygen species
- SCD1, stearoyl-CoA-desaturase 1
- SGLT2, sodium-glucose cotransporter 2
- SLC1A5/ASCT2, solute carrier family 1 member 5/alanine serine cysteine preferring transporter 2
- SLC7A5/LAT1, solute carrier family 7 member 5/L-type amino acid transporter 1
- SREBP1, sterol regulatory element-binding protein 1
- TAGs, triacylglycerols
- TCA cycle, tricarboxylic acid cycle
- TKIs, tyrosine kinase inhibitors
- TKT, transketolase
- Tricarboxylic acid cycle
- VEGFR, vascular endothelial growth factor receptor
- WD-fed MC4R-KO, Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO)
- WNT, wingless-type MMTV integration site family
- mIDH, mutant IDH
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Danyu Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chan Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
2
|
Xiong T, Li Z, Huang X, Lu K, Xie W, Zhou Z, Tu J. TO901317 inhibits the development of hepatocellular carcinoma by LXRα/Glut1 decreasing glycometabolism. Am J Physiol Gastrointest Liver Physiol 2019; 316:G598-G607. [PMID: 30817182 DOI: 10.1152/ajpgi.00061.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study was conducted to observe the effect and possible mechanism of TO901317 in vivo and in vitro to provide a new basis for the targeted therapy of hepatocellular carcinoma (HCC). The expressions of liver X receptor (LXR)-α, glucose transporter (Glut)-1, proliferating cell nuclear antigen (PCNA), and matrix metalloproteinase (MMP)-9 were analyzed from HCC public database (NCBI PubMed database). The result showed that LXRα was downregulated, whereas Glut1, PCNA, and MMP9 were upregulated in human HCC compared with normal liver. Furthermore, LXRα mRNA was negatively correlated with Glut1 mRNA. At the same time, HCC cells were cultivated in vitro and axillary injected in nude mice to establish the xenograft model. The xenograft in the TO901317-treated group was slower and smaller than the control group. The protein expression of LXRα, Glut1, and MMP9 could be detected by Western blot and glucose level. As a result, TO901317 could inhibit the cell proliferation of HCC in a dose-dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. With the increase of TO901317 concentration, the cellular glucose concentration and ATP level were gradually decreased. Western blot results showed TO901317 could upregulate LXRα expression but downregulate MMP9 and Glut1 expression. Transwell and wound-healing analysis confirmed that, by increasing the concentration of TO901317, the cell invasion and migration were both decreased. LXRα small-interfering RNA (siRNA) could relieve the suppression effect of TO901317 on the cell invasion and migration and the expression of LXRα, Glut1, and MMP9. The glucose concentration was also raised. TO901317 could repress the progress of HCC cells by reducing the glucose concentration, upregulating LXRα expression, but downregulating the expression of Glut1 and MMP9. NEW & NOTEWORTHY This subject confirmed that TO901317, a specific liver X receptor agonist, could inhibit the progression of liver cancer through upregulating liver X receptor-α, downregulating the expression of glucose transporter-1 and matrix metalloproteinase-9, and decreasing the glucose content in SMMC-7721 and HepG2 cells.
Collapse
Affiliation(s)
- Ting Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan, People's Republic of China.,School of Pharmacy, Changsha Medical University, Hunan, People's Republic of China
| | - Zihan Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan, People's Republic of China
| | - Xuelong Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan, People's Republic of China
| | - Kaiqiang Lu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan, People's Republic of China
| | - Weiquan Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan, People's Republic of China
| | - Zhigang Zhou
- Department of Anesthesia, the First Affiliated Hospital, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan, People's Republic of China
| |
Collapse
|
3
|
Ratanasopa K, Chakane S, Ilyas M, Nantasenamat C, Bulow L. Trapping of human hemoglobin by haptoglobin: molecular mechanisms and clinical applications. Antioxid Redox Signal 2013; 18:2364-74. [PMID: 22900934 DOI: 10.1089/ars.2012.4878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Haptoglobin (Hp) is an abundant plasma protein controlling the fate of hemoglobin (Hb) released from red blood cells after intravascular hemolysis. The complex formed between Hp and Hb is extraordinary strong, and once formed, this protein-protein association can be considered irreversible. RECENT ADVANCES A model of the Hp-Hb complex has been generated and the first steps toward understanding the mechanism behind the shielding effects of Hp have been taken. The clinical potential of the complex for modulating inflammatory reactions and for functioning as an Hb-based oxygen carrier have been described. CRITICAL ISSUES The three-dimensional structure of the Hp-Hb complex is unknown. Moreover, Hp is not a homogeneous protein. There are two common alleles at the Hp genetic locus denoted Hp1 and Hp2, which when analyzed on the protein levels result in differences between their physiological behavior, particularly in their shielding against Hb-driven oxidative stress. Additional cysteine residues on the α-subunit allow Hp2 to form a variety of native multimers, which influence the biophysical and biological properties of Hp. The multimeric conformations, in turn, also modulate the glycosylation patterns of Hp by steric hindrance. FUTURE DIRECTIONS A detailed analysis of the influence of Hp glycosylation will be instrumental to generate a deeper understanding of its biological function. Several pathological conditions also modify the glycan compositions allowing Hp to be potentially used as a marker protein for these disorders.
Collapse
|
4
|
Selection of aptamers against inactive Vibrio alginolyticus and application in a qualitative detection assay. Biotechnol Lett 2013; 35:909-14. [PMID: 23381690 DOI: 10.1007/s10529-013-1154-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/25/2013] [Indexed: 12/18/2022]
Abstract
Aptamers against inactive Vibrio alginolyticus were selected from an 82-nt ssDNA random library by systematic evolution of ligands by exponential enrichment. After 15 rounds of selection, the final pool of aptamers was highly specific for inactivated V. alginolyticus and had a dissociation constant of 27.5 ± 9.2 nM. Using these aptamers and PCR, V. alginolyticus could be detected at 100 cells/ml. Sequencing of the final pool of aptamers revealed that some sequences, termed high-frequency aptamers, appeared more than once; these may be of practical application. All sequences obtained were divided into nine families according to their homology tree, some conserved sequences were also found in each of the six families. One sequence was found in significant proportions of the aptamers, suggesting that this conserved sequence might be important for forming the three-dimensional aptamer structure.
Collapse
|
5
|
Jeong S, Rhee Paeng I. Sensitivity and selectivity on aptamer-based assay: the determination of tetracycline residue in bovine milk. ScientificWorldJournal 2012; 2012:159456. [PMID: 22547977 PMCID: PMC3324139 DOI: 10.1100/2012/159456] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/17/2011] [Indexed: 01/04/2023] Open
Abstract
A competitive enzyme-linked aptamer assay (ELAA) to detect tetracycline in milk was performed by using two different aptamers individually; one is 76 mer-DNA aptamer and the other is 57 mer-RNA aptamer. The best optimum condition was obtained without monovalent ion, Na+ and also by adding no Mg2+ ion in the assay buffer, along with RT incubation. The optimized ELAA showed a good sensitivity (LOD of 2.10 × 10−8 M) with a wide dynamic range (3.16 × 10−8 M ~ 3.16 × 10−4 M). In addition, the average R.S.D. across all data points of the curve was less than 2.5% with good recoveries (~101.8%) from the milk media. Thus, this method provides a good tool to monitor tetracycline in milk from MRLs' point of view. However, this ELAA method was not superior to the ELISA method in terms of specificity. This paper describes that it does not always give better sensitivity and specificity in assays even though aptamers have several advantages over antibodies and have been known to be good binders for binding assays.
Collapse
Affiliation(s)
- Sohee Jeong
- Department of Chemistry, Seoul Women's University, Seoul 139-774, Republic of Korea.
| | | |
Collapse
|
6
|
Mathew A, Yoshida Y, Maekawa T, Sakthi Kumar D. Alzheimer's disease: Cholesterol a menace? Brain Res Bull 2011; 86:1-12. [DOI: 10.1016/j.brainresbull.2011.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/20/2022]
|
7
|
Cheng C, Dong J, Yao L, Chen A, Jia R, Huan L, Guo J, Shu Y, Zhang Z. Potent inhibition of human influenza H5N1 virus by oligonucleotides derived by SELEX. Biochem Biophys Res Commun 2007; 366:670-4. [PMID: 18078808 DOI: 10.1016/j.bbrc.2007.11.183] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 11/30/2022]
Abstract
New therapeutics are urgently needed for the treatment of pandemic influenza caused by H5N1 influenza virus mutants. Aptamer was a promising candidate for treatment and prophylaxis of influenza virus infections. In this study, systemic evolution of ligands through exponential enrichment (SELEX) was used to screen DNA aptamers targeted to recombinant HA1 proteins of the H5N1 influenza virus. After 11 rounds of selection, DNA aptamers that bind to the HA1 protein were isolated and shown to have different binding capacities. Among them, aptamer 10 had the strongest binding to the HA1 protein, and had an inhibitory effect on H5N1 influenza virus, as shown by the hemagglutinin and MTT assays. These results should aid the development of new drugs for the prevention and control of influenza virus infections.
Collapse
Affiliation(s)
- Congsheng Cheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 100 Yingxin Jie, Xuanwu District, 100052 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang Z, Wilkop T, Xu D, Dong Y, Ma G, Cheng Q. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips. Anal Bioanal Chem 2007; 389:819-25. [PMID: 17673982 DOI: 10.1007/s00216-007-1510-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/02/2007] [Accepted: 07/12/2007] [Indexed: 01/03/2023]
Abstract
We report on the use of PDMS multichannels for affinity studies of DNA aptamer-human Immunoglobulin E (IgE) interactions by surface plasmon resonance imaging (SPRi). The sensing surface was prepared with thiol-terminated aptamers through a self-assembling process in the PDMS channels defined on a gold substrate. Cysteamine was codeposited with the thiol aptamers to promote proper spatial arrangement of the aptamers and thus maintain their optimal binding efficiencies. Four aptamers with different nucleic acid sequences were studied to test their interaction affinity toward IgE, and the results confirmed that aptamer I (5'-SH-GGG GCA CGT TTA TCC GTC CCT CCT AGT GGC GTG CCC C-3') has the strongest binding affinity. Control experiments were conducted with a PEG-functionalized surface and IgG was used to replace IgE in order to verify the selective binding of aptamer I to the IgE molecules. A linear concentration-dependent relationship between IgE and aptamer I was obtained, and a 2-nM detection limit was achieved. SPRi data were further analyzed by global fitting, and the dissociation constant of aptamer I-IgE complex was found to be 2.7 x 10(-7) M, which agrees relatively well with the values reported in the literature. Aptamer affinity screening by SPR imaging demonstrates marked advantages over competing methods because it does not require labeling, can be used in real-time, and is potentially high-throughput. The ability to provide both qualitative and quantitative results on a multichannel chip further establishes SPRi as a powerful tool for the study of biological interactions in a multiplexed format.
Collapse
Affiliation(s)
- Zhuangzhi Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
9
|
Berezovski MV, Musheev MU, Drabovich AP, Jitkova JV, Krylov SN. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat Protoc 2007; 1:1359-69. [PMID: 17406423 DOI: 10.1038/nprot.2006.200] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aptamers are typically selected from libraries of random DNA (or RNA) sequences through systematic evolution of ligands by exponential enrichment (SELEX), which involves several rounds of alternating steps of partitioning of candidate oligonucleotides and their PCR amplification. Here we describe a protocol for non-SELEX selection of aptamers--a process that involves repetitive steps of partitioning with no amplification between them. Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), which is a highly efficient affinity method, is used for partitioning. NECEEM also facilitates monitoring of bulk affinity of enriched libraries at every step of partitioning and screening of individual clones for their affinity to the target. NECEEM allows all clones to be screened prior to sequencing, so that only clones with suitable binding parameters are sequenced. The entire protocol can be completed in 1 wk, whereas conventional SELEX protocols take several weeks even in a specialized industrial facility.
Collapse
Affiliation(s)
- Maxim V Berezovski
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | |
Collapse
|
10
|
Levine HA, Nilsen-Hamilton M. A mathematical analysis of SELEX. Comput Biol Chem 2007; 31:11-35. [PMID: 17218151 PMCID: PMC2374838 DOI: 10.1016/j.compbiolchem.2006.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/20/2006] [Indexed: 11/17/2022]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a procedure by which a mixture of nucleic acids that vary in sequence can be separated into pure components with the goal of isolating those with specific biochemical activities. The basic idea is to combine the mixture with a specific target molecule and then separate the target-NA complex from the resulting reaction. The target-NA complex is then separated by mechanical means (for example by filtration), the NA is then eluted from the complex, amplified by polymerase chain reaction (PCR) and the process repeated. After several rounds, one should be left with a pool of [NA] that consists mostly of the species in the original pool that best binds to the target. In Irvine et al. [Irvine, D., Tuerk, C., Gold, L., 1991. SELEXION, systematic evolution of nucleic acids by exponential enrichment with integrated optimization by non-linear analysis. J. Mol. Biol. 222, 739-761] a mathematical analysis of this process was given. In this paper we revisit Irvine et al. [Ibid]. By rewriting the equations for the SELEX process, we considerably reduce the labor of computing the round to round distribution of nucleic acid fractions. We also establish necessary and sufficient conditions for the SELEX process to converge to a pool consisting solely of the best binding nucleic acid to a fixed target in a manner that maximizes the percentage of bound target. The assumption is that there is a single nucleic acid binding site on the target that permits occupation by not more than one nucleic acid. We analyze the case for which there is no background loss (no support losses and no free [NA] left on the support). We then examine the case in which such there are such losses. The significance of the analysis is that it suggests an experimental approach for the SELEX process as defined in Irvine et al. [Ibid] to converge to a pool consisting of a single best binding nucleic acid without recourse to any a priori information about the nature of the binding constants or the distribution of the individual nucleic acid fragments.
Collapse
Affiliation(s)
| | - Marit Nilsen-Hamilton
- Department of Biochemistry, Biophysics and Molecular Biology, , Iowa State University, Ames, Iowa, 50011, United States of America
| |
Collapse
|
11
|
Shukla GS, Krag DN. Selective delivery of therapeutic agents for the diagnosis and treatment of cancer. Expert Opin Biol Ther 2006; 6:39-54. [PMID: 16370913 DOI: 10.1517/14712598.6.1.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research activity aimed towards achieving specific and targeted delivery of cancer therapeutics has expanded tremendously in the last decade, resulting in new ways of directing drugs to tumours, as well as new types of drugs. The available strategies exploit differences in the nature of normal and cancer cells and their microenvironment. The discovery and validation of cancer-associated markers, as well as corresponding ligands, is pivotal for developing selective delivery technology for cancer. Although most current clinical trials are either monoclonal antibody- or gene-based, methodological advances in combinatorial libraries of peptides, single chain variable fragments and small organic molecules are expected to change this scenario in the near future. Nanotechnology platforms today allow systematic and modular combinations of therapeutic agents and tumour-binding moieties that may generate novel, personalised agents for selective delivery in cancer. This paper discusses recent developments and future prospects of targeted delivery technologies in the management of cancer.
Collapse
Affiliation(s)
- Girja S Shukla
- Vermont Comprehensive Cancer Center, Department of Surgery, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | |
Collapse
|
12
|
Surugiu-Wärnmark I, Toresson G, Bülow L. The insufficiency of using SYBR green dyes in electrophoretic mobility shift assays of liver X receptor proteins. Anal Biochem 2006; 352:308-10. [PMID: 16574053 DOI: 10.1016/j.ab.2006.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 11/28/2022]
Affiliation(s)
- Ioana Surugiu-Wärnmark
- Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
13
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
14
|
Nuclear Hormone Receptor Modulators for the Treatment of Diabetes and Dyslipidemia. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1016/s0065-7743(06)41006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|