1
|
Melfi F, Fantacuzzi M, Carradori S, D'Agostino I, Ammazzalorso A, Mencarelli N, Gallorini M, Spano M, Guglielmi P, Agamennone M, Haji Ali S, Al-Samydai A, Sisto F. Azo derivatives of monoterpenes as anti- Helicobacter pylori agents: from synthesis to structure-based target investigation. RSC Med Chem 2024; 16:d4md00511b. [PMID: 39493229 PMCID: PMC11526209 DOI: 10.1039/d4md00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Helicobacter pylori (Hp) infection affects nearly half of the global population. Current therapeutic options include the administration of a combination of antibiotics and proton pump inhibitors, although antimicrobial resistance rise remains a big concern. Phenolic monoterpenes, e.g., eugenol, vanillin, carvacrol, and thymol, have always attracted researchers for their multifaced biological activities and the possibility to be easily derivatized. Thereby, herein we present the functionalization of such compounds through the conventional aryl diazotization reaction, generating a series of mono- and bis-azo derivatives (1-28). Also, to continue previous studies, we investigated the role of the free phenolic moiety of thymol with eight compounds (29-36). The compounds were tested against four Hp strains including three clinical isolates, finding some potent and selective inhibitors of bacterial growth. Thus, the representative compounds underwent in vitro cytotoxicity evaluation on two normal cell lines and putative target investigation by performing a structure-based approach based on docking calculations on some of the most studied pharmacological targets for Hp, e.g., urease, β-hydroxyacyl-acyl carrier protein dehydratase, glucose 6-phosphate dehydrogenase, and inosine 5'-monophosphate dehydrogenase.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, Univerity of Pisa Via Bonanno 6 56126 Pisa Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Noemi Mencarelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Mattia Spano
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Mariangela Agamennone
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara via dei Vestini 31 66100 Chieti Italy
| | - Sazan Haji Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University Erbil 44000 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University Eskişehir 26470 Turkey
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University Amman-Jordan- Al Salt Road Amman 19328 Jordan
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan Via Pascal 36 20133 Milan Italy
| |
Collapse
|
2
|
Takahashi N, Sulijaya B, Yamada-Hara M, Tsuzuno T, Tabeta K, Yamazaki K. Gingival epithelial barrier: regulation by beneficial and harmful microbes. Tissue Barriers 2019; 7:e1651158. [PMID: 31389292 DOI: 10.1080/21688370.2019.1651158] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gingival epithelium acts as a physical barrier to separate the biofilm from the gingival tissue, providing the first line of defense against bacterial invasion in periodontal disease. Disruption of the gingival epithelial barrier, and the subsequent penetration of exogenous pathogens into the host tissues, triggers an inflammatory response, establishing chronic infection. Currently, more than 700 different bacterial species have been identified in the oral cavity, some of which are known to be periodontopathic. These bacteria contribute to epithelial barrier dysfunction in the gingiva by producing several virulence factors. However, some bacteria in the oral cavity appear to be beneficial, helping gingival epithelial cells maintain their integrity and barrier function. This review aims to discuss current findings regarding microorganism interactions and epithelial barrier function in the oral cavity, with reference to investigations in the gut, where this interaction has been extensively studied.
Collapse
Affiliation(s)
- Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Benso Sulijaya
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia , Jakarta , Indonesia
| | - Miki Yamada-Hara
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Takahiro Tsuzuno
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| |
Collapse
|
3
|
Al-Nour MY, Ibrahim MM, Elsaman T. Ellagic Acid, Kaempferol, and Quercetin from Acacia nilotica: Promising Combined Drug With Multiple Mechanisms of Action. CURRENT PHARMACOLOGY REPORTS 2019; 5:255-280. [PMID: 32226726 PMCID: PMC7100491 DOI: 10.1007/s40495-019-00181-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pharmacological activity of Acacia nilotica's phytochemical constituents was confirmed with evidence-based studies, but the determination of exact targets that they bind and the mechanism of action were not done; consequently, we aim to identify the exact targets that are responsible for the pharmacological activity via the computational methods. Furthermore, we aim to predict the pharmacokinetics (ADME) properties and the safety profile in order to identify the best drug candidates. To achieve those goals, various computational methods were used including the ligand-based virtual screening and molecular docking. Moreover, pkCSM and SwissADME web servers were used for the prediction of pharmacokinetics and safety. The total number of the investigated compounds and targets was 25 and 61, respectively. According to the results, the pharmacological activity was attributed to the interaction with essential targets. Ellagic acid, Kaempferol, and Quercetin were the best A. nilotica's phytochemical constituents that contribute to the therapeutic activities, were non-toxic as well as non-carcinogen. The administration of Ellagic acid, Kaempferol, and Quercetin as combined drug via the novel drug delivery systems will be a valuable therapeutic choice for the treatment of recent diseases attacking the public health including cancer, multidrug-resistant bacterial infections, diabetes mellitus, and chronic inflammatory systemic disease.
Collapse
Affiliation(s)
- Mosab Yahya Al-Nour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Musab Mohamed Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
4
|
Shen S, Hang X, Zhuang J, Zhang L, Bi H, Zhang L. A back-door Phenylalanine coordinates the stepwise hexameric loading of acyl carrier protein by the fatty acid biosynthesis enzyme β-hydroxyacyl-acyl carrier protein dehydratase (FabZ). Int J Biol Macromol 2019; 128:5-11. [PMID: 30677439 DOI: 10.1016/j.ijbiomac.2019.01.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
The fatty acid biosynthesis pathway (FAS) was a fundamental procedure to generate a diversity of lipid components for cellular metabolism in bacteria, while the mechanism of substrate recognition remains unclear. The β-hydroxyacyl-acyl carrier protein dehydratase hexamer (FabZ) is an essential module in the elongation cycle of type-II FAS, catalyzing the dehydration of β-hydroxyacyl-lipid substrate carried by the holo form acyl carrier protein (holo-ACP). We previously elucidated an alternating seesaw-like ACP loading manner within a FabZ dimer subunits, mediated by a front-door residue Tyrosine (Tyr100). Here, we demonstrated that a back-door residue Phenylalanine (Phe83) of FabZ regulates the stepwise hexameric loading of ACP. Our finding represents clues as to the dynamic ACP recognition and catalysis mechanism of dehydratase in fatty acid biosynthesis, and provides critical information for developing antimicrobials targeting the dehydratase module in fatty acid biosynthesis pathway.
Collapse
Affiliation(s)
- Siqi Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, PR China
| | - Xudong Hang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Jiangsu, PR China
| | | | - Lin Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, PR China.
| | - Hongkai Bi
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Jiangsu, PR China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, PR China.
| |
Collapse
|
5
|
Kumar V, Sharma A, Pratap S, Kumar P. Characterization of isoflavonoids as inhibitors of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Moraxella catarrhalis: Kinetics, spectroscopic, thermodynamics and in silico studies. Biochim Biophys Acta Gen Subj 2017; 1862:726-744. [PMID: 29092780 DOI: 10.1016/j.bbagen.2017.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/14/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUD β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) is an essential component of type II fatty acid biosynthesis (FAS II) pathway in bacteria. It performs dehydration of β-hydroxyacyl-ACP to trans-2-acyl-ACP in the elongation cycle of the FAS II pathway. FabZ is ubiquitously expressed and has uniform distribution, which makes FabZ an excellent target for developing novel drugs against pathogenic bacteria. METHODS We focused on the biochemical and biophysical characterization of FabZ from drug-resistant pathogen Moraxella catarrhalis (McFabZ). More importantly, we have identified and characterized new inhibitors against McFabZ using biochemical, biophysical and in silico based studies. RESULTS We have identified three isoflavones (daidzein, biochanin A and genistein) as novel inhibitors against McFabZ. Mode of inhibition of these compounds is competitive with IC50 values lie in the range of 6.85μΜ to 27.7μΜ. Conformational changes observed in secondary and tertiary structure marked by a decrease in the helical and the sheet content in McFabZ structure upon inhibitors binding. In addition, thermodynamic data suggest that biochanin A has a strong binding affinity for McFabZ as compare to daidzein and genistein. Molecular docking studies have revealed that these inhibitors are interacting with the active site of McFabZ and making contacts with catalytic and substrate binding tunnel residues. CONCLUSION AND GENERAL SIGNIFICANCE Three new inhibitors against McFabZ have been identified and characterized. These biochemical and biophysical findings lead to the identification of chemical scaffolds, which can lead to broad-spectrum antimicrobial drugs targeted against FabZ, and modification to existing FabZ inhibitors to improve affinity and potency.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, 247667, India
| | - Anchal Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, 247667, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
6
|
Zhang L, Xiao J, Xu J, Fu T, Cao Z, Zhu L, Chen HZ, Shen X, Jiang H, Zhang L. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis. Cell Res 2016; 26:1330-1344. [PMID: 27874013 PMCID: PMC5143422 DOI: 10.1038/cr.2016.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/28/2022] Open
Abstract
Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Jianfeng Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianran Fu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Cao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| |
Collapse
|
7
|
McGillick BE, Kumaran D, Vieni C, Swaminathan S. β-Hydroxyacyl-acyl Carrier Protein Dehydratase (FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross-Inhibition Studies. Biochemistry 2016; 55:1091-9. [DOI: 10.1021/acs.biochem.5b00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian E. McGillick
- Biology
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Desigan Kumaran
- Biology
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Casey Vieni
- Biology
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | |
Collapse
|
8
|
González-Thuillier I, Venegas-Calerón M, Sánchez R, Garcés R, von Wettstein-Knowles P, Martínez-Force E. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes. PLANTA 2016; 243:397-410. [PMID: 26433735 DOI: 10.1007/s00425-015-2410-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 05/19/2023]
Abstract
Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.
Collapse
Affiliation(s)
- Irene González-Thuillier
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, Herts, UK
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain.
| | - Rosario Sánchez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain
| | | | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain
| |
Collapse
|
9
|
Finzel K, Lee DJ, Burkart MD. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 2015; 16:528-547. [PMID: 25676190 PMCID: PMC4545599 DOI: 10.1002/cbic.201402578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in nature, preserving the same handful of chemical reactions across all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug-resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock, or antimicrobial purposes has been met with limited success, due in part to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain will focus first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. Although significant unknowns remain, new understandings of the intricacies of FAS point to future advances in manipulating this complex molecular factory.
Collapse
Affiliation(s)
- Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - D. John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| |
Collapse
|
10
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
11
|
Wang K, Wang Q, Chen J, Chen L, Jiang H, Shen X. Crystal structure and enzymatic characterization of thymidylate synthase X from Helicobacter pylori strain SS1. Protein Sci 2011; 20:1398-410. [PMID: 21633987 PMCID: PMC3189525 DOI: 10.1002/pro.668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 11/09/2022]
Abstract
Thymidylate synthase X (ThyX) catalyzes the methylation of dUMP to form dTMP in bacterial life cycle and is regarded as a promising target for antibiotics discovery. Helicobacter pylori is a human pathogen associated with a number of human diseases. Here, we cloned and purified the ThyX enzyme from H. pylori SS1 strain (HpThyX). The recombinant HpThyX was discovered to exhibit the maximum activity at pH 8.5, and K(m) values of the two substrates dUMP and CH(2) H(4) folate were determined to be 15.3 ± 1.25 μM and 0.35 ± 0.18 mM, respectively. The analyzed crystal structure of HpThyX with the cofactor FAD and the substrate dUMP (at 2.31 Å) revealed that the enzyme was a tetramer bound to four dUMP and four FAD molecules. Different from the catalytic feature of the classical thymidylate synthase (ThyA), N5 atom of the FAD functioned as a nucleophile in the catalytic reaction instead of Ser84 and Ser85 residues. Our current work is expected to help better understand the structural and enzymatic features of HpThyX thus further providing valuable information for anti-H. pylori inhibitor discovery.
Collapse
Affiliation(s)
| | | | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | | | | | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| |
Collapse
|
12
|
Chen J, Zhang L, Zhang Y, Zhang H, Du J, Ding J, Guo Y, Jiang H, Shen X. Emodin targets the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: enzymatic inhibition assay with crystal structural and thermodynamic characterization. BMC Microbiol 2009; 9:91. [PMID: 19433000 PMCID: PMC2692856 DOI: 10.1186/1471-2180-9-91] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/12/2009] [Indexed: 11/10/2022] Open
Abstract
Background The natural product Emodin demonstrates a wide range of pharmacological properties including anticancer, anti-inflammatory, antiproliferation, vasorelaxant and anti-H. pylori activities. Although its H. pylori inhibition was discovered, no acting target information against Emodin has been revealed to date. Results Here we reported that Emodin functioned as a competitive inhibitor against the recombinant β-hydroxyacyl-ACP dehydratase from Helicobacter pylori (HpFabZ), and strongly inhibited the growth of H. pylori strains SS1 and ATCC 43504. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) based assays have suggested the kinetic and thermodynamic features of Emodin/HpFabZ interaction. Additionally, to inspect the binding characters of Emodin against HpFabZ at atomic level, the crystal structure of HpFabZ-Emodin complex was also examined. The results showed that Emodin inhibition against HpFabZ could be implemented either through its occupying the entrance of the tunnel or embedding into the tunnel to prevent the substrate from accessing the active site. Conclusion Our work is expected to provide useful information for illumination of Emodin inhibition mechanism against HpFabZ, while Emodin itself could be used as a potential lead compound for further anti-bacterial drug discovery.
Collapse
Affiliation(s)
- Jing Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
He L, Zhang L, Liu X, Li X, Zheng M, Li H, Yu K, Chen K, Shen X, Jiang H, Liu H. Discovering Potent Inhibitors Against the β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) of Helicobacter pylori: Structure-Based Design, Synthesis, Bioassay, and Crystal Structure Determination. J Med Chem 2009; 52:2465-81. [DOI: 10.1021/jm8015602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lingyan He
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofeng Liu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianghua Li
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyue Zheng
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kunqian Yu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kaixian Chen
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xu Shen
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hualiang Jiang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Liu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Zhang L, Kong Y, Wu D, Zhang H, Wu J, Chen J, Ding J, Hu L, Jiang H, Shen X. Three flavonoids targeting the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Sci 2008; 17:1971-8. [PMID: 18780820 DOI: 10.1110/ps.036186.108] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Flavonoids are the major functional components of many herbal and insect preparations and demonstrate varied pharmacological functions including antibacterial activity. Here by enzymatic assay and crystal structure analysis, we studied the inhibition of three flavonoids (quercetin, apigenin, and (S)-sakuranetin) against the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori (HpFabZ). These three flavonoids are all competitive inhibitors against HpFabZ by either binding to the entrance of substrate tunnel B (binding model A) or plugging into the tunnel C near the catalytic residues (binding model B) mainly by hydrophobic interaction and hydrogen-bond pattern. Surrounded by hydrophobic residues of HpFabZ at both positions of models A and B, the methoxy group at C-7 of (S)-sakuranetin seems to play an important role for the inhibitor's binding to HpFabZ, partly responsible for the higher inhibitory activity of (S)-sakuranetin than those of quercetin and apigenin against HpFabZ (IC(50) in microM: (S)-sakuranetin, 2.0 +/- 0.1; quercetin: 39.3 +/- 2.7; apigenin, 11.0 +/- 2.5). Our work is expected to supply useful information for understanding the potential antibacterial mechanism of flavonoids.
Collapse
Affiliation(s)
- Liang Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hu T, Wu D, Chen J, Ding J, Jiang H, Shen X. The catalytic intermediate stabilized by a "down" active site loop for diaminopimelate decarboxylase from Helicobacter pylori. Enzymatic characterization with crystal structure analysis. J Biol Chem 2008; 283:21284-93. [PMID: 18508763 PMCID: PMC3258949 DOI: 10.1074/jbc.m801823200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/22/2008] [Indexed: 11/06/2022] Open
Abstract
The meso-diaminopimelate decarboxylase (DAPDC, EC 4.1.1.20) catalyzes the final step of L-lysine biosynthesis in bacteria and is regarded as a target for the discovery of antibiotics. Here we report the 2.3A crystal structure of DAPDC from Helicobacter pylori (HpDAPDC). The structure, in which the product L-lysine forms a Schiff base with the cofactor pyridoxal 5'-phosphate, provides structural insight into the substrate specificity and catalytic mechanism of the enzyme, and implies that the carboxyl to be cleaved locates at the si face of the cofactor. To our knowledge, this might be the first reported external aldimine of DAPDC. Moreover, the active site loop of HpDAPDC is in a "down" conformation and shields the ligand from solvent. Mutations of Ile(148) from the loop greatly impaired the catalytic efficiency. Combining the structural analysis of the I148L mutant, we hypothesize that HpDAPDC adopts an induced-fit catalytic mechanism in which this loop cycles through "down" and "up" conformations to stabilize intermediates and release product, respectively. Our work is expected to provide clues for designing specific inhibitors of DAPDC.
Collapse
Affiliation(s)
- Tiancen Hu
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dalei Wu
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Chen
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianping Ding
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hualiang Jiang
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu Shen
- Drug Discovery and Design
Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203 and
State Key Laboratory of Molecular
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
16
|
Kong YH, Zhang L, Yang ZY, Han C, Hu LH, Jiang HL, Shen X. Natural product juglone targets three key enzymes from Helicobacter pylori: inhibition assay with crystal structure characterization. Acta Pharmacol Sin 2008; 29:870-6. [PMID: 18565285 PMCID: PMC7091819 DOI: 10.1111/j.1745-7254.2008.00808.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aim: To investigate the inhibition features of the natural product juglone (5-hydroxy-1,4-naphthoquinone) against the three key enzymes from Helicobacter pylori (cystathionine γ-synthase [HpCGS], malonyl-CoA:acyl carrier protein transacylase [HpFabD], and β-hydroxyacyl-ACP dehydratase [HpFabZ]). Methods: An enzyme inhibition assay against HpCGS was carried out by using a continuous coupled spectrophotometric assay approach. The inhibition assay of HpFabD was performed based on the α-ketoglutarate dehydrogenase-coupled system, while the inhibition assay for HpFabZ was monitored by detecting the decrease in absorbance at 260 nm with crotonoyl-CoA conversion to β-hydroxybutyryl-CoA. The juglone/FabZ complex crystal was obtained by soaking juglone into the HpFabZ crystal, and the X-ray crystal structure of the complex was analyzed by molecular replacement approach. Results: Juglone was shown to potently inhibit HpCGS, HpFabD, and HpFabZ with the half maximal inhibitory concentration IC50 values of 7.0±0.7, 20±1, and 30±4 μmol/L, respectively. An inhibition-type study indicated that juglone was a non-competitive inhibitor of HpCGS against O-succinyl-L-homoserine (Ki=αKi=24 μmol/L), an uncompetitive inhibitor of HpFabD against malonyl-CoA (αKi=7.4 μmol/L), and a competitive inhibitor of HpFabZ against crotonoyl-CoA (Ki=6.8 μmol/L). Moreover, the crystal structure of the HpFabZ/juglone complex further revealed the essential binding pattern of juglone against HpFabZ at the atomic level. Conclusion: HpCGS, HpFabD, and HpFabZ are potential targets of juglone.
Collapse
Affiliation(s)
- Yun-hua Kong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Liang Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zheng-yi Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Cong Han
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Li-hong Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Hua-liang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xu Shen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| |
Collapse
|
17
|
Dautu G, Ueno A, Munyaka B, Carmen G, Makino S, Kobayashi Y, Igarashi M. Molecular and biochemical characterization of Toxoplasma gondii beta-hydroxyacyl-acyl carrier protein dehydratase (FABZ). Parasitol Res 2008; 102:1301-9. [PMID: 18274777 DOI: 10.1007/s00436-008-0909-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 01/29/2008] [Indexed: 12/25/2022]
Abstract
Toxoplasma gondii, unlike its mammalian host, utilizes a type II fatty acid biosynthesis pathway in which the steps of fatty acid biosynthesis are catalyzed by independent enzymes. Due to this difference, the enzymes of this pathway are good targets for the development of new therapeutic drugs directed against toxoplasmosis. In this report, we show by using reverse transcription-polymerase chain reaction analysis that beta-Hydroxyacyl-acyl carrier protein dehydratase (TgFABZ) is expressed both in tachyzoites and bradyzoites. Indirect immunofluorescence antibody test further shows the localization of TgFABZ protein in the apicoplast of both tachyzoites and bradyzoites. Enzyme dynamic analysis shows that the purified recombinant TgFABZ protein is soluble and active. The Km value of the enzyme for its substrate analog crotonoyl-CoA was estimated to be 82.57 +/- 10 microM.
Collapse
Affiliation(s)
- George Dautu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Liang R, Liu J. In-frame deletion of Escherichia coli essential genes in complex regulon. Biotechniques 2008; 44:209-10, 212-5. [PMID: 18330348 DOI: 10.2144/000112687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A conditional knockout-rescue system was developed to construct an in-frame deletion strain ofEscherichia coli essential genes. The target was flanked with marker genes and FRT (FLP recognition target) sites, and a plasmid containing arabinose-induced FLP recombinase was transformed. After arabinose induction, cells could survive only when target protein activity was provided in trans. We selected three essential genes as targets, yaeT, fabZ, and dnaE, which are components of the complex eight-gene regulon yaeT-hlpA-lpxD-fabZ-lpxA-1pxB-rnhB-dnaE. Deletion of these three genes exhibit no polar effects on their adjacent genes in terms of cell viability, meaning that this system not only allows for the simplified study of protein interactions and homolog screening in other organisms, but also facilitates the null mutant construction of essential genes.
Collapse
Affiliation(s)
- Rubing Liang
- College of Life Science and Technology, Shanghai Jiaotong University, Shanghai, China
| | | |
Collapse
|
19
|
Zhang L, Liu W, Hu T, Du L, Luo C, Chen K, Shen X, Jiang H. Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 2007; 283:5370-9. [PMID: 18093984 DOI: 10.1074/jbc.m705566200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Hydroxyacyl-acyl carrier protein dehydratase (FabZ) is an important enzyme for the elongation cycles of both saturated and unsaturated fatty acids biosyntheses in the type II fatty acid biosynthesis system (FAS II) pathway. FabZ has been an essential target for the discovery of compounds effective against pathogenic microbes. In this work, to characterize the catalytic and inhibitory mechanisms of FabZ, the crystal structures of the FabZ of Helicobacter pylori (HpFabZ) and its complexes with two newly discovered inhibitors have been solved. Different from the structures of other bacterial FabZs, HpFabZ contains an extra short two-turn alpha-helix (alpha4) between alpha3 and beta3, which plays an important role in shaping the substrate-binding tunnel. Residue Tyr-100 at the entrance of the tunnel adopts either an open or closed conformation in the crystal structure. The crystal structural characterization, the binding affinity determination, and the enzymatic activity assay of the HpFabZ mutant (Y100A) confirm the importance of Tyr-100 in catalytic activity and substrate binding. Residue Phe-83 at the exit tunnel was also refined in two alternative conformations, leading the tunnel to form an L-shape and U-shape. All these data thus contributed much to understanding the catalytic mechanism of HpFabZ. In addition, the co-crystal structures of HpFabZ with its inhibitors have suggested that the enzymatic activity of HpFabZ could be inhibited either by occupying the entrance of the tunnel or plugging the tunnel to prevent the substrate from accessing the active site. Our study has provided some insights into the catalytic and inhibitory mechanisms of FabZ, thus facilitating antibacterial agent development.
Collapse
Affiliation(s)
- Liang Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang L, Liu W, Xiao J, Hu T, Chen J, Chen K, Jiang H, Shen X. Malonyl-CoA: acyl carrier protein transacylase from Helicobacter pylori: Crystal structure and its interaction with acyl carrier protein. Protein Sci 2007; 16:1184-92. [PMID: 17525466 PMCID: PMC2206670 DOI: 10.1110/ps.072757307] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Malonyl-CoA: acyl carrier protein transacylase (MCAT) is a critical enzyme responsible for the transfer of the malonyl moiety to holo-acyl carrier protein (ACP) forming the malonyl-ACP intermediates in the initiation step of type II fatty acid synthesis (FAS II) in bacteria. MCAT has been considered as an attractive drug target in the discovery of antibacterial agents. In this study, the crystal structure of MCAT from Helicobacter pylori (Hp) at 2.5 angstroms resolution is reported, and the interaction of HpMCAT with HpACP is extensively investigated by using computational docking, GST-pull-down, and surface plasmon resonance (SPR) technology-based assays. The crystal structure results reveal that HpMCAT has a compact folding composed of a large subdomain with a similar core as in alpha/beta hydrolases, and a similar ferredoxin-like small subdomain as in acylphosphatases. The docking result suggests two positively charged areas near the entrance of the active site of HpMCAT as the ACP-binding region. Binding assay research shows that HpMCAT demonstrates a moderately binding ability against HpACP. The solved 3D structure of HpMCAT is expected to supply useful information for the structure-based discovery of novel inhibitors against MCAT, and the quantitative study of HpMCAT interaction with HpACP is hoped to give helpful hints in the understanding of the detailed catalytic mechanisms for HpMCAT.
Collapse
Affiliation(s)
- Liang Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu W, Du L, Zhang L, Chen J, Shen X, Jiang H. Helicobacter pylori acyl carrier protein: expression, purification, and its interaction with beta-hydroxyacyl-ACP dehydratase. Protein Expr Purif 2006; 52:74-81. [PMID: 17049879 DOI: 10.1016/j.pep.2006.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/04/2006] [Accepted: 09/06/2006] [Indexed: 11/21/2022]
Abstract
Acyl carrier protein (ACP) is an essential component in the type II fatty acid biosynthesis (FAS II) process and is responsible for the acyl group transfer within a series of related enzymes. In this work, the ACP from Helicobacter pylori strain SS1 was cloned and the gene sequence of Hpacp was deposited in the GenBank database (Accession No.: AY904356). Two forms of HpACP (apo, holo) were successfully purified and characterized. The thermal stability of these two forms was quantitatively investigated by CD spectral analyses. The results revealed that the holo-HpACP was more stable than apo-HpACP according to the transition midpoint temperature(Tm). Moreover, the interaction of HpACP with the related enzyme (beta-hydroxyacyl-ACP dehydratase, HpFabZ) was determined by GST-pull down assay and surface plasmon resonance (SPR) technique in vitro, the results showed that HpACP displays a strong binding affinity to HpFabZ (KD=1.2 x 10(-8)M). This current work is hoped to supply useful information for better understanding the ACP features of Helicobacter pylori SS1 strain.
Collapse
Affiliation(s)
- Weizhi Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
22
|
Swarnamukhi PL, Sharma SK, Bajaj P, Surolia N, Surolia A, Suguna K. Crystal structure of dimeric FabZ ofPlasmodium falciparumreveals conformational switching to active hexamers by peptide flips. FEBS Lett 2006; 580:2653-60. [PMID: 16643907 DOI: 10.1016/j.febslet.2006.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/21/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The crystal structure of beta-hydroxyacyl acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) has been determined at a resolution of 2.4 A. PfFabZ has been found to exist as a homodimer (d-PfFabZ) in the crystals of the present study in contrast to the reported hexameric form (h-PfFabZ) which is a trimer of dimers crystallized in a different condition. The catalytic sites of this enzyme are located in deep narrow tunnel-shaped pockets formed at the dimer interface. A histidine residue from one subunit of the dimer and a glutamate residue from the other subunit lining the tunnel form the catalytic dyad in the reported crystal structures. While the position of glutamate remains unaltered in the crystal structure of d-PfFabZ compared to that in h-PfFabZ, the histidine residue takes up an entirely different conformation and moves away from the tunnel leading to a His-Phe cis-trans peptide flip at the histidine residue. In addition, a loop in the vicinity has been observed to undergo a similar flip at a Tyr-Pro peptide bond. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate binding. The dimeric state and an altered catalytic site architecture make d-PfFabZ distinctly different from the FabZ structures described so far. Dynamic light scattering and size exclusion chromatographic studies clearly indicate a pH-related switching of the dimers to active hexamers.
Collapse
|
23
|
Liu W, Han C, Hu L, Chen K, Shen X, Jiang H. Characterization and inhibitor discovery of one novel malonyl-CoA: Acyl carrier protein transacylase (MCAT) fromHelicobacter pylori. FEBS Lett 2006; 580:697-702. [PMID: 16413022 DOI: 10.1016/j.febslet.2005.12.085] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 12/27/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Type II fatty acid synthesis (FAS II) is an essential process for bacteria survival, and malonyl-CoA:acyl carrier protein transacylase (MCAT) is a key enzyme in FAS II pathway, which is responsible for transferring the malonyl group from malonyl-CoA to the holo-ACP by forming malonyl-ACP. In this work, we described the cloning, characterization and enzymatic inhibition of a new MCAT from Helicobacter pylori strain SS1 (HpMCAT), and the gene sequence of HpfabD was deposited in the GenBank database (Accession No. AY738332 ). Enzymatic characterization of HpMCAT showed that the K(m) value for malonyl-CoA was 21.01+/-2.3 microM, and the thermal- and guanidinium hydrochloride-induced unfolding processes for HpMCAT were quantitatively investigated by circular dichroism spectral analyses. Moreover, a natural product, corytuberine, was discovered to demonstrate inhibitory activity against HpMCAT with IC(50) value at 33.1+/-3.29 microM. Further enzymatic assay results indicated that corytuberine inhibits HpMCAT in an uncompetitive manner. To our knowledge, this is the firstly reported MCAT inhibitor to date. This current work is hoped to supply useful information for better understanding the MCAT features of H. pylori strain, and corytuberine might be used as a potential lead compound in the discovery of the antibacterial agents using HpMCAT as target.
Collapse
Affiliation(s)
- Weizhi Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|