1
|
Schütz S, Bergsdorf C, Hänni-Holzinger S, Lingel A, Renatus M, Gossert AD, Jahnke W. Intrinsically Disordered Regions in the Transcription Factor MYC:MAX Modulate DNA Binding via Intramolecular Interactions. Biochemistry 2024. [PMID: 38264995 DOI: 10.1021/acs.biochem.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor (TF) MYC is in large part an intrinsically disordered oncoprotein. In complex with its obligate heterodimerization partner MAX, MYC preferentially binds E-Box DNA sequences (CANNTG). At promoters containing these sequence motifs, MYC controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. A vast network of proteins in turn regulates MYC function via intermolecular interactions. In this work, we establish another layer of MYC regulation by intramolecular interactions. We used nuclear magnetic resonance (NMR) spectroscopy to identify and map multiple binding sites for the C-terminal MYC:MAX DNA-binding domain (DBD) on the intrinsically disordered regions (IDRs) in the MYC N-terminus. We find that these binding events in trans are driven by electrostatic attraction, that they have distinct affinities, and that they are competitive with DNA binding. Thereby, we observe the strongest effects for the N-terminal MYC box 0 (Mb0), a conserved motif involved in MYC transactivation and target gene induction. We prepared recombinant full-length MYC:MAX complex and demonstrate that the interactions identified in this work are also relevant in cis, i.e., as intramolecular interactions. These findings are supported by surface plasmon resonance (SPR) experiments, which revealed that intramolecular IDR:DBD interactions in MYC decelerate the association of MYC:MAX complexes to DNA. Our work offers new insights into how bHLH-LZ TFs are regulated by intramolecular interactions, which open up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra Hänni-Holzinger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Neikes HK, Kliza KW, Gräwe C, Wester RA, Jansen PWTC, Lamers LA, Baltissen MP, van Heeringen SJ, Logie C, Teichmann SA, Lindeboom RGH, Vermeulen M. Quantification of absolute transcription factor binding affinities in the native chromatin context using BANC-seq. Nat Biotechnol 2023; 41:1801-1809. [PMID: 36973556 DOI: 10.1038/s41587-023-01715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
Transcription factor binding across the genome is regulated by DNA sequence and chromatin features. However, it is not yet possible to quantify the impact of chromatin context on transcription factor binding affinities. Here, we report a method called binding affinities to native chromatin by sequencing (BANC-seq) to determine absolute apparent binding affinities of transcription factors to native DNA across the genome. In BANC-seq, a concentration range of a tagged transcription factor is added to isolated nuclei. Concentration-dependent binding is then measured per sample to quantify apparent binding affinities across the genome. BANC-seq adds a quantitative dimension to transcription factor biology, which enables stratification of genomic targets based on transcription factor concentration and prediction of transcription factor binding sites under non-physiological conditions, such as disease-associated overexpression of (onco)genes. Notably, whereas consensus DNA binding motifs for transcription factors are important to establish high-affinity binding sites, these motifs are not always strictly required to generate nanomolar-affinity interactions in the genome.
Collapse
Affiliation(s)
- Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Roelof A Wester
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lieke A Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | - Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
- The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Cruz P, Paredes N, Asela I, Kolimi N, Molina JA, Ramírez-Sarmiento CA, Goutam R, Huang G, Medina E, Sanabria H. Domain tethering impacts dimerization and DNA-mediated allostery in the human transcription factor FoxP1. J Chem Phys 2023; 158:2890482. [PMID: 37184020 DOI: 10.1063/5.0138782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Transcription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)-known to form coiled-coil dimers-and a Forkhead (FKH) domain-known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization. We found that domain tethering promotes FoxP1 dimerization but inhibits a FKH domain-swapped structure. Furthermore, our findings indicate that the linker mediates the mutual organization and dynamics of ZIP and FKH domains, forming closed and open states with and without interdomain contacts, thus highlighting the role of the linkers in multidomain proteins. Finally, we found that DNA allosterically promotes structural changes that decrease the dimerization propensity of FoxP1. We postulate that, upon DNA binding, the interdomain linker plays a crucial role in the gene regulatory function of FoxP1.
Collapse
Affiliation(s)
- Perla Cruz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Nicolás Paredes
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Isabel Asela
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 7820436, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 7820436, Chile
| | - Rajen Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Gangton Huang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
4
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
5
|
Inamoto I, Sheoran I, Popa SC, Hussain M, Shin JA. Combining Rational Design and Continuous Evolution on Minimalist Proteins That Target the E-box DNA Site. ACS Chem Biol 2021; 16:35-44. [PMID: 33370105 DOI: 10.1021/acschembio.0c00684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-based therapeutics are part of the next-generation arsenal of drugs being developed against proto-oncoprotein Myc. We designed protein MEF to mimic the basic region/helix-loop-helix/leucine zipper (bHLHZ) domain of Max and Myc, which bind to the E-box motif (enhancer box, CACGTG). To make MEF, we started with our rationally designed ME47, a hybrid of the Max basic region and E47 HLH, that effectively inhibited tumor growth in a mouse model of breast cancer. We used phage-assisted continuous evolution (PACE), which uncovered mutations at Arg12 that contact the DNA phosphodiester backbone. The Arg12 mutations improved ME47's stability. We replaced Cys29 with Ala to eliminate potential undesired disulfide formation and fused the designed FosW leucine zipper to mutated ME47 to increase the dimerization interface and E-box targeting activity. This "franken-protein" MEF comprises the Max basic region, E47 HLH, and FosW leucine zipper. Compared with ME47, MEF gives 2-fold stronger binding to E-box and 4-fold increased specificity for E-box over nonspecific DNA. The synergistic combination of rational design and PACE allowed us to make MEF and demonstrates the power and utility of our two-pronged approach toward development of promising protein drugs with robust structure and DNA-binding function.
Collapse
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Inder Sheoran
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Serban C. Popa
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Montdher Hussain
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
6
|
Popa SC, Shin JA. The Intrinsically Disordered Loop in the USF1 bHLHZ Domain Modulates Its DNA-Binding Sequence Specificity in Hereditary Asthma. J Phys Chem B 2019; 123:9862-9871. [PMID: 31670516 DOI: 10.1021/acs.jpcb.9b06719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
USF1, a basic region/helix-loop-helix/leucine zipper (bHLHZ) transcription factor, binds to the E-box in the PAI-1 (plasminogen activator inhibitor) promoter. Two alleles containing the E-box control PAI-1 transcription; these alleles are termed "4G" and "5G" based on the G tract flanking E-box. USF1-governed transcription of PAI-1 is elevated in heritable asthma sufferers: the 4G/4G genotype has the highest plasma levels of PAI-1. While USF1 uses its basic region to bind E-box, we found that it uses its 12 amino-acid loop to recognize the flanking sequence and discern the single-nucleotide difference between the alleles. We used the bacterial one-hybrid and electrophoretic mobility shift assays to assess protein-DNA recognition, and circular dichroism to examine protein secondary structure. We mutated Ser233 and Thr234 in the USF1 bHLHZ loop to Ala to generate S233A and T234A. Interestingly, USF1 bHLHZ, S233A, and T234A prefer the 5G sequence (USF1 bHLHZ Kd values 4.1 ± 0.3 nM and 7.0 ± 0.4 nM for 5G and 4G, respectively), whereas studies in stimulated human mast cells showed a preference for 4G. We replaced the 8 amino-acid loop of transcription factor Max bHLHZ with the 12 amino-acid USF1 loop: this mutant now distinguishes the 4G/5G polymorphism-while Max bHLHZ does not-confirming that USF1 differentiation of the 4G/5G is driven by the loop.
Collapse
Affiliation(s)
- Serban C Popa
- Department of Chemistry , University of Toronto , 3359 Mississauga Road , Mississauga , Ontario L5L 1C6 , Canada
| | - Jumi A Shin
- Department of Chemistry , University of Toronto , 3359 Mississauga Road , Mississauga , Ontario L5L 1C6 , Canada
| |
Collapse
|
7
|
Macek P, Cliff MJ, Embrey KJ, Holdgate GA, Nissink JWM, Panova S, Waltho JP, Davies RA. Myc phosphorylation in its basic helix-loop-helix region destabilizes transient α-helical structures, disrupting Max and DNA binding. J Biol Chem 2018; 293:9301-9310. [PMID: 29695509 DOI: 10.1074/jbc.ra118.002709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Myelocytomatosis proto-oncogene transcription factor (Myc) is an intrinsically disordered protein with critical roles in cellular homeostasis and neoplastic transformation. It is tightly regulated in the cell, with Myc phosphorylation playing a major role. In addition to the well-described tandem phosphorylation of Thr-52 and Ser-62 in the Myc transactivation domain linked to its degradation, P21 (RAC1)-activated kinase 2 (PAK2)-mediated phosphorylation of serine and threonine residues in the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) region regulates Myc transcriptional activity. Here we report that PAK2 preferentially phosphorylates Myc twice, at Thr-358 and Ser-373, with only a minor fraction being modified at the previously identified Thr-400 site. For transcriptional activity, Myc binds E-box DNA elements, requiring its heterodimerization with Myc-associated factor X (Max) via the bHLH-LZ regions. Using isothermal calorimetry (ITC), we found that Myc phosphorylation destabilizes this ternary protein-DNA complex by decreasing Myc's affinity for Max by 2 orders of magnitude, suggesting a major effect of phosphorylation on this complex. Phosphomimetic substitutions revealed that Ser-373 dominates the effect on Myc-Max heterodimerization. Moreover, a T400D substitution disrupted Myc's affinity for Max. ITC, NMR, and CD analyses of several Myc variants suggested that the effect of phosphorylation on the Myc-Max interaction is caused by secondary structure disruption during heterodimerization rather than by a change in the structurally disordered state of Myc or by phosphorylation-induced electrostatic repulsion in the heterodimer. Our findings provide critical insights into the effects of PAK2-catalyzed phosphorylation of Myc on its interactions with Max and DNA.
Collapse
Affiliation(s)
- Pavel Macek
- From AstraZeneca, IMED Discovery Sciences, Alderley Park SK10 4TG, United Kingdom,
| | - Matthew J Cliff
- the Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Kevin J Embrey
- AstraZeneca, IMED Discovery Sciences, Cambridge CB4 0WG, United Kingdom
| | | | | | - Stanislava Panova
- the Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jonathan P Waltho
- the Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rick A Davies
- From AstraZeneca, IMED Discovery Sciences, Alderley Park SK10 4TG, United Kingdom,
| |
Collapse
|
8
|
Ormaza G, Medagli B, Ibáñez de Opakua A, Rodríguez JA, Merino N, Villate M, Onesti S, Blanco FJ. The tumor suppressor inhibitor of growth 4 binds double-stranded DNA through its disordered central region. FEBS Lett 2016; 591:425-432. [DOI: 10.1002/1873-3468.12514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Francisco J. Blanco
- CIC bioGUNE; Derio Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|
9
|
|
10
|
Guo J, Li T, Schipper J, Nilson KA, Fordjour FK, Cooper JJ, Gordân R, Price DH. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol 2014; 15:482. [PMID: 25287278 PMCID: PMC4242493 DOI: 10.1186/s13059-014-0482-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Myc-Max heterodimer is a transcription factor that regulates expression of a large number of genes. Genome occupancy of Myc-Max is thought to be driven by Enhancer box (E-box) DNA elements, CACGTG or variants, to which the heterodimer binds in vitro. RESULTS By analyzing ChIP-Seq datasets, we demonstrate that the positions occupied by Myc-Max across the human genome correlate with the RNA polymerase II, Pol II, transcription machinery significantly better than with E-boxes. Metagene analyses show that in promoter regions, Myc is uniformly positioned about 100 bp upstream of essentially all promoter proximal paused polymerases with Max about 15 bp upstream of Myc. We re-evaluate the DNA binding properties of full length Myc-Max proteins. Electrophoretic mobility shift assay results demonstrate Myc-Max heterodimers display significant sequence preference, but have high affinity for any DNA. Quantification of the relative affinities of Myc-Max for all possible 8-mers using universal protein-binding microarray assays shows that sequences surrounding core 6-mers significantly affect binding. Compared to the in vitro sequence preferences,Myc-Max genomic occupancy measured by ChIP-Seq is largely, although not completely, independent of sequence specificity. CONCLUSIONS We quantified the affinity of Myc-Max to all possible 8-mers and compared this with the sites of Myc binding across the human genome. Our results indicate that the genomic occupancy of Myc cannot be explained by its intrinsic DNA specificity and suggest that the transcription machinery and associated promoter accessibility play a predominant role in Myc recruitment.
Collapse
Affiliation(s)
- Jiannan Guo
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
| | - Tiandao Li
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
- />The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Joshua Schipper
- />Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708 USA
| | - Kyle A Nilson
- />Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242 USA
| | - Francis K Fordjour
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
| | - Jeffrey J Cooper
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
| | - Raluca Gordân
- />Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708 USA
| | - David H Price
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
- />Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
11
|
Bonham AJ, Wenta N, Osslund LM, Prussin AJ, Vinkemeier U, Reich NO. STAT1:DNA sequence-dependent binding modulation by phosphorylation, protein:protein interactions and small-molecule inhibition. Nucleic Acids Res 2012. [PMID: 23180800 PMCID: PMC3553987 DOI: 10.1093/nar/gks1085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design.
Collapse
Affiliation(s)
- Andrew J Bonham
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
12
|
On the segregation of protein ionic residues by charge type. Amino Acids 2012; 43:2231-47. [PMID: 23081700 DOI: 10.1007/s00726-012-1418-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
Based on ubiquitous presence of large ionic motifs and clusters in proteins involved in gene transcription and protein synthesis, we analyzed the distribution of ionizable sidechains in a broad selection of proteins with regulatory, metabolic, structural and adhesive functions, in agonist, antagonist, toxin and antimicrobial peptides, and in self-excising inteins and intron-derived proteins and sequence constructs. All tested groups, regardless of taxa or sequence size, show considerable segregation of ionizable sidechains into same type charge (homoionic) tracts. These segments in most cases exceed half of the sequence length and comprise more than two-thirds of all ionizable sidechains. This distribution of ionic residues apparently reflects a fundamental advantage of sorted electrostatic contacts in association of sequence elements within and between polypeptides, as well as in interaction with polynucleotides. While large ionic densities are encountered in highly interactive proteins, the average ionic density in most sets does not change appreciably with size of the homoionic segments, which supports the segregation as a modular feature favoring association.
Collapse
|
13
|
Lee S, Bae YS. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Mol Cells 2012; 33:325-34. [PMID: 22450690 PMCID: PMC3887802 DOI: 10.1007/s10059-012-0023-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Life Sciences, Center for Cell Signal.ing Research, Ewha Womans University, Seoul 120-750, Korea.
| | | |
Collapse
|
14
|
Chen G, De Jong AT, Shin JA. Forced homodimerization of the c-Fos leucine zipper in designed bHLHZ-like hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos. MOLECULAR BIOSYSTEMS 2012; 8:1286-96. [DOI: 10.1039/c2mb05354c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Gu X, Trybiło M, Ramsay S, Jensen M, Fulton R, Rosser S, Gilbert D. Engineering a novel self-powering electrochemical biosensor. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:203-14. [PMID: 21189841 PMCID: PMC2955201 DOI: 10.1007/s11693-010-9063-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 07/21/2010] [Accepted: 09/01/2010] [Indexed: 12/01/2022]
Abstract
This paper records the efforts of a multi-disciplinary team of undergraduate students from Glasgow University to collectively design and carry out a 10 week project in Synthetic Biology as part of the international Genetic Engineered Machine competition (iGEM). The aim of the project was to design and build a self-powering electrochemical biosensor called ‘ElectrEcoBlu’. The novelty of this engineered machine lies in coupling a biosensor with a microbial fuel cell to transduce a pollution input into an easily measurable electrical output signal. The device consists of two components; the sensor element which is modular, allowing for customisation to detect a range of input signals as required, and the universal reporter element which is responsible for generating an electrical signal as an output. The genetic components produce pyocyanin, a competitive electron mediator for microbial fuel cells, thus enabling the generation of an electrical current in the presence of target chemical pollutants. The pollutants tested in our implementation were toluene and salicylate. ElectrEcoBlu is expected to drive forward the development of a new generation of biosensors. Our approach exploited a range of state-of-the-art modelling techniques in a unified framework of qualitative, stochastic and continuous approaches to support the design and guide the construction of this novel biological machine. This work shows that integrating engineering techniques with scientific methodologies can provide new insights into genetic regulation and can be considered as a reference framework for the development of biochemical systems in synthetic biology.
Collapse
Affiliation(s)
- X. Gu
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - M. Trybiło
- School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH UK
| | - S. Ramsay
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - M. Jensen
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - R. Fulton
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - S. Rosser
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - D. Gilbert
- School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH UK
| |
Collapse
|
16
|
Aguado-Llera D, Goormaghtigh E, de Geest N, Quan XJ, Prieto A, Hassan BA, Gómez J, Neira JL. The basic helix-loop-helix region of human neurogenin 1 is a monomeric natively unfolded protein which forms a "fuzzy" complex upon DNA binding. Biochemistry 2010; 49:1577-89. [PMID: 20102160 DOI: 10.1021/bi901616z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuronal specification is regulated by the activity of transcription factors containing the basic helix-loop-helix motif (bHLH); these regulating proteins include, among others, the neurogenin (Ngn) family, related to the atonal family of genes. Neurogenin 1 (NGN1) is a 237-residue protein that contains a bHLH domain and is involved in neuronal differentiation. In this work, we synthesized the bHLH region of NGN1 (bHLHN) comprising residues 90-150 of the full-length NGN1. The domain is a monomeric natively unfolded protein with a pH-dependent premolten globule conformation, as shown by several spectroscopic techniques (namely, NMR, fluorescence, FTIR, and circular dichroism). The unfolded character of the domain also explains, first, the impossibility of its overexpression in several Escherichia coli strains and, second, its insolubility in aqueous buffers. To the best of our knowledge, this is the first extensive study of the conformational preferences of a bHLH domain under different solution conditions. Upon binding to two DNA E-boxes, the protein forms "fuzzy" complexes (that is, the complexes were not fully folded). The affinities of bHLHN for both DNA boxes were smaller than those of other bHLH domains, which might explain why the protein-DNA complexes were not fully folded.
Collapse
Affiliation(s)
- David Aguado-Llera
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu J, De Jong AT, Chen G, Chow HK, Damaso CO, Schwartz Mittelman A, Shin JA. Reengineering natural design by rational design and in vivo library selection: the HLH subdomain in bHLHZ proteins is a unique requirement for DNA-binding function. Protein Eng Des Sel 2010; 23:337-46. [PMID: 20086039 DOI: 10.1093/protein/gzp082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore the role of the HLH subdomain in bHLHZ proteins, we designed sets of minimalist proteins based on bHLHZ protein Max, bHLH/PAS protein Arnt and bZIP protein C/EBP. In the first, the Max bHLH and C/EBP leucine zipper were fused such that the leucine heptad repeats were not in register; therefore, the protein dimerization interface was disrupted. Max1bHLH-C/EBP showed little ability to activate transcription from the E-box (5'-CACGTG) in the yeast one-hybrid assay, and no E-box binding by quantitative fluorescence anisotropy. Max1bHLH-C/EBP's activity was significantly improved after library selection (three amino acids randomized between HLH and leucine zipper), despite the Max bHLH and C/EBP zipper still being out of register: a representative mutant gave a high nanomolar K(d) value for E-box binding. Thus, selection proved to be a powerful tool for salvaging the flawed Max1bHLH-C/EBP, although the out-of-register mutants still did not achieve the strong DNA-binding affinities displayed by their in-register counterparts. ArntbHLH-C/EBP hybrids further demonstrated the importance of maintaining register, as out-of-register mutants showed no E-box-responsive activity, whereas the in-register hybrid showed moderate activity. In another design, we eliminated the HLH altogether and fused the Max basic region to the C/EBP zipper to generate bZIP-like hybrids. Despite numerous designs and selections, these hybrids possessed no E-box-responsive activity. Finally, we tested the importance of the loop sequence in MaxbHLHZ by fluorescence and circular dichroism. In one mutant, the loop was shortened by two residues; in the other, the Lys57:DNA-backbone interaction was abolished by mutation to Gly57. Both showed markedly decreased E-box-binding relative to MaxbHLHZ. Our results suggest that, in contrast to the more rigid bZIP, the HLH is capable of significant conformational adaptation to enable gene-regulatory function and is required for protein dimerization and positioning the basic region for DNA recognition.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry, University of Toronto, Mississauga, ON L5L1C6, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu J, Chen G, De Jong AT, Shahravan SH, Shin JA. Max-E47, a designed minimalist protein that targets the E-box DNA site in vivo and in vitro. J Am Chem Soc 2009; 131:7839-48. [PMID: 19449889 PMCID: PMC2734406 DOI: 10.1021/ja901306q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Max-E47 is a designed hybrid protein comprising the Max DNA-binding basic region and E47 HLH dimerization subdomain. In the yeast one-hybrid system (Y1H), Max-E47 shows strong transcriptional activation from the E-box site, 5'-CACGTG, targeted by the Myc/Max/Mad network of transcription factors; two mutants, Max-E47Y and Max-E47YF, activate more weakly from the E-box in the Y1H. Quantitative fluorescence anisotropy titrations to gain free energies of protein:DNA binding gave low nanomolar K(d) values for the native MaxbHLHZ, Max-E47, and the Y and YF mutants binding to the E-box site (14, 15, 9, and 6 nM, respectively), with no detectable binding to a nonspecific control duplex. Because these minimalist, E-box-binding hybrids have no activation domain and no interactions with the c-MycbHLHZ, as shown by the yeast two-hybrid assay, they can potentially serve as dominant-negative inhibitors that suppress activation of E-box-responsive genes targeted by transcription factors including the c-Myc/Max complex. As proof-of-principle, we used our modified Y1H, which allows direct competition between two proteins vying for a DNA target, to show that Max-E47 effectively outcompetes the native MaxbHLHZ for the E-box; weaker competition is observed from the two mutants, consistent with Y1H results. These hybrids provide a minimalist scaffold for further exploration of the relationship between protein structure and DNA-binding function and may have applications as protein therapeutics or biochemical probes capable of targeting the E-box site.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Gang Chen
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Antonia T. De Jong
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - S. Hesam Shahravan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
19
|
Chow HK, Xu J, Shahravan SH, De Jong AT, Chen G, Shin JA. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro. PLoS One 2008; 3:e3514. [PMID: 18949049 PMCID: PMC2568859 DOI: 10.1371/journal.pone.0003514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/02/2008] [Indexed: 12/18/2022] Open
Abstract
Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim) protein Arnt fused to the leucine zipper (LZ) dimerization domain from bZIP (basic region-leucine zipper) protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper) proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H), transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed), as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d) 148.9 nM and 40.2 nM, respectively), but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa). Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.
Collapse
Affiliation(s)
- Hiu-Kwan Chow
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Jing Xu
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - S. Hesam Shahravan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Antonia T. De Jong
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Gang Chen
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Meier-Andrejszki L, Bjelić S, Naud JF, Lavigne P, Jelesarov I. Thermodynamics of b-HLH-LZ Protein Binding to DNA: The Energetic Importance of Protein−DNA Contacts in Site-Specific E-Box Recognition by the Complete Gene Product of the Max p21 Transcription Factor. Biochemistry 2007; 46:12427-40. [DOI: 10.1021/bi701081q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Meier-Andrejszki
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and Département de Pharmacologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada J1H 5N4
| | - Saša Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and Département de Pharmacologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada J1H 5N4
| | - Jean-François Naud
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and Département de Pharmacologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada J1H 5N4
| | - Pierre Lavigne
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and Département de Pharmacologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada J1H 5N4
| | - Ilian Jelesarov
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and Département de Pharmacologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada J1H 5N4
| |
Collapse
|
21
|
Ababou A, Ladbury JE. Survey of the year 2005: literature on applications of isothermal titration calorimetry. J Mol Recognit 2007; 20:4-14. [PMID: 17006876 DOI: 10.1002/jmr.803] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Isothermal titration calorimetry (ITC) can provide a full thermodynamic characterization of an interaction. Its usage does not suffer from constraints of molecular size, shape or chemical constitution. Neither is there any need for chemical modification or attachment to solid support. This ease of use has made it an invaluable instrumental resource and led to its appearance in many laboratories. Despite this, the value of the thermodynamic parameterization has, only quite recently, become widely appreciated. Although our understanding of the correlation between thermodynamic data and structural details continues to be somewhat naïve, a large number of publications have begun to improve the situation. In this overview of the literature for 2005, we have attempted to highlight works of interest and novelty. Furthermore, we draw attention to those works which we feel have provided a route to better analysis and increased our ability to understand the meaning of thermodynamic change on binding.
Collapse
Affiliation(s)
- Adessamad Ababou
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
22
|
Jung KC, Park CH, Hwang YH, Rhee HS, Lee JH, Kim HK, Yang CH. Fatty acids, inhibitors for the DNA binding of c-Myc/Max dimer, suppress proliferation and induce apoptosis of differentiated HL-60 human leukemia cell. Leukemia 2006; 20:122-7. [PMID: 16281068 DOI: 10.1038/sj.leu.2404022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
c-Myc is instrumental in the progression of Burkitt's lymphoma including HL-60 human leukemia cells. We tested fatty acids for their inhibitory effect on the DNA binding of c-Myc/Max dimeric proteins of human origin, prepared as recombinant proteins encompassing DNA binding (basic) and dimerization (HLHZip) domain, and found that those suppress proliferation and induce apoptosis of DMSO-differentiated HL-60 cells. The analyzed IC50 values of myristic acid, stearic acid, gamma-linolenic acid, linoleic acid, linolenic acid and arachidonic acid by EMSA were 97(+/-3), 2.2(+/-1.2), 55(+/-5), 32(+/-2), 62(+/-12), 22(+/-2)microM for DNA binding of recombinant c-Myc/Max, respectively. According to the results shown by XTT assay, their influence on proliferation was quite different from the rank order of IC50. Whereas the degree of influence of the unsaturated fatty acids on the proliferation of DMSO-differentiated HL-60 cells was similar, the influence of saturated fatty acids, stearic acid in particular, was very weak at same concentrations. In addition, we confirmed that these fatty acids have no influence on the expression of c-Myc in DMSO-differentiated HL-60 cells. Our experiments demonstrated that the inhibitors for the DNA binding of c-Myc/Max contribute to the downregulation of Myc-dependent proliferation and to the inducement of apoptosis, and serve as an exploration of potent new inhibitors.
Collapse
Affiliation(s)
- K C Jung
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|