1
|
Zhang Y, Zhou S, Cai W, Han G, Li J, Chen M, Li H. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 2020; 22:265-276. [PMID: 32377698 PMCID: PMC7248463 DOI: 10.3892/mmr.2020.11102] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) may play an important role via senescence in the mechanism of osteoarthritis (OA) development. The synovial membrane is highly sensitive to H/R due to its oxygen consumption feature. Excessive mechanical loads and oxidative stress caused by H/R induce a senescence-associated secretory phenotype (SASP), which is related to the development of OA. The aim of the present study was to investigate the differences of SASP manifestation in synovial tissue masses between tissues from healthy controls and patients with OA. The present study used tumor necrosis factor-α (TNF-α) to pre-treat synovial tissue and fibroblast-like synoviocytes (FLS) to observe the effect of inflammatory cytokines on the synovial membrane before H/R. It was determined that H/R increased interleukin (IL)-1β and IL-6 expression levels in TNF-α-induced cell culture supernatants, increased the proportion of SA-β-gal staining, and increased the expression levels of high mobility group box 1, caspase-8, p16, p21, matrix metalloproteinase (MMP)-3 and MMP-13 in the synovium. Furthermore, H/R opened the mitochondrial permeability transition pore, caused the loss of mitochondrial membrane potential (ΔΨm) and increased the release of reactive oxygen species (ROS). Moreover, H/R caused the expansion of the mitochondrial matrix and rupture of the mitochondrial extracorporeal membrane, with a decrease in the number of cristae. In addition, H/R induced activation of the JNK signaling pathway in FLS to induce cell senescence. Thus, the present results indicated that H/R may cause inflammation and escalate synovial inflammation induced by TNF-α, which may lead to the pathogenesis of OA by increasing changes in synovial SASP and activating the JNK signaling pathway. Therefore, further studies expanding on the understanding of the pathogenesis of H/R etiology in OA are required.
Collapse
Affiliation(s)
- Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mao Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
2
|
Effect of hypoxia/reoxygenation on the biological effect of IGF system and the inflammatory mediators in cultured synoviocytes. Biochem Biophys Res Commun 2018; 508:17-24. [PMID: 30466784 DOI: 10.1016/j.bbrc.2018.11.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Hypoxia/reoxygenation (H/R) plays an important role in the pathogenesis of osteoarthritis. Fibroblast-like synoviocytes (FLS), which are highly sensitive to H/R, are thought to be associated with cartilage degradation during osteoarthritis development. In this study, we investigated the biological effects of insulin-like growth factor (IGF) system and the expression of inflammatory mediators in FLS. We also pretreated FLS with tumor necrosis factor-α (TNF-α) before H/R in order to observe the response of FLS with the background of inflammatory cytokines. H/R increased the levels of TNF-α-induced C-C chemokine ligand 5 (CCL5), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in cell-free culture supernatants; H/R also increased the expression of TNF-α-induced insulin-like growth factor binding protein 3 (IGFBP-3), downregulated the expression of insulin-like growth factor 1 (IGF-1), promoted the loss of mitochondrial membrane potential (MMP), the openness of mitochondrial permeability transition pore (MPTP), the release of intracellular reactive oxygen species (ROS), and mitochondrial matrix swelling, outer membrane rupture and decrease in cristae. Furthermore, H/R induced the expression of catabolic factors and activated the NF-κB signaling pathway in FLS. We therefore concluded that H/R may play a role in inducing inflammation and increase the TNF-α-induced inflammatory effect in FLS, contributing to osteoarthritis pathogenesis.
Collapse
|
3
|
Chen YJ, Chan DC, Chiang CK, Wang CC, Yang TH, Lan KC, Chao SC, Tsai KS, Yang RS, Liu SH. Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation. J Orthop Res 2016; 34:791-800. [PMID: 26497299 DOI: 10.1002/jor.23083] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/22/2015] [Indexed: 02/04/2023]
Abstract
Aging and diabetes are known to be the major cause to affect the progression of osteoarthritis (OA). Advanced glycation end products (AGEs) have been observed to accumulate in various organs especially in joint tissue and do damage to the joint tissue during aging and diabetes. Synovial angiogenesis and inflammation are observed across the full range of OA severity. The signaling pathway of AGEs on vascular endothelial growth factor (VEGF) production and inflammatory responses in synoviocytes are still unclear. Here, we investigated the role of receptor for AGEs (RAGE) and the signaling pathway involved in AGEs-induced VEGF production and inflammatory responses in human synoviocytes. Human synoviocytes were cultured and treated with AGEs (25-100 µg/ml). AGEs significantly induced the protein expressions of cyclooxygenase-2 (COX-2) and VEGF and the productions of prostaglandin-E2 (PGE2), VEGF, interleukin-6 (IL-6), and metalloproteinase-13 (MMP-13) in human synoviocytes in a dose-dependent manner. Moreover, AGEs markedly activated the phosphorylations of IκB kinase (IKK)α/β, IκBα, and nuclear factor (NF)-κB-p65 proteins in human synoviocytes in a time-dependent manner. Treatment with neutralizing antibody for RAGE statistically significantly decreased the AGEs-induced increase in COX-2, VEGF, PGE2, IL-6, and MMP13 and AGEs-activated NF-κB pathway activation. Taken together, these findings indicate that AGEs are capable of inducing VEGF production and inflammatory responses via RAGE-NF-κB pathway activation in human synoviocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:791-800, 2016.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ding-Cheng Chan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Kang Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sung-Chuan Chao
- Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Keh-Sung Tsai
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
5
|
Collins J, Moots R, Winstanley R, Clegg P, Milner P. Oxygen and pH-sensitivity of human osteoarthritic chondrocytes in 3-D alginate bead culture system. Osteoarthritis Cartilage 2013; 21:1790-8. [PMID: 23850530 PMCID: PMC3807787 DOI: 10.1016/j.joca.2013.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the effect of alterations in physical parameters such as oxygen and pH on processes associated with cellular redox balance in osteoarthritic chondrocytes. METHOD Human osteoarthritic chondrocytes (HOAC) were isolated from total knee arthroplasty samples and cultured in 3-D alginate beads in four different oxygen tensions (<1%, 2%, 5% and 21% O2), at pH 7.2 and 6.2 and in the presence or absence of 10 ng/ml, interleukin-1β (IL-1β). Cell viability, media glycosaminoglycan (GAG) levels, media nitrate/nitrate levels, active matrix metalloproteinase (MMP)-13 and intracellular adenosine triphosphate (ATPi) were measured over a 96-h time course. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential, intracellular pH and reduced/oxidised glutathione (GSH/GSSG) were additionally measured after 48-h incubation under these experimental conditions. RESULTS Hypoxia (2% O2) and anoxia (<1% O2), acidosis (pH 6.2) and 10 ng/ml IL-1β reduced HOAC cell viability and increased GAG media levels. Acidosis and IL-1β increased nitrite/nitrate release, but increases were moderate at 2% O2 and significantly reduced at <1% O2. ATPi was significantly reduced following hypoxia and anoxia and acidosis. At 48 h cellular ROS levels were increased by acidosis and IL-1β but reduced in hypoxia and anoxia. Mitochondrial membrane potential was reduced in low oxygen, acidosis and IL-1β. Anoxia also resulted in intracellular acidosis. GSH/GSSG ratio was reduced in low oxygen conditions, acidosis and IL-1β. CONCLUSIONS This study shows that oxygen and pH affect elements of the redox system in HOAC including cellular anti-oxidants, mitochondrial membrane potential and ROS levels.
Collapse
Affiliation(s)
- J.A. Collins
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - R.J. Moots
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, University Hospital, Aintree, Liverpool L9 7AL, UK
| | - R. Winstanley
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - P.D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - P.I. Milner
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK,Address correspondence and reprint requests to: P.I. Milner, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK. Tel: 44-151-7946041; Fax: 44-151-7946034.
| |
Collapse
|
6
|
Effect of hypoxia/reoxygenation on the cytokine-induced production of nitric oxide and superoxide anion in cultured osteoarthritic synoviocytes. Osteoarthritis Cartilage 2013; 21:874-81. [PMID: 23523904 DOI: 10.1016/j.joca.2013.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/11/2013] [Accepted: 03/13/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Hypoxia/reoxygenation (H/R) is an important feature in the osteoarthritis (OA) physiopathology. Nitric oxide (NO) is a significant proinflammatory mediator in the inflamed synovium. The purpose of this study was to investigate the effects of H/R on inducible NO synthase (iNOS) activity and expression in OA synoviocytes. In addition we studied the relationship between nitrosative stress and NADPH oxidase (NOX) in such conditions. METHODS Human cultured synoviocytes from OA patients were treated for 24 h with interleukin 1-β (IL-1β), tumour necrosis factor α (TNF-α) or neither; for the last 6 h, they were submitted to either normoxia or three periods of 1-h of hypoxia followed by 1-h of reoxygenation. ·NO metabolism (iNOS expression, nitrite and peroxynitrite measurements) was investigated. Furthermore, superoxide anion O2(·-) production, NOX subunit expression and nitrosylation were also assessed. RESULTS iNOS expression and nitrite (but not peroxynitrite) production were ~0.20 to ~0.12 nmol min(-1) mg proteins(-1) (P < 0.05), while NOXs' subunit expression and p47-phox phosphorylation were increased. NOXs and p47-phox were dramatically nitrosylated under H/R conditions (P < 0.05 vs normoxia). Using NOS inhibitors under H/R conditions, p47-phox nitrosylation was prevented and O2(·-) production was restored at normoxic levels (0.21 nmol min(-1) mg of proteins(-1)). CONCLUSIONS Our results provide evidence for an up-regulation of iNOS activity in OA synoviocytes under H/R conditions, associated to a down-regulation of NOX activity through nitrosylation. These findings highlight the importance of radical production to OA pathogenesis, and appraise the metabolic modifications of synovial cells under hypoxia.
Collapse
|
7
|
Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation. Biochem Biophys Res Commun 2012; 423:350-4. [DOI: 10.1016/j.bbrc.2012.05.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022]
|
8
|
Chenevier-Gobeaux C, Simonneau C, Lemarechal H, Bonnefont-Rousselot D, Poiraudeau S, Rannou F, Anract P, Borderie D. Hypoxia induces nitric oxide synthase in rheumatoid synoviocytes: consequences on NADPH oxidase regulation. Free Radic Res 2012; 46:628-36. [DOI: 10.3109/10715762.2012.662276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Ceusters JD, Mouithys-Mickalad AA, de la Rebière de Pouyade G, Franck TJ, Votion DM, Deby-Dupont GP, Serteyn DA. Assessment of reactive oxygen species production in cultured equine skeletal myoblasts in response to conditions of anoxia followed by reoxygenation with or without exposure to peroxidases. Am J Vet Res 2012; 73:426-34. [DOI: 10.2460/ajvr.73.3.426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
de Rebière de Pouyade G, Salciccia A, Ceusters J, Deby-Dupont G, Serteyn D, Mouithys-Mickalad A. Production of free radicals and oxygen consumption by primary equine endothelial cells during anoxia-reoxygenation. Open Biochem J 2011; 5:52-9. [PMID: 22207886 PMCID: PMC3242399 DOI: 10.2174/1874091x01105010052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 11/22/2022] Open
Abstract
The endothelium plays an active role in ischemia/reperfusion injuries. Herein, we report the effect of a single or successive cycles of anoxia/reoxygenation (A/R) on the mitochondrial respiratory function of equine endothelial cells (cultured from carotids) monitored by high resolution oxymetry, and on their production of reactive oxygen species (ROS). ROS were measured by electron paramagnetic resonance (ESR) using POBN and DMPO spin traps, and by gas chromatography (GC) of ethylene released by ROS-induced α-keto-γ-(methylthio)butyric acid (KMB) oxidation. The oxygen consumption significantly decreased with the number of A/R cycles, and POBN-ESR spectra were specific of adducts formed in the cells from superoxide anion. After a one-hour A/R cycle, high intensity DMPO-ESR spectra were observed and assigned to superoxide anion trapping; the GC results confirmed an important production of ROS compared to normoxic cells. These results show that A/R induces mitochondrial alterations in endothelial cells, and strongly stimulates their oxidative activity as demonstrated by ESR and GC methods.
Collapse
Affiliation(s)
- Geoffroy de Rebière de Pouyade
- Center for Oxygen Research and Development, Institute of Chemistry B6a, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Ziskoven C, Jäger M, Zilkens C, Bloch W, Brixius K, Krauspe R. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation? Orthop Rev (Pavia) 2011; 2:e23. [PMID: 21808712 PMCID: PMC3143971 DOI: 10.4081/or.2010.e23] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/29/2010] [Indexed: 12/21/2022] Open
Abstract
Due to an increasing life expectance, osteoarthritis (OA) is one of the most common chronic diseases. Although strong efforts have been made to regenerate degenerated joint cartilage, OA is a progressive and irreversible disease up to date. Among other factors the dysbalance between free radical burden and cellular scavenging mechanisms defined as oxidative stress is a relevant part of OA pathogenesis. Here, only little data are available about the mediation and interaction between different joint compartments. The article provides a review of the current literature regarding the influence of oxidative stress on cellular aging, senescence and apoptosis in different joint compartments (cartilage, synovial tissue and subchondral bone). Free radical exposure is known to promote cellular senescence and apoptosis. Radical oxygen species (ROS) involvement in inflammation, fibrosis control and pain nociception has been proven. The data from literature indicates a link between free radical burden and OA pathogenesis mediating local tissue reactions between the joint compartments. Hence, oxidative stress is likely not only to promote cartilage destruction but also to be involved in inflammative transformation, promoting the transition from clinically silent cartilage destruction to apparent OA. ROS induced by exogenous factors such as overload, trauma, local intraarticular lesion and consecutive synovial inflammation cause cartilage degradation. In the affected joint, free radicals mediate disease progression. The interrelationship between oxidative stress and OA etiology might provide a novel approach to the comprehension and therefore modification of disease progression and symptom control.
Collapse
Affiliation(s)
- Christoph Ziskoven
- Orthopedic Department, Heinrich-Heine University Medical School, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Verwilghen DR, Enzerink E, Martens A, Franck T, Balligand M, Henrotin Y, Detilleux J, Serteyn D. Relationship between arthroscopic joint evaluation and the levels of Coll2-1, Coll2-1NO(2), and myeloperoxidase in the blood and synovial fluid of horses affected with osteochondrosis of the tarsocrural joint. Osteoarthritis Cartilage 2011; 19:1323-9. [PMID: 21884810 DOI: 10.1016/j.joca.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/21/2011] [Accepted: 08/03/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the levels of plasmatic and synovial Coll2-1, Coll2-1NO(2) and myeloperoxidase (MPO) in horses with osteochondral lesions of the tarsocrural joint and to investigate how these levels relate to arthroscopic findings of inflammation and degeneration. MATERIALS AND METHODS Venous blood and synovial fluid samples were collected from 63 horses presented for arthroscopic removal of osteochondral fragments in the tarsocrural joint. Prior to removal of the osteochondral fragment, an exploration of the joint was performed and an inflammatory and degenerative score was determined. The blood and synovial levels of Coll2-1, Coll2-1NO(2) and MPO were also measured. The effects of the arthroscopic evaluation (inflammatory and degenerative classes) on the blood and synovial markers were evaluated using a linear model (GLM procedure), and correlations between biochemical markers in the blood and synovial fluid and the arthroscopic evaluation (inflammatory and degenerative classes) were established (Pearson's correlations). RESULTS Significantly higher levels of Coll2-1 were detected in synovial fluid of higher degenerative classes. There was a significant correlation between the degenerative score and the synovial levels of Coll2-1 (r=0.27). According to the logistic regression model, there was a significant effect of the degenerative class on synovial levels of Coll2-1. CONCLUSIONS Coll2-1 correlates well with the degenerative state of tarsocrural joints as evaluated by arthroscopy. This marker can therefore be classified as a burden-of-disease marker in the assessment of joint disease in horses.
Collapse
Affiliation(s)
- D R Verwilghen
- Department of Companion Animals and Equids, Faculty of Veterinary Medicine of Liege, Sart-Tilman B41, B-4000 Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
García-Arnandis I, Guillén MI, Gomar F, Castejón MA, Alcaraz MJ. Control of cell migration and inflammatory mediators production by CORM-2 in osteoarthritic synoviocytes. PLoS One 2011; 6:e24591. [PMID: 21961038 PMCID: PMC3178532 DOI: 10.1371/journal.pone.0024591] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/15/2011] [Indexed: 12/25/2022] Open
Abstract
Background Osteoarthritis (OA) is the most widespread degenerative joint disease. Inflamed synovial cells contribute to the release of inflammatory and catabolic mediators during OA leading to destruction of articular tissues. We have shown previously that CO-releasing molecules exert anti-inflammatory effects in animal models and OA chondrocytes. We have studied the ability of CORM-2 to modify the migration of human OA synoviocytes and the production of chemokines and other mediators sustaining inflammatory and catabolic processes in the OA joint. Methodology/Principal Findings OA synoviocytes were stimulated with interleukin(IL)-1β in the absence or presence of CORM-2. Migration assay was performed using transwell chambers. Gene expression was analyzed by quantitative PCR and protein expression by Western Blot and ELISA. CORM-2 reduced the proliferation and migration of OA synoviocytes, the expression of IL-8, CCL2, CCL20, matrix metalloproteinase(MMP)-1 and MMP-3, and the production of oxidative stress. We found that CORM-2 reduced the phosphorylation of extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2 and to a lesser extent p38. Our results also showed that CORM-2 significantly decreased the activation of nuclear factor-κB and activator protein-1 regulating the transcription of chemokines and MMPs in OA synoviocytes. Conclusion/Significance A number of synoviocyte functions relevant in OA synovitis and articular degradation can be down-regulated by CORM-2. These results support the interest of this class of agents for the development of novel therapeutic strategies in inflammatory and degenerative conditions.
Collapse
Affiliation(s)
| | - Maria Isabel Guillén
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain
- Department of Chemistry, Biochemistry and Molecular Biology, Cardenal Herrera-CEU University, Moncada, Valencia, Spain
| | - Francisco Gomar
- Department of Surgery, School of Medicine, University of Valencia, Valencia, Spain
| | - Miguel Angel Castejón
- Department of Orthopaedic Surgery and Traumatology, De la Ribera University Hospital, Alzira, Valencia, Spain
| | - Maria José Alcaraz
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
14
|
Ziskoven C, Jäger M, Kircher J, Patzer T, Bloch W, Brixius K, Krauspe R. Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Can J Physiol Pharmacol 2011; 89:455-66. [PMID: 21793696 DOI: 10.1139/y11-055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases, with increasing importance due to increased life expectancy. On a cellular level, the pathophysiology of joint function impairment and ultimate destruction associated with OA remains poorly understood. Free radicals are highly reactive molecules involved in both normal intracellular signal transduction and degenerative cellular processes. An imbalance between the free radical burden and cellular scavenging mechanisms, defined as oxidative stress, has been identified as a relevant factor in OA pathogenesis. This literature review elucidates the involvement of nitrosative and oxidative stress in cellular ageing in joints, cell senescence, and apoptosis. Free radical exposure is known to promote cellular senescence and apoptosis, and the involvement of radical oxygen species (ROS) in inflammation, fibrosis control, and pain nociception has been proven. A relatively novel approach to OA pathophysiology considers the joint to be a dynamic system consisting of 3, continuously interacting compartments, cartilage, synovial tissue, and subchondral bone. Current knowledge concerning free radical involvement in paracrine signalling in OA is reviewed. The interrelationship between oxidative imbalances and OA pathophysiology may provide a novel approach to the comprehension, and therefore modification, of OA disease progression and symptom control.
Collapse
Affiliation(s)
- Christoph Ziskoven
- Orthopedic Department, Heinrich-Heine University Medical School, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Verwilghen DR, Martens A, Busschers E, Franck T, Deberg M, Henrotin Y, Vanderheyden L, Serteyn D. Coll2-1, Coll2-1NO2 and myeloperoxidase concentrations in the synovial fluid of equine tarsocrural joints affected with osteochondrosis. Vet Res Commun 2011; 35:401-8. [PMID: 21681550 DOI: 10.1007/s11259-011-9487-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
The measurement of biomarkers that reflect cartilage breakdown is a powerful tool for investigating joint damage caused by disease or injury. Particularly in cases of osteochondrosis, synovial concentrations of these biomarkers may reveal the presence of osteoarthritic changes. Coll2-1, Coll2-1 NO2 and myeloperoxidase have recently been introduced in equine osteoarticular research but comparison between the concentrations of these markers in OCD affected and healthy joints has not been made. Therefore, this study aimed at reporting the synovial concentrations of these biomarkers in joints affected with osteochondral fragments in the tarsocrural joint compared to unaffected joints. Myeloperoxidase and Coll2-1NO2 revealed to have similar levels between affected joints and controls. However, in contrast to previous studies using C2C the present study demonstrated that synovial levels of Coll2-1 were significantly elevated in tarsocrural joints affected with osteochondrosis. Thus, Coll2-1 may be an earlier marker of cartilage degeneration than other cartilage degradation markers that have been previously used in equine medicine.
Collapse
Affiliation(s)
- Denis R Verwilghen
- Equine Clinic, Department of Companion Animals and Equids, Faculty of Veterinary Medicine of Liege, Sart-Tilman B41, 4000, Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Arthropathy is a frequent and serious complication of repeated joint bleeding in patients with hemophilia, resulting in pain, deformity, and disability. Although the pathogenesis of hemophilic arthropathy has not been fully elucidated, it appears to have similarities with the degenerative joint damage that occurs in osteoarthritis and the inflammatory processes associated with rheumatoid arthritis. This article reviews the potential actions of various blood constituents on joint components that culminate in the development of hemophilic arthropathy.
Collapse
Affiliation(s)
- L A Valentino
- Rush Hemophilia and Thrombophilia Center, Department of Pediatrics, Rush Children's Hospital and Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
17
|
Differential effects of the antioxidant n-acetylcysteine on the production of catabolic mediators in IL-1β-stimulated human osteoarthritic synoviocytes and chondrocytes. Eur J Pharmacol 2009; 623:125-31. [DOI: 10.1016/j.ejphar.2009.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 08/30/2009] [Accepted: 09/08/2009] [Indexed: 01/29/2023]
|
18
|
Abstract
Articular cartilage is an avascular tissue with chondrocytes in the deeper zones existing under conditions of sustained hypoxia. Using a hypoxic chamber to provide controlled hypoxia, this study was performed to determine whether sustained hypoxia enhances the production of cartilage matrix proteins. Freshly isolated primary bovine articular chondrocytes were encapsulated in three-dimensional alginate beads and maintained at 2% oxygen with media changes using media pre-equilibrated to 2% oxygen. Immunolocalization of HIF-1alpha was performed to verify hypoxic conditions. Sustained hypoxia resulted in an increase in proteoglycan synthesis after only 1 day, as measured by 35S-sulfate incorporation. This increase was maintained for the duration of the 17 day study. After 17 days of hypoxic culture, increases in total type II collagen and COL2A1 gene expression were probed by indirect immunofluorescence, type II collagen ELISA, and real-time qPCR; in addition, increased glycosaminoglycan deposition was observed as determined by chemical analysis. These studies show that sustained hypoxia enhances articular chondrocyte matrix synthesis and viability in three-dimensional alginate culture.
Collapse
Affiliation(s)
- Christian H Coyle
- Cartilage Restoration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
19
|
Verwilghen D, Busoni V, Gangl M, Franck T, Lejeune JP, Vanderheyden L, Detilleux J, Grulke S, Deberg M, Henrotin Y, Serteyn D. Relationship between biochemical markers and radiographic scores in the evaluation of the osteoarticular status of Warmblood stallions. Res Vet Sci 2009; 87:319-28. [PMID: 19298987 DOI: 10.1016/j.rvsc.2009.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 12/23/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Establishing the osteoarticular status of the horse is often performed by means of radiological screening of the animals. Widespread blood sampling could reveal to be an interesting alternative to this procedure which is time consuming and sometimes technically difficult. The aim of this study was to investigate the relationship between the radiological status of the horses and the levels of biochemical markers of cartilage degradation and synovial inflammation. A specific radiological scoring and classification system was therefore developed and applied on 63 stallions presented for studbook admission. Additionally, groups of horses were established according to the occurrence of osteochondrosis, degenerative joint disease and distal interphalangeal joint effusion. Insulin growth factor-I, myeloperoxidases, Coll2-1 and Coll2-1NO(2) were used as blood markers. The combination of the blood parameters did not seem to correlate with the used scoring system. Coll2-1NO(2) levels however tended to increase with poorer radiological class and this could therefore potentially be a useful predictor of the osteoarticular status in the horse. Coll2-1 levels were significantly higher in the degenerative joint disease group. A high percentage of horses with distal interphalangeal joint effusion was present in this study and was associated with decreased IGF-I and increased Coll2-1 levels.
Collapse
Affiliation(s)
- Denis Verwilghen
- Department of Clinical Sciences, Equine Clinic, Faculty of Veterinary Medicine of Liege, B-4000 Liege, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kirschvink N, de Moffarts B, Lekeux P. The oxidant/antioxidant equilibrium in horses. Vet J 2007; 177:178-91. [PMID: 17897849 DOI: 10.1016/j.tvjl.2007.07.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 11/22/2022]
Abstract
Since "free radical research" started in 1954, understanding the role of oxidants and antioxidants in physiological and pathological conditions has increased continuously. Oxidants are essentially generated by metabolic enzymes, inflammatory cells and mitochondrial electron leakage; they are indispensable for the cellular redox regulation and may, under certain conditions, have a pro-inflammatory stimulatory role. Endogenous and exogenous antioxidants counterbalance the oxidative processes and so maintain the oxidant/antioxidant equilibrium. Excessive oxidant generation or antioxidant insufficiency can lead to oxidative stress. The aims of this review are: (1) to provide an insight into the concept of the oxidant/antioxidant equilibrium by briefly introducing the oxidant and the antioxidant systems; (2) to describe how the oxidant/antioxidant equilibrium or oxidative stress can be evaluated in horses, and (3) to summarise current knowledge about oxidative stress in equine medicine and equine exercise physiology.
Collapse
Affiliation(s)
- Nathalie Kirschvink
- Animal Physiology, Department for Veterinary Medicine, Faculty of Sciences, University of Namur, Belgium.
| | | | | |
Collapse
|