1
|
Codelivery of HBx-siRNA and Plasmid Encoding IL-12 for Inhibition of Hepatitis B Virus and Reactivation of Antiviral Immunity. Pharmaceutics 2022; 14:pharmaceutics14071439. [PMID: 35890334 PMCID: PMC9318813 DOI: 10.3390/pharmaceutics14071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis B is a critical cause of many serious liver diseases such as hepatocellular carcinoma (HCC). The main challenges in hepatitis B treatment include the rebound of hepatitis B virus (HBV)-related antigen levels after drug withdrawal and the immunosuppression caused by the virus. Herein, we demonstrate that the HBV-related antigen can be effectively inhibited and antiviral immunity can be successfully reactivated through codelivery of the small interfering RNA (siRNA) targeting HBV X protein (HBx) and the plasmid encoding interleukin 12 (pIL-12) to hepatocytes and immune cells. After being treated by the siRNA/pIL-12 codelivery system, HBx mRNA and hepatitis B surface antigen (HBsAg) are dramatically reduced in HepG2.215 cells. More importantly, the downregulated CD47 and programmed death ligand 1 (PD-L1) and the upregulated interferon-β promoter stimulator-1 (IPS-1), retinoic acid-inducible gene-1 (RIG-1), CD80, and human leukocyte antigen-1 (HLA-1) in treated HepG2.215 cells indicate that the immunosuppression is reversed by the codelivery system. Furthermore, the codelivery system results in inhibition of extracellular regulated protein kinases (ERK) and phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) pathways, as well as downregulation of B-cell lymphoma-2 (Bcl-2) and upregulation of p53, implying its potential in preventing the progression of HBV-induced HCC. In addition, J774A.1 macrophages treated by the codelivery system were successfully differentiated into the M1 phenotype and expressed enhanced cytokines with anti-hepatitis B effects such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Therefore, we believe that codelivery of siRNA and pIL-12 can effectively inhibit hepatitis B virus, reverse virus-induced immunosuppression, reactivate antiviral immunity, and hinder the progression of HBV-induced hepatocellular carcinoma. This investigation provides a promising approach for the synergistic treatment of HBV infection.
Collapse
|
2
|
Liu YY, Chen LJ, Zhong Y, Shen MX, Ma N, Liu BY, Luo F, Hou W, Yang ZQ, Xiong HR. Specific interference shRNA-expressing plasmids inhibit Hantaan virus infection in vitro and in vivo. Acta Pharmacol Sin 2016; 37:497-504. [PMID: 26972493 PMCID: PMC4820803 DOI: 10.1038/aps.2015.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023]
Abstract
AIM To investigate the antiviral effects of vectors expressing specific short hairpin RNAs (shRNAs) against Hantaan virus (HTNV) infection in vitro and in vivo. METHODS Based on the effects of 4 shRNAs targeting different regions of HTNV genomic RNA on viral replication, the most effective RNA interference fragments of the S and M genes were constructed in pSilencer-3.0-H1 vectors, and designated pSilencer-S and pSilencer-M, respectively. The antiviral effect of pSilencer-S/M against HTNV was evaluated in both HTNV-infected Vero-E6 cells and mice. RESULTS In HTNV-infected Vero-E6 cells, pSilencer-S and pSilencer-M targeted the viral nucleocapsid proteins and envelope glycoproteins, respectively, as revealed in the immunofluorescence assay. Transfection with pSilencer-S or pSilencer-M (1, 2, 4 μg) markedly inhibited the viral antigen expression in dose- and time-dependent manners. Transfection with either plasmid (2 μg) significantly decreased HTNV-RNA level at 3 day postinfectin (dpi) and the progeny virus titer at 5 dpi. In mice infected with lethal doses of HTNV, intraperitoneal injection of pSilencer-S or pSilencer-M (30 μg) considerably increased the survival rates and mean time to death, and significantly reduced the mean virus yields and viral RNA level, and alleviated virus-induced pathological lesions in lungs, brains and kidneys. CONCLUSION Plasmid-based shRNAs potently inhibit HTNV replication in vitro and in vivo. Our results provide a basis for development of shRNA as therapeutics for HTNV infections in humans.
Collapse
|
3
|
Li YX, Li Y, Je JY, Kim SK. Dieckol as a novel anti-proliferative and anti-angiogenic agent and computational anti-angiogenic activity evaluation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:259-70. [PMID: 25531264 DOI: 10.1016/j.etap.2014.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
In the current study it was found that dieckol isolated from edible brown algae, Ecklonia cava (EC), as potent anti-proliferative and anti-angiogenic agent. Vascular endothelial growth factor (VEGF) induced EA.hy926 cell proliferation was suppressed by dieckol treatment. Further, it showed a significant inhibition of cell migration via inhibiting the protein and gene expression levels of matrix metalloproteinases, MMP-2 and -9. The signaling cascade underlying these responses was found as the dieckol induced inhibition of mitogen-activated protein kinase (MAPK) signaling pathway molecules, ERK and p38. Docking calculations were carried out on AP-N, VEGFR-1, MMP-2, MMP-9, Akt and Erk2 proteins model. Collectively, these results demonstrate the effective anti-proliferative and anti-migratory activity of dieckol on VEGF induced EA.hy926 through MAPK molecular signaling pathways which could be effectively correlated to its potential as an anti-angiogenic candidate. Therefore, this study reveals the potential of dieckol to be used in the design of anti-angiogenic agents.
Collapse
Affiliation(s)
- Yong-Xin Li
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035, Boshuo Road, Jing Yue Economic Development Zone, Chanchun City, Jilin Province, People's Republic of China
| | - Jae-Young Je
- Specialized Graduate School Science and Technology Convergence, Department of Marine Bio Convergence Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea; Specialized Graduate School Science and Technology Convergence, Department of Marine Bio Convergence Science, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
4
|
Cai QY, Ren GL, Zhang WY, Ma HH. Construction of a eukaryotic vector expressing human miR-155 and inhibitory effect of miR-155 on HBeAg in HepG2.2.15 cells. Shijie Huaren Xiaohua Zazhi 2014; 22:4217-4222. [DOI: 10.11569/wcjd.v22.i28.4217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct an eukaryotic vector carrying human microRNA-155 (miR-155) and to analyze the inhibitory effect of miR-155 on HBeAg in HepG2.2.15 cells.
METHODS: The pre-miR-155 was amplified from total DNA of human hepatoma cell line HepG2.2.15 by PCR. The target gene fragment was digested with EcoRⅠ and BamHⅠ, and cloned into the pmR-mCherry plasmid. Restriction digestion and DNA sequencing were performed to evaluate the recombinant vector. miR-155 was transfected into HepG2.2.15 cells by liposome-mediated method. The cells transfected with empty plasmid and untransfected cells were used as controls. The expression of cherry was detected by fluorescence microscopy after 24 h. The intracellular expression of miR-155 was detected by RT-PCR. ELISA was carried out to analyze the levels of HBeAg.
RESULTS: The pmiR-155 eukaryotic expression vector was successfully constructed. Fluorescence microscopy showed that the cherry protein was expressed in the HepG2.2.15 cells. miR-155 level in HepG2.2.15 cells transfected with the recombinant plasmid was significantly higher than those in controls. Compared with cells transfected with empty plasmid and untransfected cells, specific miR-155 could significantly decrease HBeAg gene expression in HepG2.2.15 cells.
CONCLUSION: A recombinant plasmid expressing miR-155 has been successfully constructed, and miR-155 is expressed stably in HepG2.2.15 cells. miR-155 can inhibit the expression of HBeAg in HepG2.2.15 cells.
Collapse
|
5
|
Zhang Y, Su WJ, Wang J, Bai XF, Huang CX, Lian JQ. A fusion DNA vaccine encoding middle version of HBV envelope protein fused to interleukin-21 did not enhance HBV-specific immune response in mice. Viral Immunol 2014; 27:430-7. [PMID: 25211639 DOI: 10.1089/vim.2014.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA vaccination can generate both humoral and cellular immunity, resulting in potential prophylactic and therapeutic vaccines in variety of conditions, including hepatitis B virus (HBV) infection. Fusion of cytokine gene is one of the ways to increase the immunogenicity of DNA vaccine. Interleukin (IL)-21 has been demonstrated to play an immunomodulatory role in HBV infection. Thus, we aimed to investigate the ability of IL-21 in the regulation of middle version of HBV envelop protein (MS) DNA vaccine. Fusion plasmid encoding IL-21 linked with MS was constructed. Normal and HBV transgenic mice were immunized by plasmid. pcDNA-IL-21/S2S induced a comparable level of anti-HBs antibody and HBsAg-specific CD8+ T-cell response with pcDNA-S2S. Furthermore, the level of circulating HBsAg was decreased by induction of anti-HBs antibody and HBsAg-specific CD8+ T-cell response to both pcDNA-IL-21/S2S and pcDNA-S2S vaccination in HBV transgenic mice. Thus, immunization with DNA vaccine encoding HBV MS protein induced both T- and B-cell response by targeting the specific antigen. Furthermore, it was also revealed that MS DNA vaccination could break immune tolerance in HBV transgenic mice. But IL-21 did not strengthen immune response induced by HBV DNA immunization. Our study suggested that MS-expressing plasmid may be useful for both preventive and therapeutic methods in HBV infection. However, IL-21 does not improve the immunogenicity and efficacy of MS DNA vaccination, and thus may not be used as a therapeutic marker for chronic hepatitis B.
Collapse
Affiliation(s)
- Ye Zhang
- 1 Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University , Xi'an, China
| | | | | | | | | | | |
Collapse
|
6
|
Thongthae N, Payungporn S, Poovorawan Y, T-Thienprasert NP. A rational study for identification of highly effective siRNAs against hepatitis B virus. Exp Mol Pathol 2014; 97:120-127. [PMID: 24953337 DOI: 10.1016/j.yexmp.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/07/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is a powerful gene knockdown technique used for study gene function. It also potentially provides effective agents for inhibiting infectious and genetic diseases. Most of RNAi studies employ a single siRNA designing program and then require large-scale screening experiments to identify functional siRNAs. In this study, we demonstrate that an assembly of results generated from different siRNA designing programs could provide clusters of predicting sites that aided selection of potent siRNAs. Based on the clusters, three siRNA target sites were selected on a conserved RNA region of hepatitis B virus (HBV), known as HBV post-transcriptional regulatory element (HBV PRE) at nucleotide positions 1317-1337, 1357-1377 and 1644-1664. All three chosen siRNAs driven by H1 promoter were highly effective and could drastically decrease expression of HBV transcripts (core, surface and X) and surface protein without induction of interferon response and cell cytotoxicity in liver cancer cell line (HepG2). Based on prediction of secondary structures, the silencing effects of siRNAs were less effective against a loop sequence of the mRNA target with hairpin structure. In summary, we demonstrate an effectual approach for identification of functional siRNAs. Moreover, highly potent siRNAs identified here may serve as novel agents for development of nucleic acid-based HBV therapy.
Collapse
Affiliation(s)
- Nuttkawee Thongthae
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Yu H, Jiang W, Du H, Xing Y, Bai G, Zhang Y, Li Y, Jiang H, Zhang Y, Wang J, Wang P, Bai X. Involvement of the Akt/NF-κB pathways in the HTNV-mediated increase of IL-6, CCL5, ICAM-1, and VCAM-1 in HUVECs. PLoS One 2014; 9:e93810. [PMID: 24714064 PMCID: PMC3979720 DOI: 10.1371/journal.pone.0093810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/07/2014] [Indexed: 01/01/2023] Open
Abstract
Background Hantaan virus (HTNV) infection causes a severe form of HFRS(hemorrhagic fever with renal syndrome)in Asia. Although HTNV has been isolated for nearly forty years, the pathogenesis of HFRS is still unknown, and little is known regarding the signaling pathway that is activated by the virus. Methodology/Principal Findings Cardamonin was selected as a NF-κB inhibitor, and indirect immunofluorescence assays were used to detect the effect of cardamonin on HTNV-infected HUVECs. The effect of cardamonin on the HTNV-induced phosphorylation of Akt and DNA-binding activity of NF-κB were determined using Western blot analysis and electrophoretic mobility shift assays (EMSAs), respectively. Then, flow cytometric and quantitative real-time PCR analyses were performed to quantify the expression levels of the adhesion molecules ICAM-1 and VCAM-1, and the concentrations of IL-6, IL-8, and CCL5 in HUVEC supernatants were examined using ELISA. The results showed that cardamonin did not effect the proliferation of HUVECs or the replication of HTNV in HUVECs. Instead, cardamonin inhibited the phosphorylation of Akt and nuclear transduction of NF-κB and further reduced the expression of the adhesion molecules ICAM-1 and VCAM-1 in HTNV-infected HUVECs. Cardamonin also inhibited the secretion of IL-6 and CCL5, but not IL-8. Conclusion/Significance HTNV replication may not be dependent upon the ability of the virus to activate NF-κB in HUVECs. The Akt/NF-κB pathways may be involved in the pathogenesis of HFRS; therefore, cardamonin may serve as a potential beneficial agent for HFRS therapy.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wei Jiang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Hong Du
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuan Xing
- Department of Physiology, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Guangzhen Bai
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Ye Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital,Xi’an, Shaanxi Province, China
| | - Hong Jiang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jiuping Wang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Pingzhong Wang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
- * E-mail: (PW); (XB)
| | - Xuefan Bai
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
- * E-mail: (PW); (XB)
| |
Collapse
|
8
|
Liu L, Li Y, Hu Z, Su J, Huo Y, Tan B, Wang X, Liu Y. Small interfering RNA targeting Toll-like receptor 9 protects mice against polymicrobial septic acute kidney injury. Nephron Clin Pract 2013; 122:51-61. [PMID: 23548820 DOI: 10.1159/000346953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/08/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIMS Although recent reports suggest that Toll-like receptor (TLR) 9 is associated with the pathogenesis of polymicrobial septic acute kidney injury (AKI), it is still unclear whether and how renal TLR9 is involved in the development of polymicrobial septic AKI. This study aimed to determine whether the expression of TLR9 in mouse renal cells is related to the development of polymicrobial septic AKI. METHODS The efficacy of small interfering RNA (siRNA) targeting TLR9 was tested in a cultured murine macrophage cell line (RAW264.7 cells). The most potent siRNA was transfected into mice using the hydrodynamic method prior to the induction of polymicrobial septic AKI being induced by cecal ligation and puncture (CLP). TLR9 knockdown was determined by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting in RAW264.7 cells and kidney tissues. The levels of serum creatinine and blood urea nitrogen (BUN) and the renal histopathology assessment were determined at 6-, 12-, and 24-hour time points after CLP, and renal cell apoptosis was studied at 24 h. The 4- and 7-day survival rates of mice were also observed. RESULTS We found that mice developed AKI in our model of polymicrobial sepsis, despite fluid and antibiotic resuscitation, which resembles human sepsis. siRNA to TLR9 successfully silenced the induction of renal TLR9 gene and protein expression following CLP. Effective silencing of renal TLR9 expression decreased renal cell apoptosis, mitigated the severity of AKI, and increased the survival of mice. CONCLUSIONS Our data demonstrates the induction of TLR9 expression in mouse kidney tissue following CLP. Renal cell apoptosis and AKI in our model of polymicrobial sepsis are dependent on TLR9. Thus, TLR9 may play a critical role in the pathophysiology of polymicrobial septic AKI.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Changes in innate and permissive immune responses after hbv transgenic mouse vaccination and long-term-siRNA treatment [corrected]. PLoS One 2013; 8:e57525. [PMID: 23472088 PMCID: PMC3589400 DOI: 10.1371/journal.pone.0057525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
Background Currently, no licensed therapy can thoroughly eradicate hepatitis B virus (HBV) from the body, including interferon α and inhibitors of HBV reverse-transcription. Small interfering RNA (siRNA) seem to be a promising tool for treating HBV, but had no effect on the pre-existing HBV covalently closed circular DNA. Because it is very difficult to thoroughly eradicate HBV with unique siRNAs, upgrading the immune response is the best method for fighting HBV infection. Here, we aim to explore the immune response of transgenic mice to HBV vaccination after long-term treatment with siRNAs and develop a therapeutic approach that combines siRNAs with immunopotentiators. Methodology/Principal Findings To explore the response of transgenic mice to hepatitis B vaccine, innate and acquired immunity were detected after long-term treatment with siRNAs and vaccination. Antiviral cytokines and level of anti-hepatitis B surface antigen antibody (HBsAg-Ab) were measured after three injections of hepatitis B vaccine. Results Functional analyses indicated that toll-like receptor-mediated innate immune responses were reinforced, and antiviral cytokines were significantly increased, especially in the pSilencer4.1/HBV groups. Analysis of CD80+/CD86+ dendritic cells in the mouse liver indicated that dendritic cell antigen presentation was strengthened. Furthermore, the siRNA-treated transgenic mice could produce detectable HBsAg-Ab after vaccination, especially in the CpG oligonucleotide vaccine group. Conclusions/Significance For the first time, our studies demonstrate that siRNAs with CpG HBV vaccine could strengthen the immune response and break the immune tolerance status of transgenic mice to HBV. Thus, siRNAs and HBV vaccine could provide a sharp double-edged sword against chronic HBV infection.
Collapse
|
10
|
Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013; 167:29-39. [PMID: 23298612 DOI: 10.1016/j.jconrel.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.
Collapse
Affiliation(s)
- Sidi Yang
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
11
|
Yu HT, Jiang H, Zhang Y, Nan XP, Li Y, Wang W, Jiang W, Yang DQ, Su WJ, Wang JP, Wang PZ, Bai XF. Hantaan virus triggers TLR4-dependent innate immune responses. Viral Immunol 2012; 25:387-93. [PMID: 22775464 DOI: 10.1089/vim.2012.0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Duan F, Ni S, Nie Y, Huang Q, Wu K. Small interfering RNA targeting for infected-cell polypeptide 4 inhibits herpes simplex virus type 1 replication in retinal pigment epithelial cells. Clin Exp Ophthalmol 2011; 40:195-204. [PMID: 21883773 PMCID: PMC7162062 DOI: 10.1111/j.1442-9071.2011.02668.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: This study sought to inhibit herpes simplex virus type 1 replication using small interfering RNA which targeting infected‐cell polypeptide 4 genes to mediate transcription of early and late viral genes in herpes simplex virus type 1 lytic (productive) infection in retina epithelial cells. Methods: After pre‐ or post‐infecting with herpes simplex virus type 1, small interfering RNAs were transfected into retina epithelial cells. The antiviral effects of small interfering RNA were evaluated by Western blot, plaque assays, indirect immunofluorescence and reverse transcription polymerase chain reaction. The viral titre was detected by the 50% tissue culture infective dose method. Results: Small interfering RNA decreased infected‐cell polypeptide 4 expression in retina epithelial cells that were infected with herpes simplex virus type 1 before or after small interfering RNA transfection. Compared with herpes simplex virus type 1 infection alone or transfection with negative control small interfering RNA, the viral titre and the retina epithelial cell cytopathic effect were significantly decreased in retina epithelial cells transfected with infected‐cell polypeptide 4‐targeting small interfering RNA (50 and 100 nM) (P < 0.05). The small interfering RNA effectively silenced herpes simplex virus type 1 infected‐cell polypeptide 4 expression on both mRNA and the protein levels (P < 0.05). The inhibition of infected‐cell polypeptide 4‐targeting small interfering RNA on infected‐cell polypeptide 4 protein expression was also verified by Western blot in herpes simplex virus type 1 infected human cornea epithelial cell, human trabecular meshwork cells and Vero cells. Conclusions: Infected‐cell polypeptide 4‐targeting small interfering RNA can inhibit herpes simplex virus type 1 replication in retina epithelial cells, providing a foundation for development of RNA interference as an antiviral therapy.
Collapse
Affiliation(s)
- Fang Duan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
13
|
Suppression of vascular endothelial growth factor (VEGF) induced angiogenic responses by fucodiphloroethol G. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Hepatitis B and hepatitis C virus replication upregulates serine protease inhibitor Kazal, resulting in cellular resistance to serine protease-dependent apoptosis. J Virol 2009; 84:907-17. [PMID: 19864383 DOI: 10.1128/jvi.01249-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kazal (SPIK). Furthermore, the data have shown that cells containing HBV and HCV are more resistant to serine protease-dependent apoptotic death. Since our previous studies have shown that SPIK is an inhibitor of serine protease-dependent apoptosis, it is hypothesized that the upregulation of SPIK caused by HBV and HCV replication leads to cell resistance to apoptosis. The evasion of apoptotic death by infected cells results in persistent viral replication and constant liver inflammation, which leads to gradual accumulation of genetic changes and eventual development of cancer. These findings suggest a possibility by which HBV and HCV, two very different viruses, can share a common mechanism in provoking liver disease and cancer.
Collapse
|
15
|
Kim JW, Lee SH, Park YS, Jeong SH, Kim N, Lee DH. [Inhibition of in vitro hepatitis B virus replication by lentivirus-mediated short-hairpin RNA against HBx]. THE KOREAN JOURNAL OF HEPATOLOGY 2009; 15:15-24. [PMID: 19346782 DOI: 10.3350/kjhep.2009.15.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS/AIMS Hepatitis B virus (HBV) replicates via RNA intermediates, which could serve as targets for RNA interference (RNAi). Vector-mediated short-hairpin RNA (shRNA) can induce sustained RNAi in comparison to small interfering RNA. Lentiviral vector is known to induce prolonged RNAi with high transduction efficiency. In this study, we sought to test the in vitro efficacy of shRNA delivered by a lentiviral vector in suppressing the replication of HBV. METHODS Two shRNA sequences against the hepatitis B viral protein HBx (sh1580 and sh1685) were cloned downstream of the U6 promoter in an HIV-based plasmid to generate third-generation lentiviral vectors. HepAD38 cells were transduced with anti-HBx lentiviral vectors, and HBV replication was induced for 5 days. HBV DNA was isolated and quantified using real-time PCR. RESULTS Lentiviral vectors encoding the shRNA against HBV transduced HepAD38 cells with high efficacy. The total intracellular HBV DNA content was significantly reduced by both sh1580 and sh1685 (2.9% and 12.0%, respectively; P<0.05). HBV covalently closed circular DNA (cccDNA) was also suppressed significantly (19.7% and 25.5%, respectively; P<0.05). CONCLUSIONS Lentivirus-mediated delivery of shRNA against HBx can effectively suppress the replication of HBV and reduce HBV cccDNA in cell culture systems.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Seoul National University Bungdang Hospital, Seongnam, Korea.
| | | | | | | | | | | |
Collapse
|
16
|
Park YG. [Inhibition of hepatitis B virus replication by RNA interference]. THE KOREAN JOURNAL OF HEPATOLOGY 2009; 15:1-6. [PMID: 19346780 DOI: 10.3350/kjhep.2009.15.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
17
|
Jia ZS, Du DW, Lei YF, Wei X, Yin W, Ma L, Lian JQ, Wang PZ, Li D, Zhou YX. Scavenger Receptor Class B Type I Mediates Cell Entry of Hepatitis C Virus. J Int Med Res 2008; 36:1319-25. [PMID: 19094442 DOI: 10.1177/147323000803600620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study assessed the functional role of human scavenger receptor class B type I (SR-BI) as a putative hepatitis C virus (HCV) receptor using Chinese hamster ovary (CHO) cells transfected with human SR-BI (CHO–huSR-BI). The expression of SR-BI by primary Tupaia hepatocytes (PTHs), human hepatocarcinoma cell line (HepG2) cells, untransfected CHO cells and CHO–huSR-BI cells was analysed by Western blotting. Receptor competition assays showed that anti-SR-BI antibodies that block the binding of soluble envelope glycoprotein E2 could prevent HCV infection. Pre-incubation of CHO–huSR-BI and HepG2 cells with anti-SR-BI antibodies resulted in marked inhibition of E2 binding. After incubation with HCV RNA-positive serum from a patient with chronic HCV infection, however, HCV infection could not be detected in CHO–huSR-BI cells, but was detected in PTHs. These results demonstrate that, whilst SR-BI represents an important cell surface molecule for HCV infection, the presence of SR-BI alone is insufficient for HCV entry.
Collapse
Affiliation(s)
- ZS Jia
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - DW Du
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - YF Lei
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - X Wei
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - W Yin
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - L Ma
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - JQ Lian
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - PZ Wang
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - D Li
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - YX Zhou
- Centre of Diagnosis and Treatment for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Jiang H, Wang PZ, Zhang Y, Xu Z, Sun L, Wang LM, Huang CX, Lian JQ, Jia ZS, Li ZD, Bai XF. Hantaan virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon, interleukin-6 and tumor necrosis factor-alpha. Virology 2008; 380:52-9. [DOI: 10.1016/j.virol.2008.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/13/2008] [Accepted: 07/01/2008] [Indexed: 11/17/2022]
|
19
|
LIU YY, DENG HY, YANG G, JIANG WL, GROSSIN L, YANG ZQ. Short hairpin RNA-mediated inhibition of HSV-1 gene expression and function during HSV-1 infection in Vero cells. Acta Pharmacol Sin 2008; 29:975-82. [PMID: 18664330 DOI: 10.1111/j.1745-7254.2008.00828.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the efficiency of 3 short hairpin RNA (shRNA) interfering with the herpes simplex virus type 1 (HSV-1) gene coding glycoprotein D (gD) for inhibiting the gD expression and virus replication in vitro. METHODS Vero cells were selected for an in vitro model of infection. Three shRNA sequences (shRNAgD1, -gD2, and -gD3) targeting specifically the gD gene of HSV-1 were selected for evaluating the antiviral effects. The antiviral effects of shRNA in the cells infected with HSV-1 were evaluated by cytopathic effect (CPE) observations and plaque assays. The transcription level of viral RNA and the gD expression were studied by RT-PCR, Western blotting, and flow cytometry. RESULTS With the 3 shRNA at a final concentration of 120 nmol/L, a significant inhibition of CPE in the HSV-1-infected cells was observed. The ED50 of shRNA-gD1, gD2, and gD3 were 48.74+/-2.57, 57.13+/-3.24, and 114.64+/-5.12 nmol/L, respectively. The gD gene decreased significantly after viral infection in the Vero cells pretreated with shRNA compared to the virus group. The expressions of the gD protein, determined by Western blotting and flow cytometry, were also drastically decreased in shRNA-transfected cells. CONCLUSION Exogenous shRNA molecules can suppress the HSV-1 gD expression. They are inhibitors of HSV replication during infection in Vero cells.
Collapse
|
20
|
JIANG HONG, GAO XUE, LI YUAN, XU ZHIKAI, WANG LIMEI, BAI XUEFAN, XUE YING. Prokaryotic expression and monoclonal antibody preparation ofMycobacterium tuberculosisferric uptake regulator B. APMIS 2008; 116:372-81. [DOI: 10.1111/j.1600-0463.2008.00975.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res 2007; 25:72-86. [PMID: 18074201 PMCID: PMC2217617 DOI: 10.1007/s11095-007-9504-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 11/14/2007] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma (HCC). Current treatment strategies of HBV infection including the use of interferon (IFN)-α and nucleotide analogues such as lamivudine and adefovir have met with only partial success. Therefore, it is necessary to develop more effective antiviral therapies that can clear HBV infection with fewer side effects. RNA interference (RNAi), by which a small interfering RNA (siRNA) induces the gene silence at a post-transcriptional level, has the potential of treating HBV infection. The successful use of chemically synthesized siRNA, endogenous expression of small hairpin RNA (shRNA) or microRNA (miRNA) to silence the target gene make this technology towards a potentially rational therapeutics for HBV infection. However, several challenges including poor siRNA stability, inefficient cellular uptake, widespread biodistribution and non-specific effects need to be overcome. In this review, we discuss several strategies for improving the anti-HBV therapeutic efficacy of siRNAs, while avoiding their off-target effects and immunostimulation. There is an in-depth discussion on the (1) mechanisms of RNAi, (2) methods for siRNA/shRNA production, (3) barriers to RNAi-based therapies, and (4) delivery strategies of siRNA for treating HBV infection.
Collapse
Affiliation(s)
- Yong Chen
- Huai-An 4th People’s Hospital, Jiangsu, China
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Guofeng Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| |
Collapse
|
22
|
Abstract
Background. RNA interference, a conserved mechanism in which a sequence‐specific gene‐silencing process is mediated by small interfering RNA (siRNA), is a promising method of gene therapy in treating a variety of viral diseases. Aim. To investigate the antiviral effects of siRNA on herpes simplex virus type 1 (HSV‐1) replication in Vero cells. Methods. The antiviral effects of siRNA duplexes targeting the VP16 and DNA polymerase genes of HSV‐1 were evaluated by yield‐reduction and plaque‐reduction assays. The effect of siRNA on the expression of target genes was measured by real‐time quantitative reverse transcription PCR. Results. Two siRNA duplexes (siRNA‐1, targeting VP16, and siRNA‐4, targeting DNA polymerase), were found to be highly effective in inhibiting HSV‐1 replication. siRNA‐1 and siRNA‐4 reduced HSV‐1 replication by around 2 log10 and 1 log10 in the yield‐‐reduction assay and by ∼85% and ∼70% in the plaque‐reduction assay, respectively. Significant decreases in the mRNA level of VP16 and DNA polymerase genes were detected after viral infection in the Vero cells pretreated with siRNA‐1 and siRNA‐4, respectively. Conclusion. These results indicate that siRNA can potently inhibit HSV‐1 replication in vitro, suggesting that siRNA‐based antiviral therapy may be a potential effective therapeutic alternative for patients with HSV‐1 infection.
Collapse
Affiliation(s)
- Y Q Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
23
|
Pardo M, Bartolomé J, Carreño V. Current therapy of chronic hepatitis B. Arch Med Res 2007; 38:661-77. [PMID: 17613358 DOI: 10.1016/j.arcmed.2006.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/04/2006] [Indexed: 12/24/2022]
Affiliation(s)
- Margarita Pardo
- Fundación para el Estudio de las Hepatitis Virales, Madrid, Spain
| | | | | |
Collapse
|
24
|
Ren GL, Fang Y, Ma HH, Lei YF, Wang D, Xu MC, Wang PZ, Huang CX, Nie QH, Sun YT, Bai XF. The Short Hairpin RNA Driven by Polymerase II Suppresses both Wild-Type and Lamivudine-Resistant Hepatitis B Virus Strains. Antivir Ther 2007. [DOI: 10.1177/135965350701200607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Chronic infection with hepatitis B virus (HBV) is widespread because of the limited availability of therapeutic treatments. Although previous reports have suggested that RNA interference has promise as a treatment for HBV infection, further studies of long-term and off-target drug effects on HBV, especially on drug-resistant strains of HBV, are needed. Therefore, seven vectors that express short hairpin RNAs (shRNAs), driven by the polymerase II promoter, pSilencer4.1/HBV, were constructed to target open reading frames (ORFs) of the HBV C and S genes from wild-type and drug-resistant strains. Treatment efficiency was also assessed. Methods The pSilencer4.1/HBV vectors were investigated in HepG2.2.15 cells and transgenic mice that consistently produce wild-type HBV. Additionally, vectors that produce a lamivudine-resistant strain of HBV were developed and cotransfected, along with pSilencer/HBV, into both HepG2 cells and mice. The effects of polymerase-II-driven pSilencer4.1/HBV were compared with those of polymerase-III-driven pSilencer3.1/HBV at both the gene and protein level. Results pSilencer4.1/HBV inhibited the expression of viral protein, DNA and HBV subtype ayw mRNA in both HepG2.2.15 cells and transgenic mice. Toxicity, as well as off-target effects, did not occur after a short- to medium-term examination. Moreover, an HBV strain resistant to lamivudine, subtype adr, was suppressed by shRNA in both HepG2 cells and mice. In contrast to polymerase III, vectors that used polymerase II could drive efficient silencing without off-target effects. Conclusions Silencing by shRNA dramatically inhibited HBV expression and replication regardless of strain type. ShRNA could therefore be a promising treatment for HBV infection.
Collapse
Affiliation(s)
- Guang-Li Ren
- Department of Pediatrics, General Hospital of GuangZhou Military Command of PLA, GuangZhou, China
| | - Ying Fang
- Department of Stomatology, Medical College of GuangZhou, GuangZhou, China
| | - Heng-Hao Ma
- Department of Pediatrics, General Hospital of GuangZhou Military Command of PLA, GuangZhou, China
| | - Ying-Feng Lei
- Department of Microbiology, Fourth Military Medical Univesity, Xi'an, China
| | - Dan Wang
- Department of Pediatrics, General Hospital of GuangZhou Military Command of PLA, GuangZhou, China
| | - Man-Chun Xu
- Department of Pediatrics, General Hospital of GuangZhou Military Command of PLA, GuangZhou, China
| | - Ping-Zhong Wang
- The State Key Discipline & the Centre of Infectious diseases of PLA, Fourth Military Medical University, Xi'an, China
| | - Chang-Xing Huang
- The State Key Discipline & the Centre of Infectious diseases of PLA, Fourth Military Medical University, Xi'an, China
| | - Qing-He Nie
- The State Key Discipline & the Centre of Infectious diseases of PLA, Fourth Military Medical University, Xi'an, China
| | - Yong-Tao Sun
- The State Key Discipline & the Centre of Infectious diseases of PLA, Fourth Military Medical University, Xi'an, China
| | - Xue-Fan Bai
- The State Key Discipline & the Centre of Infectious diseases of PLA, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Xu Z, Huang CX, Li Y, Wang PZ, Ren GL, Chen CS, Shang FJ, Zhang Y, Liu QQ, Jia ZS, Nie QH, Sun YT, Bai XF. Toll-like receptor 4 siRNA attenuates LPS-induced secretion of inflammatory cytokines and chemokines by macrophages. J Infect 2007; 55:e1-9. [PMID: 17336389 DOI: 10.1016/j.jinf.2007.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/11/2007] [Accepted: 01/13/2007] [Indexed: 11/17/2022]
Abstract
Toll-like receptor 4 (TLR4) is critical for activation of macrophages by Lipopolysaccharide (LPS). In this study, we investigated the silencing effects of TLR4-specific 21-nt small interfering RNAs (siRNA) on TLR4 expression in RAW264.7 cells. It was found that treatment with TLR4 siRNA down-regulated the TLR4 mRNA and protein expression in macrophage RAW264.7 cells, and reduced the sensitivity of the cells to LPS stimulation. Our findings also demonstrate that treatment with TLR4 siRNA significantly decreased the tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein 2 (MIP-2) expression induced by LPS. TLR4 siRNA treatment also impaired the signalling of mitogen-activated protein kinases (MAPK) induced by LPS in RAW264.7 cells. These data suggest that inhibition of TLR4 expression by TLR4 siRNA may be therapeutically beneficial in controlling the overall responses of immune cells to LPS.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 1 XinYi Road, Ba Qiao District, Xi'an 710038, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jia F, Zhang YZ, Liu CM. Stable inhibition of hepatitis B virus expression and replication in HepG2.2.15 cells by RNA interference based on retrovirus delivery. J Biotechnol 2006; 128:32-40. [PMID: 17049658 DOI: 10.1016/j.jbiotec.2006.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 08/25/2006] [Accepted: 09/14/2006] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) of virus-specific genes has emerged as a potential antiviral strategy. In order to suppress hepatitis B virus (HBV) expression and replication, a retrovirus-based RNAi system was developed, which utilized the U6-RNA polymerase III (Pol III) promoter to drive efficient expression and deliver the HBV-specific short hairpin RNAs (shRNAs) in HepG2.2.15 (2215) cells. In this system, the retrovirus vector with a puromycin selection marker was integrated into the host cell genome and allowed stable expression of shRNAs. In Puro-resistant 2215 cells, the levels of both HBV protein and mRNA were dramatically reduced by over 88% and HBV replication was suppressed. The results demonstrated that retrovirus-based RNAi technology will have foreseeable applications both in experimental biology and molecular medicine.
Collapse
Affiliation(s)
- Fang Jia
- Molecular Virology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | |
Collapse
|
27
|
Jia F, Zhang YZ, Liu CM. A retrovirus-based system to stably silence hepatitis B virus genes by RNA interference. Biotechnol Lett 2006; 28:1679-85. [PMID: 16900331 DOI: 10.1007/s10529-006-9138-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/19/2006] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) might be an efficient antiviral therapy for some obstinate illness. Herein, a retrovirus-based RNAi system was developed to drive expression and delivery of Hepatitis B virus (HBV)-specific short hairpin RNA (shRNA) in HepG2 cells. The levels of HBsAg and HBeAg and that of HBV mRNA were dramatically decreased by this RNAi system in HepG2 cells transfected with Topo-HBV plasmid. Retrovirus-based RNAi thus may be useful for therapy in HBV and other viral infections and provide new clues for prophylactic vaccine development.
Collapse
Affiliation(s)
- Fang Jia
- School of Life Sciences, Sichuan University, Chengdu , 610064, China
| | | | | |
Collapse
|
28
|
Romano PR, McCallus DE, Pachuk CJ. RNA interference-mediated prevention and therapy for hepatocellular carcinoma. Oncogene 2006; 25:3857-65. [PMID: 16799627 DOI: 10.1038/sj.onc.1209549] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death and is on the increase worldwide. Hepatocellular carcinoma results from chronic liver disease and cirrhosis most commonly associated with chronic hepatitis B (HBV) or hepatitis C (HCV) infection. The highest incidences of HCC are found in China and Africa, where chronic HBV infection is the major risk component. In the United States, Europe and Japan, the significant increase in HCC and HCC-related deaths within the last three decades is mainly attributed to the rise in the number of HCV-infected individuals; smaller increases of HCC are associated with HBV. Given that HCV and HBV infection account for the majority of HCCs, therapeutic and prophylactic approaches to control or eliminate virus infection may prove effective in reducing the occurrence of HCC. Although anti-viral therapies exist for both HBV and HCV infections, they are ineffective for a significant number of patients. In addition, some treatments such as interferon therapy are dose limiting owing to toxic side effects. Clearly, new approaches are needed. RNA interference (RNAi)-based approaches may meet this need and have already shown promising preclinical results in cell culture and animal models. Although this paper focuses on the potential of RNAi as a prophylactic for HCC development, the potential use of RNAi-mediated approaches for HCC therapy will also be discussed.
Collapse
|