1
|
Sun J, Yin S, Li Q, Zhang J, Guo X, Yu N, Hu B, Ouyang Y, Huang Q, He M. VASN knockout induces myocardial fibrosis in mice by downregulating non-collagen fibers and promoting inflammation. Front Pharmacol 2025; 15:1500617. [PMID: 39898320 PMCID: PMC11782114 DOI: 10.3389/fphar.2024.1500617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Myocardial fibrosis (MF) is an important cause of heart failure and cardiac arrest. Vasorin knockout (VASN-/-) leads to pathological cardiac hypertrophy (PCH); however, it is not yet clear whether this PCH transitions to MF in mice. VASN-knockout mice showed typical pathological, imaging, and molecular features of MF upon hematoxylin and eosin staining, Masson staining, Sirius red staining, quantitative polymerase chain reaction (qPCR), immunohistochemistry-paraffin (IHC-P), and immunofluorescence analyses. RNA was extracted from mouse heart tissue, identified, and sequenced in vitro. Differential analysis of the genes showed that the extracellular matrix (ECM) genes (COL6A1, COL9A1, and FRAS1) had strong correlations while their expression levels were significantly reduced by qPCR, IHC-P, and Western blotting. The expression levels of the ECM genes were significantly reduced but those of the inflammatory factors (IL1β and IL6) were significantly upregulated in the heart tissues of VASN-knockout mice. These preliminary results reveal that VASN knockout induces MF by regulating the non-collagen fibers and inflammation.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Siwei Yin
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiurui Li
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Na Yu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaojuan Huang
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, China
- Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Kang D, Huang S, Liao Y, Mi S, Zhou J, Feng Y, Huang R, Lu ZH, Pan ZZ, Ma W, Chen G, Yue JX, Huang J, Zhang RX. Vasorin (VASN) overexpression promotes pulmonary metastasis and resistance to adjuvant chemotherapy in patients with locally advanced rectal cancer. J Transl Med 2024; 22:742. [PMID: 39107788 PMCID: PMC11301854 DOI: 10.1186/s12967-024-05473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND LARC patients commonly receive adjuvant therapy, however, hidden micrometastases still limit the improvement of OS. This study aims to investigate the impact of VASN in rectal cancer with pulmonary metastasis and understand the underlying molecular mechanisms to guide adjuvant chemotherapy selection. METHODS Sequencing data from rectal cancer patients with pulmonary metastasis from Sun Yat-sen University Cancer Center (SYSUCC) and publicly available data were meticulously analyzed. The functional role of VASN in pulmonary metastasis was validated in vivo and in vitro. Coimmunoprecipitation (co-IP), immunofluorescence, and rescue experiments were conducted to unravel potential molecular mechanisms of VASN. Moreover, VASN expression levels in tumor samples were examined and analyzed for their correlations with pulmonary metastasis status, tumor stage, adjuvant chemotherapy benefit, and survival outcome. RESULTS Our study revealed a significant association between high VASN expression and pulmonary metastasis in LARC patients. Experiments in vitro and in vivo demonstrated that VASN could promote the cell proliferation, metastasis, and drug resistance of colorectal cancer. Mechanistically, VASN interacts with the NOTCH1 protein, leading to concurrent activation of the NOTCH and MAPK pathways. Clinically, pulmonary metastasis and advanced tumor stage were observed in 90% of VASN-positive patients and 53.5% of VASN-high patients, respectively, and VASN-high patients had a lower five-year survival rate than VASN-low patients (26.7% vs. 83.7%). Moreover, the Cox analysis and OS analysis indicated that VASN was an independent prognostic factor for OS (HR = 7.4, P value < 0.001) and a predictor of adjuvant therapy efficacy in rectal cancer. CONCLUSIONS Our study highlights the role of VASN in decreasing drug sensitivity and activating the NOTCH and MAPK pathways, which leads to tumorigenesis and pulmonary metastasis. Both experimental and clinical data support that rectal cancer patients with VASN overexpression detected in biopsies have a higher risk of pulmonary metastasis and adjuvant chemotherapy resistance.
Collapse
Affiliation(s)
- Da Kang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Shanshan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Yijun Liao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Siyuan Mi
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jingying Zhou
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yu Feng
- BGI-Shenzhen, Shenzhen, 519103, P. R. China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen-Hai Lu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
- Department of Anesthesiology, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, China
| | - Z Z Pan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
- Department of Anesthesiology, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, China
| | - Wenjuan Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, China
| | - Gong Chen
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China.
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China.
| | - Jingxiu Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China.
- Department of Anesthesiology, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, China.
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, P. R. China.
| | - R X Zhang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
3
|
Zhong Y, Kang H, Ma Z, Li J, Qin Z, Zhang Z, Li P, Zhong Y, Wang L. Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway. Mol Cancer Res 2024; 22:668-681. [PMID: 38488456 DOI: 10.1158/1541-7786.mcr-23-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 07/03/2024]
Abstract
Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an important therapeutic target. Our previous study showed that vasorin (VASN), a transmembrane protein, is overexpressed in glioma and promotes angiogenesis; however, the potential mechanism remains unclear. In this study, we found that human vascular endothelial cells (hEC) co-cultured with VASN-overexpressing glioma cells exhibited accelerated migration ability and increased expression of VASN originated from glioma cells. VASN was found in exosomes secreted by glioma cells and could be taken up by hECs. hECs showed more edge filopodia and significantly upregulated expression of endothelial tip cell marker gene and protein levels after co-culture with VASN-overexpressing glioma cells. In clinical glioma tissue and orthotopic transplantation glioma tissue, the vascular density and the number of vascular endothelial cells with a tip cell phenotype in VASN-overexpressed tissues were significantly higher than in tissues with low expression. At the molecular level, VASN interacted with VEGFR2 and caused internalization and autophosphorylation of VEGFR2 protein, and then activated the AKT signaling pathway. Our study collectively reveals the function and mechanism of VASN in facilitating angiogenesis in glioma, providing a new therapeutic target for glioma. IMPLICATIONS These findings demonstrate that VASN exocytosed from glioma cells enhanced the migration of vascular endothelial cells by VEGFR2/AKT signaling pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqing Ma
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiayu Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Zixuan Zhang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Andrique C, Bonnet AL, Dang J, Lesieur J, Krautzberger AM, Baroukh B, Torrens C, Sadoine J, Schmitt A, Rochefort GY, Bardet C, Six I, Houillier P, Tharaux PL, Schrewe H, Gaucher C, Chaussain C. Vasorin as an actor of bone turnover? J Cell Physiol 2024; 239:e31257. [PMID: 38504496 DOI: 10.1002/jcp.31257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Bone diseases are increasing with aging populations and it is important to identify clues to develop innovative treatments. Vasn, which encodes vasorin (Vasn), a transmembrane protein involved in the pathophysiology of several organs, is expressed during the development in intramembranous and endochondral ossification zones. Here, we studied the impact of Vasn deletion on the osteoblast and osteoclast dialog through a cell Coculture model. In addition, we explored the bone phenotype of Vasn KO mice, either constitutive or tamoxifen-inducible, or with an osteoclast-specific deletion. First, we show that both osteoblasts and osteoclasts express Vasn. Second, we report that, in both KO mouse models but not in osteoclast-targeted KO mice, Vasn deficiency was associated with an osteopenic bone phenotype, due to an imbalance in favor of osteoclastic resorption. Finally, through the Coculture experiments, we identify a dysregulation of the Wnt/β-catenin pathway together with an increase in RANKL release by osteoblasts, which led to an enhanced osteoclast activity. This study unravels a direct role of Vasn in bone turnover, introducing a new biomarker or potential therapeutic target for bone pathologies.
Collapse
Affiliation(s)
| | - Anne Laure Bonnet
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
| | - Julien Dang
- Paris Cardiovascular Research Centre - PARCC, Université Paris Cité, Inserm, Paris, France
| | | | - A Michaela Krautzberger
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | - Alain Schmitt
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | | | | | - Isabelle Six
- URP 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Jules Verne University of Picardie, Amiens, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
- AP-HP, Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Paris, France
| | - Pierre Louis Tharaux
- Paris Cardiovascular Research Centre - PARCC, Université Paris Cité, Inserm, Paris, France
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Celine Gaucher
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
| | - Catherine Chaussain
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
- APHP, Centre de reference des maladies rares du phosphate et du calcium (filière OSCAR, ERN BOND), Hôpital Bretonneau, Paris, France
| |
Collapse
|
5
|
Taggi M, Liuzzi F, Botticelli L, De Carlini S, Longo M, Donno V, Fabbiani L, La Marca A. Evidence for the expression of vasorin in the human female reproductive tissues. Gynecol Endocrinol 2023; 39:2224457. [PMID: 37331376 DOI: 10.1080/09513590.2023.2224457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Objective: To investigate the expression and localization of Vasorin (Vasn) in human female reproductive system. Methods: The presence of Vasorin was evaluated by RT-PCR and immunoblotting analyses in patient-derived endometrial, myometrial and granulosa cells (GCs) primary cultures. Immunostaining analyses were performed to detect Vasn localization in primary cultures and in ovarian and uterine tissues. Results: Vasn mRNA was detected in patient-derived endometrial, myometrial and GCs primary cultures without significant differences at the transcript level. Otherwise, immunoblotting analysis showed that Vasn protein levels were significantly higher in GCs than proliferative endometrial stromal cells (ESCs) and myometrial cells. Immunohistochemistry performed in ovarian tissues revealed that Vasn was expressed in the GCs of ovarian follicles at different stages of development with a higher immunostaining signal in mature ovarian follicles such as the antral follicle or on the surface of cumulus oophorus cells than in early-stage follicles. The immunostaining of uterine tissues showed that Vasn was expressed in the proliferative stroma endometrium while it was significantly less expressed in the secretory endometrium. Conversely, no protein immunoreactivity was revealed in health myometrial tissue. Conclusions: Our results revealed the presence of Vasn in the ovary and the endometrium. The pattern of Vasn expression and distribution suggests that this protein may have a role in the regulation of processes such as folliculogenesis, oocyte maturation, and endometrial proliferation.
Collapse
Affiliation(s)
- Marilena Taggi
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Liuzzi
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Serena De Carlini
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Longo
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Donno
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Antonio La Marca
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Guo X, Sun J, Liang J, Zhu S, Zhang M, Yang L, Huang X, Xue K, Mo Z, Wen S, Hu B, Liu J, Ouyang Y, He M. Vasorin contributes to lung injury via FABP4-mediated inflammation. Mol Biol Rep 2022; 49:9335-9344. [PMID: 35945403 DOI: 10.1007/s11033-022-07780-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Lung injury caused by pulmonary inflammation is one of the main manifestations of respiratory diseases. Vasorin (VASN) is a cell-surface glycoprotein encoded by the VASN gene and is expressed in the lungs of developing mouse foetuses. Previous research has revealed that VASN is associated with many diseases. However, its exact function in the lungs and the underlying mechanism remain poorly understood. METHODS AND RESULTS To investigate the molecular mechanisms involved in lung disease caused by VASN deficiency, a VASN gene knockout (VASN-/-) model was established. The pathological changes in the lungs of VASN-/- mice were similar to those in a lung injury experimental mouse model. We further analysed the transcriptomes of the lungs of VASN-/- mice and wild-type mice. Genes in twenty-four signalling pathways were enriched in the lungs of VASN-/- mice, among which PPAR signalling pathway genes (3 genes, FABP4, Plin1, AdipoQ, were upregulated, while apoA5 was downregulated) were found to be closely related to lung injury. The most significantly changed lung injury-related gene, FABP4, was selected for further verification. The mRNA and protein levels of FABP4 were significantly increased in the lungs of VASN-/- mice, as were the mRNA and protein levels of the inflammatory factors IL-6, TNF-α and IL-1β. CONCLUSIONS We believe that these data provide molecular evidence for the regulatory role of VASN in inflammation in the context of lung injury.
Collapse
Affiliation(s)
- Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Siran Zhu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kangning Xue
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,School of Public Health, Guangxi Medical University, Nanning, 530021, China. .,Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
7
|
Tang Y, Cai J, Lv B. LncRNA ubiquitin-binding protein domain protein 10 antisense RNA 1 inhibits colon adenocarcinoma progression via the miR-515-5p/slit guidance ligand 3 axis. Bioengineered 2022; 13:2308-2320. [PMID: 35034539 PMCID: PMC8974015 DOI: 10.1080/21655979.2021.2024396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulated long non-coding RNAs (lncRNAs) play an important role in cancer progression. However, there have been limited reports to date of the involvement of ubiquitin-binding protein domain protein 10 antisense RNA 1 (UBXN10-AS1) in cancer. Our aim was to explore the role and underlying mechanism of UBXN10-AS1 in the occurrence of colon adenocarcinoma (COAD). Real-time quantitative PCR and Western blotting were performed to determine the expression of UBXN10-AS1, miR-515-5p, and Slit guidance ligand 3 (SLIT3). Cell Counting Kit-8 and wound healing scratch assays were performed to measure COAD cell proliferation and migration. A xenograft assay was performed to examine tumor growth in vivo. Luciferase reporter and RNA immunoprecipitation (RIP) assays were used to determine the binding interaction among miR-515-5p, UBXN10-AS1, and SLIT3. The results showed that UBXN10-AS1 and SLIT3 were expressed at low levels in COAD tissues, while miR-515-5p was expressed at high levels. UBXN10-AS1 overexpression suppressed tumor growth in vitro and in vivo. The luciferase reporter and RNA RIP assays demonstrated that UBXN10-AS1 targeted miR-515-5p, which in turn targeted SLIT3. Functionally, miR-515-5p overexpression reversed the inhibition of COAD cell proliferation and migration by UBXN10-AS1 overexpression, and SLIT3 overexpression counteracted the oncogenicity of miR-515-5p. Our study shows that UBXN10-AS1 modulates the miR-515-5p/SLIT3 axis, thereby resulting in the inhibition of COAD cell proliferation and migration.
Collapse
Affiliation(s)
- Yu Tang
- Department of General Surgery, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Jingxuan Cai
- Department of General Surgery, Chengdu Western Hospital, Chengdu, Sichuan, China
| | - Bo Lv
- Department of General Surgery, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Sun J, Guo X, Yu P, Liang J, Mo Z, Zhang M, Yang L, Huang X, Hu B, Liu J, Ouyang Y, He M. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J Cell Mol Med 2021; 26:88-98. [PMID: 34854218 PMCID: PMC8742182 DOI: 10.1111/jcmm.17034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Vasorin (VASN) is an important transmembrane protein associated with development and disease. However, it is not clear whether the death of mice with VASN deficiency (VASN-/- ) is related to cardiac dysfunction. The aim of this research was to ascertain whether VASN induces pathological cardiac hypertrophy by targeting myosin light chain 7 (MYL7). VASN-/- mice were produced by CRISPR/Cas9 technology and inbreeding. PCR amplification, electrophoresis, real-time PCR and Western blotting were used to confirm VASN deficiency. Cardiac hypertrophy was examined by blood tests, histological analysis and real-time PCR, and key downstream factors were identified by RNA sequencing and real-time PCR. Western blotting, immunohistochemistry and electron microscopy analysis were used to confirm the downregulation of MYL7 production and cardiac structural changes. Our results showed that sudden death of VASN-/- mice occurred 21-28 days after birth. The obvious increases in cardiovascular risk, heart weight and myocardial volume and the upregulation of hypertrophy marker gene expression indicated that cardiac hypertrophy may be the cause of death in young VASN-/- mice. Transcriptome analysis revealed that VASN deficiency led to MYL7 downregulation, which induced myocardial structure abnormalities and disorders. Our results revealed a pathological phenomenon in which VASN deficiency may lead to cardiac hypertrophy by downregulating MYL7 production. However, more research is necessary to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Yu
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, China
| |
Collapse
|
9
|
Liang W, Guo B, Ye J, Liu H, Deng W, Lin C, Zhong X, Wang L. Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Sci 2019; 110:2558-2572. [PMID: 31215106 PMCID: PMC6676100 DOI: 10.1111/cas.14103] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Glioma, the most common human primary brain tumor, is characterized by invasive capabilities and angiogenesis. Vasorin (VASN), a transmembrane protein, is reported to be associated with vascular injury repair and is overexpressed in some human tumors. However, its role in tumor progression and angiogenesis in glioma is unknown. In this study, VASN was shown to be overexpressed in high‐grade gliomas, and the expression level correlated with tumor grade and microvessel density in glioma specimens. Glioma patients with high VASN expression had a shorter overall survival time. Knockdown of VASN in glioma cells by shRNA significantly inhibited the malignancy of glioma, including cell proliferation, colony formation, invasion, and sphere formation. Ectopic expression of VASN increased glioma progression in vitro. The expression of VASN correlated with the mesenchymal type of glioblastoma multiforme (GBM) subtyped by gene set enrichment analysis (GSEA). Our results showed that the concentration of VASN was increased in the conditioned medium (CM) from glioma cells with VASN overexpression, and the CM from glioma cells with knockdown or overexpressed VASN inhibited or promoted HUVEC migration and tubulogenesis in vitro, respectively. Glioma growth and angiogenesis were stimulated upon ectopic expression of VASN in vivo. The STAT3 and NOTCH pathways were found to be activated and inhibited by VASN overexpression. Our findings suggest that VASN stimulates tumor progression and angiogenesis in glioma, and, as such, represents a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Weiye Liang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Baoyin Guo
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Hui Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Wanying Deng
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Chenli Lin
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Bonnet AL, Chaussain C, Broutin I, Rochefort GY, Schrewe H, Gaucher C. From Vascular Smooth Muscle Cells to Folliculogenesis: What About Vasorin? Front Med (Lausanne) 2018; 5:335. [PMID: 30564578 PMCID: PMC6288187 DOI: 10.3389/fmed.2018.00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 01/18/2023] Open
Abstract
First described in 1988, vasorin (VASN) is a transmembrane glycoprotein expressed during early mouse development, and with a less extent, in various organs and tissues (e.g., kidney, aorta, and brain) postnatally. Vasn KO mice die after 3 weeks of life from unknown cause(s). No human disease has been associated with variants of this gene so far, but VASN seems to be a potential biomarker for nephropathies and tumorigenesis. Its interactions with the TGF-β and Notch1 pathways offer the most serious assumptions regarding VASN functions. In this review, we will describe current knowledge about this glycoprotein and discuss its implication in various organ pathophysiology.
Collapse
Affiliation(s)
- Anne-Laure Bonnet
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France.,Department of Odontology, University Hospitals Charles Foix, PNVS, and Henri Mondor, AP-HP, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France.,Department of Odontology, University Hospitals Charles Foix, PNVS, and Henri Mondor, AP-HP, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015, CNRS), Pharmacy Faculty, University Paris Descartes, USPC, Paris, France
| | - Gaël Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Céline Gaucher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France.,Department of Odontology, University Hospitals Charles Foix, PNVS, and Henri Mondor, AP-HP, Paris, France
| |
Collapse
|
11
|
Reduced vasorin enhances angiotensin II signaling within the aging arterial wall. Oncotarget 2018; 9:27117-27132. [PMID: 29930755 PMCID: PMC6007470 DOI: 10.18632/oncotarget.25499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/10/2018] [Indexed: 12/03/2022] Open
Abstract
The glycosylated protein vasorin physically interacts with the transforming growth factor-beta1 (TGF-β1) and functionally attenuates its fibrogenic signaling in the vascular smooth muscle cells (VSMCs) of the arterial wall. Angiotensin II (Ang II) amplifies TGF-β1 activation in the VSMCs of the arterial wall with aging. In this study, we hypothesized that a reduced expression of the protein vasorin plays a contributory role in magnifying Ang II-associated fibrogenic signaling in the VSMCs of the arterial wall with aging. The current study shows that vasorin mRNA and protein expression were significantly decreased both in aortic wall and VSMCs from old (30 mo) vs. young (8 mo) FXBN rats. Exposing young VSMCs to Ang II reduced vasorin protein expression to the levels of old untreated cells while treating old VSMCs with the Ang II type AT1 receptor antagonist Losartan upregulated vasorin protein expression up to the levels of young. The physical interaction between vasorin and TGF-β1 was significantly decreased in old vs. young VSMCs. Further, exposing young VSMCs to Ang II increased the levels of matrix metalloproteinase type II (MMP-2) activation and TGF-β1 downstream molecules p-SMAD-2/3 and collagen type I production up to the levels of old untreated VSMCs, and these effects were substantially inhibited by overexpressing vasorin. Administration of Ang II to young rats (8 mo) for 28 days via an osmotic minipump markedly reduced the expression of vasorin. Importantly, vasorin protein was effectively cleaved by activated MMP-2 both in vitro and in vivo. Administration of the MMP inhibitor, PD 166793, for 6 mo to young adult (18 mo) via a daily gavage markedly increased levels of vasorin in the aortic wall. Thus, reduced vasorin amplifies Ang II profibrotic signaling via an activation of MMP-2 in VSMCs within the aging arterial wall.
Collapse
|
12
|
Essential Role of Linx/Islr2 in the Development of the Forebrain Anterior Commissure. Sci Rep 2018; 8:7292. [PMID: 29739947 PMCID: PMC5940738 DOI: 10.1038/s41598-018-24064-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Linx is a member of the leucine-rich repeat and immunoglobulin family of membrane proteins which has critical roles in the development of the peripheral nervous system and forebrain connectivity. A previous study showed that Linx is expressed in projection neurons in the cortex and in cells that comprise the passage to the prethalamus that form the internal capsule, indicating the involvement of Linx in axon guidance and cell-cell communication. In this study, we found that Linx-deficient mice develop severe hydrocephalus and die perinatally by unknown mechanisms. Importantly, mice heterozygous for the linx gene exhibited defects in the development of the anterior commissure in addition to hydrocephalus, indicating haploinsufficiency of the linx gene in forebrain development. In N1E-115 neuroblastoma cells and primary cultured hippocampal neurons, Linx depletion led to impaired neurite extension and an increase in cell body size. Consistent with this, but of unknown significance, we found that Linx interacts with and upregulates the activity of Rho-kinase, a modulator of many cellular processes including cytoskeletal organization. These data suggest a role for Linx in the regulation of complex forebrain connectivity, and future identification of its extracellular ligand(s) will help clarify this function.
Collapse
|
13
|
Rimon-Dahari N, Heinemann-Yerushalmi L, Hadas R, Kalich-Philosoph L, Ketter D, Nevo N, Galiani D, Dekel N. Vasorin: a newly identified regulator of ovarian folliculogenesis. FASEB J 2018; 32:2124-2136. [PMID: 29259033 DOI: 10.1096/fj.201700057rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Members of the TGF-β superfamily take part in the control of folliculogenesis. Vasorin (Vasn) is a newly identified negative regulator of TGF-β signaling whose possible involvement in ovarian physiology has never been studied. Here, we demonstrate that Vasn is expressed in the ovary by somatic cells of follicles, and that its expression is up-regulated by LH. We established a conditional knockout (cKO) mouse model in which Vasn is deleted specifically in granulosa cells of growing follicles from the secondary stage onwards. Using this model, we show that, upon hormonal stimulation, follicle ovulation size is almost 2-fold higher. This enhanced ovulatory response is associated with overactivation of the TGF-β signaling pathway and a lower number of atretic antral follicles. Of importance, we demonstrate that the number of primordial follicles is reduced in prepubertal cKO mouse ovaries, which suggests that the production of VASN by growing follicles protects the ovarian reserve. Finally, analysis of systemic KO mice revealed that the ovarian reserve is almost 2.5-fold higher, which implies that Vasn may also play a role in primordial follicle formation. Overall, our findings reveal that Vasn is a new regulator that exerts an effect on several key ovarian functions, including folliculogenesis, maintenance of the ovarian reserve, and ovulation.-Rimon-Dahari, N., Heinemann-Yerushalmi, L., Hadas, R., Kalich-Philosoph, L., Ketter, D., Nevo, N., Galiani, D., Dekel, N. Vasorin: a newly identified regulator of ovarian folliculogenesis.
Collapse
Affiliation(s)
- Nitzan Rimon-Dahari
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ron Hadas
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Dafna Ketter
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Galiani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Li S, Li H, Yang X, Wang W, Huang A, Li J, Qin X, Li F, Lu G, Ding H, Su X, Hou L, Xia W, Shi M, Zhang H, Zhao Q, Dong J, Ge X, Sun L, Bai C, Wang C, Shen X, Fang T, Wang F, Zhang H, Shao N. Vasorin is a potential serum biomarker and drug target of hepatocarcinoma screened by subtractive-EMSA-SELEX to clinic patient serum. Oncotarget 2016; 6:10045-59. [PMID: 25826090 PMCID: PMC4496339 DOI: 10.18632/oncotarget.3541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/13/2015] [Indexed: 11/25/2022] Open
Abstract
We report a new biomarker of hepatocarcinoma, vasorin (VASN), screened by a subtractive EMSA-SELEX strategy from AFP negative serum of hepatocellular carcinoma (HCC) patients with extrahepatic metastases. VASN was verified to be highly expressed in sera of 100 cases of HCC patients compared with 97 cases of normal persons and 129 cases of hepatitis patients. Further validation by Q-PCR, IFA and Western blot showed higher expression of VASN at mRNA and protein levels in HCC cell lines and HCC tissues than in normal controls. RNA interference and forced overexpression assays verified that VASN promotes cell proliferation and migration and inhibits apoptosis. Down-regulation of microRNA miR145 and miR146a is an important mechanism leading to high expression of VASN. Conclusion: As a membrane protein and/or as free protein, VASN may be an effective target for biological treatment of liver cancer and is a potential biomarker for HCC diagnosis. Small molecular nucleotides targeting VASN are promising biological therapies to HCC.
Collapse
Affiliation(s)
- Shaohua Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xingliang Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guanyi Lu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hongmei Ding
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueting Su
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lvbin Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Xia
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Shi
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongwen Zhang
- Department of Interventional Radiology, General Hospital of Fuzhou, Fuzhou, China
| | - Qiang Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xingfeng Ge
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Leqiao Sun
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chenjun Bai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chaonan Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xuelian Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Fang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fusheng Wang
- Center of Infectous Disease, Beijing 302 Hospital, Beijing, China
| | - Heqiu Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Panza P, Sitko AA, Maischein HM, Koch I, Flötenmeyer M, Wright GJ, Mandai K, Mason CA, Söllner C. The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. Neural Dev 2015; 10:23. [PMID: 26492970 PMCID: PMC4618557 DOI: 10.1186/s13064-015-0050-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the visual system of most binocular vertebrates, the axons of retinal ganglion cells (RGCs) diverge at the diencephalic midline and extend to targets on both ipsi- and contralateral sides of the brain. While a molecular mechanism explaining ipsilateral guidance decisions has been characterized, less is known of how RGC axons cross the midline. RESULTS Here, we took advantage of the zebrafish, in which all RGC axons project contralaterally at the optic chiasm, to characterize Islr2 as an RGC receptor required for complete retinal axon midline crossing. We used a systematic extracellular protein-protein interaction screening assay to identify two Vasorin paralogs, Vasna and Vasnb, as specific Islr2 ligands. Antibodies against Vasna and Vasnb reveal cellular populations surrounding the retinal axon pathway, suggesting the involvement of these proteins in guidance decisions made by axons of the optic nerve. Specifically, Vasnb marks the membranes of a cellular barricade located anteriorly to the optic chiasm, a structure termed the "glial knot" in higher vertebrates. Loss of function mutations in either vasorin paralog, individually or combined, however, do not exhibit an overt retinal axon projection phenotype, suggesting that additional midline factors, acting either independently or redundantly, compensate for their loss. Analysis of Islr2 knockout mice supports a scenario in which Islr2 controls the coherence of RGC axons through the ventral midline and optic tract. CONCLUSIONS Although stereotypic guidance of RGC axons at the vertebrate optic chiasm is controlled by multiple, redundant mechanisms, and despite the differences in ventral diencephalic tissue architecture, we identify a novel role for the LRR receptor Islr2 in ensuring proper axon navigation at the optic chiasm of both zebrafish and mouse.
Collapse
Affiliation(s)
- Paolo Panza
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076, Tübingen, Germany.
| | - Austen A Sitko
- Department of Neuroscience, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA
| | - Hans-Martin Maischein
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076, Tübingen, Germany.,Present address: Max-Planck-Institut für Herz- und Lungenforschung, Abteilung Genetik der Entwicklung, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Iris Koch
- Max-Planck-Institut für Entwicklungsbiologie, Elektronenmikroskopie, Spemannstraße 35, 72076, Tübingen, Germany
| | - Matthias Flötenmeyer
- Max-Planck-Institut für Entwicklungsbiologie, Elektronenmikroskopie, Spemannstraße 35, 72076, Tübingen, Germany
| | - Gavin J Wright
- Wellcome Trust Sanger Institute, Cell Surface Signalling Laboratory, Hinxton, Cambridge, CB10 1HH, UK
| | - Kenji Mandai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Carol A Mason
- Department of Pathology & Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA.,Department of Neuroscience, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032, USA
| | - Christian Söllner
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076, Tübingen, Germany
| |
Collapse
|
16
|
Huang A, Dong J, Li S, Wang C, Ding H, Li H, Su X, Ge X, Sun L, Bai C, Shen X, Fang T, Li J, Shao N. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci 2015; 11:961-9. [PMID: 26157350 PMCID: PMC4495413 DOI: 10.7150/ijbs.11943] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
Vasorin (VASN) is a type I transmembrane protein that plays important roles in tumor development and vasculogenesis. In this paper, we showed that VASN could be a key mediator of communication between tumor cells and endothelial cells. We confirmed for the first time that HepG2-derived VASN can be transferred to human umbilical vein endothelial cells (HUVECs) via receptor mediated endocytosis of exosomes, at least in part through HSPGs. The HepG2-derived VASN containing exosomes promote migration of recipient HUVECs cells. Our results identify a novel pathway by which a functional protein expressed in tumor cells affects the biological fate of endothelial cells via exosomes.
Collapse
Affiliation(s)
- Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shaohua Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chaonan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hongmei Ding
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xueting Su
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xingfeng Ge
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Leqiao Sun
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chenjun Bai
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuelian Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Fang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jie Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
17
|
Pan HT, Guo MX, Xiong YM, Ren J, Zhang JY, Gao Q, Ke ZH, Xu GF, Tan YJ, Sheng JZ, Huang HF. Differential proteomic analysis of umbilical artery tissue from preeclampsia patients, using iTRAQ isobaric tags and 2D nano LC–MS/MS. J Proteomics 2015; 112:262-73. [DOI: 10.1016/j.jprot.2014.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 02/04/2023]
|
18
|
Krautzberger AM, Kosiol B, Scholze M, Schrewe H. Expression of vasorin (Vasn) during embryonic development of the mouse. Gene Expr Patterns 2012; 12:167-71. [PMID: 22426063 DOI: 10.1016/j.gep.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/28/2012] [Indexed: 01/25/2023]
Abstract
The murine vasorin (Vasn) gene, initially known as Slit-like 2, encodes a transmembrane protein that shares structural similarities with the eponymous Slit proteins. However, whether it also shares functional similarities with these large secreted proteins remains to be elucidated. Here, we report expression of Vasn during embryonic and fetal development of the mouse using whole-mount in situ hybridization (WISH) and histochemical detection of β-galactosidase expressed from a targeted Vasn(lacZ) knock-in allele. Comparison of whole-mount staining patterns of both approaches showed identical expression domains, confirming that Vasn promoter-driven β-galactosidase expression faithfully reflects endogenous Vasn expression. Vasn is highly expressed in vascular smooth muscle cells (hence the name), a finding consistent with a previous report on its human homolog VASN, whose extracellular domain was shown to function as a TGF-β trap (Ikeda et al., 2004). Most striking, however, is Vasn's prominent expression in the developing skeletal system, starting as early as the first mesenchymal condensations appear. Moreover, distinct expression domains outside the bones, e.g., in the developing kidneys and lungs, suggest further roles for this gene in the mouse. Recently, it was shown that mitochondria-localized Vasn protects cells from TNFα- and hypoxia-induced apoptosis, and partial deletion of the Vasn coding sequence leads to increased sensitivity of hepatocytes to TNFα-induced apoptosis (Choksi et al., 2011). By providing a first comprehensive analysis of the Vasn expression pattern during mouse embryonic development, our study will help to further elucidate its biological functions.
Collapse
Affiliation(s)
- A Michaela Krautzberger
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
19
|
Chen L, Zhou J, Xu H, Xu G, Xue J. Identification and developmental expression of Dec2 in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:667-675. [PMID: 19578937 DOI: 10.1007/s10695-009-9341-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/31/2009] [Indexed: 05/28/2023]
Abstract
The involvement of Dec2, a member of the basic helix-loop-helix (bHLH) family, in cellular differentiation, hypoxia response, and circadian regulation has been investigated. Here we report the previously unknown spatiotemporal expression of Dec2 in zebrafish embryogenesis. Dec2 is dynamically expressed in zebrafish pineal gland, tract of the postoptic commissure, brain, notochord, heart, common cardinal vein (CCV), axial vein, pronephric duct, swim bladder, and early somites during embryogenesis, which implies that Dec2 is involved in zebrafish central nervous system development, cardiogenesis, and internal organs and somites formation. The embryonic expression patterns of zebrafish Dec2 and its homolog Dec1 partially overlap, but are distinct from each other. The Dec2 expression level was lower than that of Dec1 during zebrafish embryogenesis. Although Dec1 also contributed to zebrafish somites formation, cardiogenesis, and internal organs and central nervous system development, the two Dec genes were not likely to be simply redundant during zebrafish embryogenesis. Our results imply that Dec2, like its homolog Dec1, is involved in zebrafish cardiogenesis, central nervous system development, and internal organs and somites formation with distinct developmental roles.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Jingyao Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Huilei Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Guanlan Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
20
|
Yuan X. Axon guidance and neuronal migration research in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:304-314. [PMID: 20596924 DOI: 10.1007/s11427-010-0068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 01/21/2023]
Abstract
Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits. Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years. Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration. Several unique experimental approaches, including the migration assay of single isolated neurons in response to locally delivered guidance cues, have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.
Collapse
Affiliation(s)
- XiaoBing Yuan
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
21
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:215-24. [PMID: 18248196 DOI: 10.1089/zeb.2005.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Yao J, Wang L, Chen L, Zhang S, Zhao Q, Jia W, Xue J. Cloning and developmental expression of the DEC1 ortholog gene in zebrafish. Gene Expr Patterns 2006; 6:919-27. [PMID: 16678499 DOI: 10.1016/j.modgep.2006.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 02/16/2006] [Accepted: 03/07/2006] [Indexed: 11/30/2022]
Abstract
DEC1/STRA13/SHARP2 is a transcription factor of the bHLH family that has been suggested to play key roles in mammalian cell differentiation, the cell cycle and circadian regulation. However, the function of the DEC1 gene during embryogenesis is not well understood. In the present study, we cloned a zebrafish ortholog of the human DEC1 gene and analyzed its expression during development of zebrafish. The predicted protein encoded by zebrafish DEC1 consists of 403 amino acids, and shares 59%, 60% and 59% identity in overall amino acid sequence with human DEC1, mouse STRA13 and rat SHARP2, respectively. Zebrafish DEC1 contains a bHLH domain exhibiting 97% identity with that of the mammalian ortholog. During zebrafish embryogenesis, DEC1 is expressed in a strong ubiquitous manner before early segmentation. At 15-72 hpf, DEC1 shows a specific and dynamic expression in the developing eyes, somites, pineal gland (epiphysis), heart, brain, spinal cord, notochord, pronephric duct, common cardinal vein and blood cells. In older zebrafish, DEC1 also is expressed in multiple tissues including the brain, eye, gut, liver and pancreas. Our data provide evidence that expression of DEC1 is evolutionally conserved in zebrafish.
Collapse
Affiliation(s)
- Jihua Yao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | | | |
Collapse
|