1
|
Jia L, Zheng H, Feng J, Ding Y, Sun X, Yu Y, Hao X, Wang J, Zhang X, Tian Y, Chen F, Cui J. Upregulation of Protein O-GlcNAcylation Levels Promotes Zebrafish Fin Regeneration. Mol Cell Proteomics 2025; 24:100936. [PMID: 40044042 PMCID: PMC12002929 DOI: 10.1016/j.mcpro.2025.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
As one of the most important posttranslational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects the liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that N-acetylglucosamine (O-GlcNAc) expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of thiamet-G or glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, liquid chromatography-tandem mass spectrometry technology was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as thrombospondin 4 and heparan sulfate proteoglycans, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, extracellular matrix-receptor interaction pathway, tissue remodeling, and so on. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.
Collapse
Affiliation(s)
- Liyuan Jia
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Juantao Feng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yi Ding
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xiaotian Sun
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuan Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Junxiang Wang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xinyu Zhang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuanfeng Tian
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Fulin Chen
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| | - Jihong Cui
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| |
Collapse
|
2
|
Gorelik A, van Aalten DMF. Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 2020; 1:98-109. [PMID: 34458751 PMCID: PMC8386111 DOI: 10.1039/d0cb00052c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is an abundant post-translational modification of intracellular proteins with the monosaccharide N-acetylglucosamine covalently tethered to serines and threonines. Modification of proteins with O-GlcNAc is required for metazoan embryo development and maintains cellular homeostasis through effects on transcription, signalling and stress response. While disruption of O-GlcNAc homeostasis can have detrimental impact on cell physiology and cause various diseases, little is known about the functions of individual O-GlcNAc sites. Most of the sites are modified sub-stoichiometrically which is a major challenge to the dissection of O-GlcNAc function. Here, we discuss the application, advantages and limitations of the currently available tools and technologies utilised to dissect the function of O-GlcNAc on individual proteins and sites in vitro and in vivo. Additionally, we provide a perspective on future developments required to decipher the protein- and site-specific roles of this essential sugar modification.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
- Institute for Molecular Precision Medicine, Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
3
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
4
|
Expression of messenger RNA encoding two cellular metabolic regulators, AMP-activated protein kinase (AMPK) and O-GlcNAc transferase (OGT), in channel catfish: Their tissue distribution and relationship with changes in food intake. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:12-21. [PMID: 31091463 DOI: 10.1016/j.cbpa.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
AMP-activated protein kinase (AMPK) is considered as the master cellular metabolism regulator that activates various proteins, including O-GlcNAc transferase (OGT). Physiological roles of AMPK and OGT, including the relationship between their mRNA expression and food intake, are poorly understood in channel catfish. This study examined the tissue distribution of AMPK and OGT mRNA and changes in their expression in response to changes in food intake in channel catfish. Expression of all AMPK subunit and OGT mRNA was detectable in the whole brain, liver, heart, spleen, white muscle, and kidney of channel catfish. The OGT mRNA was highly localized in the brain compared to other tissues. 28-day fasting increased hepatic expression of AMPK α1, β1, and OGT mRNA while refeeding fish for 14 days after the 14-day fast decreased their expression to the level similar to that of fish that were fed daily. No changes were noted in the expression of muscle and brain AMPK mRNA or OGT mRNA by fasting and refeeding. Hepatic AMPK α1, α2 and β1 mRNA decreased in response to increased feeding frequency, whereas no changes in the expression of AMPK or OGT mRNA were noted in the brain or the muscle. Results of the current study indicated that the hepatic expression of AMPK and OGT mRNA appeared to be more sensitive to changes in food intake in channel catfish. However, further studies are needed to clearly demonstrate if food intake influences the expression of AMPK and OGT mRNA in various tissues, including the hypothalamus.
Collapse
|
5
|
Mariappa D, Zheng X, Schimpl M, Raimi O, Ferenbach AT, Müller HAJ, van Aalten DMF. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Open Biol 2016; 5:150234. [PMID: 26674417 PMCID: PMC4703063 DOI: 10.1098/rsob.150234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) catalysed by O-GlcNAc transferase (OGT) has been linked to regulation of diverse cellular functions. OGT possesses a C-terminal glycosyltransferase catalytic domain and N-terminal tetratricopeptide repeats that are implicated in protein-protein interactions. Drosophila OGT (DmOGT) is encoded by super sex combs (sxc), mutants of which are pupal lethal. However, it is not clear if this phenotype is caused by reduction of O-GlcNAcylation. Here we use a genetic approach to demonstrate that post-pupal Drosophila development can proceed with negligible OGT catalysis, while early embryonic development is OGT activity-dependent. Structural and enzymatic comparison between human OGT (hOGT) and DmOGT informed the rational design of DmOGT point mutants with a range of reduced catalytic activities. Strikingly, a severely hypomorphic OGT mutant complements sxc pupal lethality. However, the hypomorphic OGT mutant-rescued progeny do not produce F2 adults, because a set of Hox genes is de-repressed in F2 embryos, resulting in homeotic phenotypes. Thus, OGT catalytic activity is required up to late pupal stages, while further development proceeds with severely reduced OGT activity.
Collapse
Affiliation(s)
- Daniel Mariappa
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Xiaowei Zheng
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Marianne Schimpl
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Olawale Raimi
- Division of Molecular Microbiology, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - H-Arno J Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK Division of Molecular Microbiology, University of Dundee, Dundee, UK
| |
Collapse
|
6
|
Ryu IH, Lee KY, Do SI. Aβ-affected pathogenic induction of S-nitrosylation of OGT and identification of Cys-NO linkage triplet. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:609-21. [DOI: 10.1016/j.bbapap.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
|
7
|
Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins. Biochem J 2016; 473:1693-702. [PMID: 27048592 PMCID: PMC4901358 DOI: 10.1042/bcj20160092] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 01/03/2023]
Abstract
O-linked N-acetylglucosamine modification (O-GlcNAcylation) is a nutrient-dependent protein post-translational modification (PTM), dynamically and reversibly driven by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that catalyse the addition and the removal of the O-GlcNAc moieties to/from serine and threonine residues of target proteins respectively. Increasing evidence suggests involvement of O-GlcNAcylation in many biological processes, including transcription, signalling, neuronal development and mitochondrial function. The presence of a mitochondrial O-GlcNAc proteome and a mitochondrial OGT (mOGT) isoform has been reported. We explored the presence of mOGT in human cell lines and mouse tissues. Surprisingly, analysis of genomic sequences indicates that this isoform cannot be expressed in most of the species analysed, except some primates. In addition, we were not able to detect endogenous mOGT in a range of human cell lines. Knockdown experiments and Western blot analysis of all the predicted OGT isoforms suggested the expression of only a single OGT isoform. In agreement with this, we demonstrate that overexpression of the nucleocytoplasmic OGT (ncOGT) isoform leads to increased O-GlcNAcylation of mitochondrial proteins, suggesting that ncOGT is necessary and sufficient for the generation of the O-GlcNAc mitochondrial proteome.
Collapse
|
8
|
Selvan N, Mariappa D, van den Toorn HWP, Heck AJR, Ferenbach AT, van Aalten DMF. The Early Metazoan Trichoplax adhaerens Possesses a Functional O-GlcNAc System. J Biol Chem 2015; 290:11969-82. [PMID: 25778404 PMCID: PMC4424335 DOI: 10.1074/jbc.m114.628750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Protein O-GlcNAcylation is a reversible post-translational signaling modification of nucleocytoplasmic proteins that is essential for embryonic development in bilateria. In a search for a reductionist model to study O-GlcNAc signaling, we discovered the presence of functional O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and nucleocytoplasmic protein O-GlcNAcylation in the most basal extant animal, the placozoan Trichoplax adhaerens. We show via enzymatic characterization of Trichoplax OGT/OGA and genetic rescue experiments in Drosophila melanogaster that these proteins possess activities/functions similar to their bilaterian counterparts. The acquisition of O-GlcNAc signaling by metazoa may have facilitated the rapid and complex signaling mechanisms required for the evolution of multicellular organisms.
Collapse
Affiliation(s)
| | - Daniel Mariappa
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom and
| | - Henk W P van den Toorn
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Daan M F van Aalten
- From the Division of Molecular Microbiology and MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom and
| |
Collapse
|
9
|
O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Amino Acids 2014; 46:2305-16. [PMID: 25173736 DOI: 10.1007/s00726-014-1827-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
Abstract
O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) catalyze the dynamic cycling of intracellular, post-translational O-GlcNAc modification on thousands of Ser/Thr residues of cytosolic, nuclear, and mitochondrial signaling proteins. The identification of O-GlcNAc modified substrates has revealed a functionally diverse set of proteins, and the extent of O-GlcNAcylation fluctuates in response to nutrients and cellular stress. As a result, OGT and OGA are implicated in widespread, nutrient-responsive regulation of numerous signaling pathways and transcriptional programs. These enzymes are required for normal embryonic development and are dysregulated in metabolic and age-related disease states. While a recent surge of interest in the field has contributed to understanding the functional impacts of protein O-GlcNAcylation, little is known about the upstream mechanisms which modulate OGT and OGA substrate targeting. This review focuses on elements of enzyme structure among splice variants, post-translational modification, localization, and regulatory protein interactions which drive the specificity of OGT and OGA toward different subsets of the cellular proteome. Ongoing efforts in this rapidly advancing field are aimed at revealing mechanisms of OGT and OGA regulation to harness the potential therapeutic benefit of manipulating these enzymes' activities.
Collapse
|
10
|
Ryu IH, Do SI. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem Biophys Res Commun 2011; 408:52-7. [PMID: 21453677 DOI: 10.1016/j.bbrc.2011.03.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022]
Abstract
O-linked N-acetylglucosaminyltransferase (OGT)-mediated protein O-GlcNAcylation has been revealing various aspects of functional significance in biological processes, such as cellular signaling and activation of immune system. We found that OGT is maintained as S-nitrosylated form in resting cells, and its denitrosylation is triggered in innate immune response of lipopolysaccharide (LPS)-treated macrophage cells. S-nitrosylation of OGT strongly inhibits its catalytic activity up to more than 80% of native OGT, and denitrosylation of OGT leads to protein hyper-O-GlcNAcylation. Furthermore, blockage of increased protein O-GlcNAcylation results in significant loss of nitric oxide and cytokine production. We propose that denitrosylation of S-nitrosylated OGT is a direct mechanism for upregulation of OGT activity by which immune defense is critically controlled in LPS-stimulated innate immune response.
Collapse
Affiliation(s)
- In-Hyun Ryu
- Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Suwon 443-749, Republic of Korea
| | | |
Collapse
|
11
|
Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 2010; 21:646-54. [PMID: 20488252 DOI: 10.1016/j.semcdb.2010.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These 'evo-devo' relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the 'vicious cycle' observed in children of mothers with type-2 diabetes and metabolic disease.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, NIH, Bethesda, MD 20892-0850, USA
| | | | | |
Collapse
|
12
|
O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:28. [PMID: 19383152 PMCID: PMC2680843 DOI: 10.1186/1471-213x-9-28] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
Background The post-translational addition of the monosaccharide O-linked β-N-acetylglucosamine (O-GlcNAc) regulates the activity of a wide variety of nuclear and cytoplasmic proteins. The enzymes O-GlcNAc Transferase (Ogt) and O-GlcNAcase (Oga) catalyze, respectively, the attachment and removal of O-GlcNAc to target proteins. In adult mice, Ogt and Oga attenuate the response to insulin by modifying several components of the signal transduction pathway. Complete loss of ogt function, however, is lethal to mouse embryonic stem cells, suggesting that the enzyme has additional, unstudied roles in development. We have utilized zebrafish as a model to determine role of O-GlcNAc modifications in development. Zebrafish has two ogt genes, encoding six different enzymatic isoforms that are expressed maternally and zygotically. Results We manipulated O-GlcNAc levels in zebrafish embryos by overexpressing zebrafish ogt, human oga or by injecting morpholinos against ogt transcripts. Each of these treatments results in embryos with shortened body axes and reduced brains at 24 hpf. The embryos had 23% fewer cells than controls, and displayed increased rates of cell death as early as the mid-gastrula stages. An extensive marker analysis indicates that derivatives of three germ layers are reduced to variable extents, and the embryos are severely disorganized after gastrulation. Overexpression of Ogt and Oga delayed epiboly and caused a severe disorganization of the microtubule and actin based cytoskeleton in the extra-embryonic yolk syncytial layer (YSL). The cytoskeletal defects resemble those previously reported for embryos lacking function of the Pou5f1/Oct4 transcription factor spiel ohne grenzen. Consistent with this, Pou5f1/Oct4 is modified by O-GlcNAc in human embryonic stem cells. Conclusion We conclude that O-GlcNAc modifications control the activity of proteins that regulate apoptosis and epiboly movements, but do not seem to regulate germ layer specification. O-GlcNAc modifies the transcription factor Spiel ohne grenzen/Pou5f1 and may regulate its activity.
Collapse
|
13
|
Zhang S, Danielsen M. Evidence Denies the Presence of O-GlcNAcylation on Mouse Glucocorticoid Receptor and Its Potential Involvement in Receptor Transcriptional Activity. J Recept Signal Transduct Res 2008; 26:129-45. [PMID: 16777711 DOI: 10.1080/10799890600623340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
O-linked N-acetylglucosamine (GlcNAc) glycosylation (O-GlcNAcylation) is commonly found on many cytoplasmic and nuclear proteins. It can play a role in protein trafficking, signal transduction, and in some nuclear proteins it is involved in the control of gene expression. The steroid receptor family consists of proteins that have similar domain architecture including individual DNA and hormone-binding domains that have closely related three-dimensional structures. The discovery of O-linked GlcNAc on both androgen and estrogen receptors and the realization that the GlcNAc plays a role in the transcriptional activity of these receptors raise the possibility that this glycosylation is a common mechanism involved in transcriptional modulation in all members of the steroid receptor family. To test this hypothesis, we affinity purified the mouse glucocorticoid receptor from cell lines engineered to overexpress the receptor and used GlcNAc-specific lectin chromatography, lectin-blotting analysis, and galactosylation assay to assess the presence of GlcNAc modification. All three techniques were found to be highly sensitive when used with proteins known to harbor GlcNAc yet they failed to show the presence of GlcNAcylation on the mouse GR. We also determined the effect of mutation at seven major potential glycosylation sites of the receptor on its transcriptional activity. We conclude that either the mouse GR is not modified by GlcNAc or that the amount of the modification is so low that it cannot be detected. Therefore, the O-GlcNAcylation appears not to be a common mechanism used to modify the activity of all steroid receptors.
Collapse
Affiliation(s)
- Shimin Zhang
- Division of Molecular Pathobiology, Department of Environmental and Infectious Disease Sciences, American Registry of Pathology, Armed Forces Institute of Pathology, Washington, District of Columbia 20306-6000, USA.
| | | |
Collapse
|
14
|
Dehennaut V, Lefebvre T, Leroy Y, Vilain JP, Michalski JC, Bodart JF. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development. Glycoconj J 2008; 26:301-11. [PMID: 18633701 DOI: 10.1007/s10719-008-9166-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/13/2008] [Accepted: 06/20/2008] [Indexed: 02/03/2023]
Abstract
Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- UMR-CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, USTL, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
15
|
Riu IH, Shin IS, Do SI. Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Biochem Biophys Res Commun 2008; 372:203-9. [PMID: 18486602 DOI: 10.1016/j.bbrc.2008.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
cDNAs encoding three isoforms of OGT (ncOGT, mOGT, and sOGT) were expressed in Escherichia coli in which the coexpression system of OGT with target substrates was established in vivo. No endogenous bacterial proteins were significantly O-GlcNAcylated by any type of OGT isoform while co-expressed p62 and Sp1 were strongly O-GlcNAcylated by ncOGT. These results suggest that most of bacterial proteins appear not to be recognized as right substrates by mammalian OGT whereas cytosolic environments may supply UDP-GlcNAc enough to proceed to O-GlcNAcylation in E. coli. Under these conditions, sOGT was auto-O-GlcNAcylated whereas ncOGT and mOGT were not. Importantly, we found that when Sp1 was coexpressed, ncOGT can O-GlcNAcylate not only Sp1 but also many bacterial proteins. Our findings suggest that Sp1 may modulate the capability of target recognition of ncOGT by which ncOGT can be led to newly recognize bacterial proteins as target substrates, finally generating the O-glyco-bacteria. Our results demonstrate that the O-glyco-bacteria showed enhanced thermal resistance to allow cell survival at a temperature as high as 52 degrees C.
Collapse
Affiliation(s)
- In-Hyun Riu
- Department of Life Science, Laboratory of Functional Glycomics, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon City 443-749, Republic of Korea
| | | | | |
Collapse
|
16
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:215-24. [PMID: 18248196 DOI: 10.1089/zeb.2005.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|