1
|
Wang F, Lei H, Tian C, Ji Y, Wang F, Deng H, Zhou H, Chen S, Zhou Y, Meng Z, He M, Yang S, Dong H, Tu D, Wang H, Li X, Kaplan DL, Xia Q. An Efficient Biosynthetic System for Developing Functional Silk Fibroin-Based Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414878. [PMID: 39663673 DOI: 10.1002/adma.202414878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Long historical evolution and domestication endow silkworms with the super ability to synthesize and secrete massive silk proteins using silk glands. The major component of this secretion consists of silk fibroin, considered a promising biomaterial for tissue repairs and engineering. To further expand the utility of this unique protein, there is a continuing need for silk fibroin functionalization. Here, a highly-efficient Fib-HEXP biosynthetic system is established to synthesize massive recombinant RFP in silk fibers using transgenic silkworms, which accounts for ≈7.86% of silk mass and achieves fabrication of fluorescent silk fibroin (SF) biomaterials. The universality of the Fib-HEXP system is validated by genetic engineering glucose oxidase (GOx) functionalized silk fibers for fabricating GOx-SF hydrogels with antimicrobial activity to promote healing of infected diabetic wounds in mouse through the enzyme-catalyzed reaction of glucose to gluconic acid and H2O2. These findings demonstrate that the Fib-HEXP system provides an opportunity for genetic functionalization of SF to broaden the utility of this biomaterial for a range of potential applications.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hexu Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Chi Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yanting Ji
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Fangyu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yujuan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zihan Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Mengyao He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Shifeng Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Huan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Ding Tu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - He Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xian Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| |
Collapse
|
2
|
Tong X, Zhu M, Li J, Qiu Q, Feng Y, Hu X, Gong C. The mechanical properties of chimeric silk are improved by expressing the full-length Trichonephila clavipes major ampullate spidroin gene in the silkworm Bombyx mori via recombinant AcMNPV. J Mech Behav Biomed Mater 2024; 160:106742. [PMID: 39284273 DOI: 10.1016/j.jmbbm.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 11/14/2024]
Abstract
Spider silk is a type of natural protein fiber with excellent toughness and tensile strength. The mechanical properties of chimeric silk have been improved by integrating the spider silk protein gene into the silkworm (Bombyx mori) genome, but this strategy requires a long time to produce genetically modified silkworms. In this study, to rapidly produce chimeric silkworms/spider silk with improved toughness and tensile strength, recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV), AcMNPV-FHP-MaSp-G, harboring a full-length Trichonephila clavipes major ampullate spidroin G (MaSp-G) gene driven by the silkworm fibroin heavy chain (Fib-H) promoter, was constructed, in which the signal peptide sequence of the MaSp-G gene was replaced by the signal peptide sequence of the Fib-H gene. Western blot and LC-MS/MS results showed that MaSp-G was successfully expressed in the posterior silk gland of silkworm larvae infected with AcMNPV-FHP-MaSp-G and secreted into the cocoon. Mechanical property tests revealed that the average maximum breaking stress and the average maximum elastic strain of chimeric silkworms/spider silk were 497.867 MPa and 14.824%, respectively, which were 36.53% and 23.55% greater than those of silk produced by normal silkworms. Fourier transform infrared (FTIR) spectroscopy revealed that the proportions of β-sheets, α-helices, and β-turns in the chimeric silk increased by 18.22%, 16.92%, and 18.72%, respectively. These results indicate that the mechanical properties of the chimeric silk produced by silkworms infected with AcMNPV-FHP-MaSp-G were significantly improved, which provides a new method for rapid production of chimeric silk in a genetically modified/genome-edited silkworm-independent manner.
Collapse
Affiliation(s)
- Xinyu Tong
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Jijie Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Qunnan Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Yongjie Feng
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Life Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
New insight into the mechanism of in vivo fibroin self-assembly and secretion in the silkworm, Bombyx mori. Int J Biol Macromol 2020; 169:473-479. [PMID: 33358779 DOI: 10.1016/j.ijbiomac.2020.12.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Fibroin of the silkworm consists of fibroin heavy chain (Fib-H) with hydrophobic intermediate repeats flanked by hydrophilic N and C terminal domains (NTD and CTD, respectively), fibroin light chain (Fib-L), and P25. However, the respective roles of each polypeptide in silk processing remain largely unknown. Here, a series of transgenic silkworms with different fusion gene expression cassettes were created in order to selectively express different fluorescent fusion proteins in silk glands. The roles of different components in silk processing were investigated via observing and analyzing the movement and distribution of these proteins in the silk gland and in cocoon silk. The data showed that hydrophilic NTDs were distributed on the surface of micelles, providing sufficient electrostatic repulsion to prevent premature crystallization of silk proteins. Hydrophilic CTD==Ls ("==" represents the disulfide bond) were located on the inner layer of micelles to control the solubility of large micelles. The results presented here elucidated the underlying mechanisms of silkworm silk processing in vivo. This is significant for the development of artificial spinning technology, novel silk biomaterials, and silk gland expression systems.
Collapse
|
4
|
Nakaya H, Tatematsu KI, Sezutsu H, Kuwabara N, Koibuchi N, Takeda S. Secretory expression of thyroid hormone receptor using transgenic silkworms and its DNA binding activity. Protein Expr Purif 2020; 176:105723. [PMID: 32768455 DOI: 10.1016/j.pep.2020.105723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Silkworms are economically important insects that have the ability to produce large amounts of silk. They have mass breeding methods and silk glands, which are specialized tissues that secrete silk fibroin and sericin. Thus, the production of recombinant proteins in a transgenic silkworm system is a promising approach. We developed a silkworm, Bombyx mori, as a host expression insect for recombinant proteins and successfully produced different proteins including antibodies, glycoproteins, and membrane receptors. The thyroid hormone receptor (TR) is a regulatory factor for many physiological phenomena. It is a lipophilic protein that has DNA-binding and ligand-binding domains. Based on our previous experiences, it was inferred that the recombinant TR easily formed aggregates and precipitates which is potentially due to an unstructured hinge domain. We applied the silkworm expression system to produce mice TRβ1 that was fused with glutathione S-transferase. Using 160 larvae, the yield of the recombinant GST-TRβ was approximately 4 mg, and the purified GST-TRβ completely retained its physiological activity. Our results indicated that the recombinant TRβ was secreted extracellularly using the silk fibroin signal peptide sequence. Moreover, we found that the expression system of silkworms was applicable to nuclear proteins.
Collapse
Affiliation(s)
- Hirofumi Nakaya
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, Maebashi, Gunma, 371-8570, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
5
|
Xu J, Dong Q, Yu Y, Niu B, Ji D, Li M, Huang Y, Chen X, Tan A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci U S A 2018; 115:8757-8762. [PMID: 30082397 PMCID: PMC6126722 DOI: 10.1073/pnas.1806805115] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spider silk is one of the best natural fibers and has superior mechanical properties. However, the large-scale harvesting of spider silk by rearing spiders is not feasible, due to their territorial and cannibalistic behaviors. The silkworm, Bombyx mori, has been the most well known silk producer for thousands of years and has been considered an ideal bioreactor for producing exogenous proteins, including spider silk. Previous attempts using transposon-mediated transgenic silkworms to produce spider silk could not achieve efficient yields, due to variable promoter activities and endogenous silk fibroin protein expression. Here, we report a massive spider silk production system in B. mori by using transcription activator-like effector nuclease-mediated homology-directed repair to replace the silkworm fibroin heavy chain gene (FibH) with the major ampullate spidroin-1 gene (MaSp1) in the spider Nephila clavipes We successfully replaced the ∼16-kb endogenous FibH gene with a 1.6-kb MaSp1 gene fused with a 1.1-kb partial FibH sequence and achieved up to 35.2% chimeric MaSp1 protein amounts in transformed cocoon shells. The presence of the MaSp1 peptide significantly changed the mechanical characteristics of the silk fiber, especially the extensibility. Our study provides a native promoter-driven, highly efficient system for expressing the heterologous spider silk gene instead of the transposon-based, random insertion of the spider gene into the silkworm genome. Targeted MaSp1 integration into silkworm silk glands provides a paradigm for the large-scale production of spider silk protein with genetically modified silkworms, and this approach will shed light on developing new biomaterials.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Qinglin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, Jiangsu, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
6
|
ZHANG WENYUAN, YANG YADONG, ZHANG KEJI, LI YING, FANG GUOJIAN. IN VITRO AND IN VIVO DEGRADATION OF A TWISTED SILK FIBROIN–POLY(LACTIC-CO-GLYCOLIC ACID) FIBER COMPOSITE ROPE-LIKE SCAFFOLD AND CHANGES IN ITS MECHANICAL PROPERTIES. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural silk fibroin fiber is slowly degraded, which makes it difficult to be replaced quickly by regenerating tissues of tissue engineering. We used poly(lactic-co-glycolic acid) (PLGA, lactic acid:glycolic acid [Formula: see text] 10:90) fibers to adjust the overall degradation rate of the scaffolds. This study fabricated a three-strand helical composite rope-like scaffold from silk fibroin and PLGA fibers (silk fibroin:PLGA [Formula: see text] 36:64) using a twisting method. In vitro and in vivo degradation experiments were performed over 16 weeks. Results suggest that the in vitro and in vivo degradation tendencies of the scaffold were similar, with mass loss lagging behind mechanical property loss. The speed of degradation in vivo was faster than that in vitro. Mechanical property loss of the scaffold was fast during the first three weeks, when mass loss was slow. Mass loss rate accelerated from weeks 3 to 8. The mass and mechanical properties were relatively stable from 8 to 16 weeks. After 16 weeks of degradation, the scaffold still had considerably strong mechanical properties. The scaffold showed a reasonable and suitable degradation speed with good histocompatibility for ligament tissue engineering.
Collapse
Affiliation(s)
- WENYUAN ZHANG
- Institute of Bioengineering, Zhejiang Academy of Medical Sciences, 182 Tian Mu Shan Road, Hangzhou 310013, Zhejiang Province, China
| | - YADONG YANG
- Institute of Bioengineering, Zhejiang Academy of Medical Sciences, 182 Tian Mu Shan Road, Hangzhou 310013, Zhejiang Province, China
| | - KEJI ZHANG
- Institute of Bioengineering, Zhejiang Academy of Medical Sciences, 182 Tian Mu Shan Road, Hangzhou 310013, Zhejiang Province, China
| | - YING LI
- Institute of Bioengineering, Zhejiang Academy of Medical Sciences, 182 Tian Mu Shan Road, Hangzhou 310013, Zhejiang Province, China
| | - GUOJIAN FANG
- Institute of Bioengineering, Zhejiang Academy of Medical Sciences, 182 Tian Mu Shan Road, Hangzhou 310013, Zhejiang Province, China
| |
Collapse
|
7
|
Long D, Lu W, Zhang Y, Guo Q, Xiang Z, Zhao A. New insight into the mechanism underlying fibroin secretion in silkworm, Bombyx mori. FEBS J 2014; 282:89-101. [PMID: 25302556 DOI: 10.1111/febs.13105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
In order to investigate the role of different parts of the fibroin heavy chain (H-chain) in the secretion of fibroin in the silk gland of the silkworm (Bombyx mori) in vivo, two enhanced green fluorescent protein (EGFP)/H-chain fusion genes with deduced protein sequences containing an identical N-terminal region and different C-terminal regions of the H-chain were introduced into the B. mori genome using a piggyBac-mediated germline transformation. EGFP fluorescence and molecular analysis showed the products of two different EGFP/H-chain fusion proteins were secreted into the posterior silk gland lumen and aggregated in the middle silk gland and spun into cocoons. The results revealed that only the non-repetitive N terminus of the H-chain is essential for secretion of the H-chain into the posterior silk gland lumen. In addition, our results also indicated that the most likely post-translational modification of the H-chain is at the C-terminal domain. Here, our results not only provide a theoretical basis for the genetic modification of silk fiber as a functional biomaterial but also are of great significance to establishing a new silk gland bioreactor to mass-produce exogenous proteins in an active form.
Collapse
Affiliation(s)
- Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of the Agricultural Ministry, Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
8
|
A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 2007; 71:2943-51. [PMID: 18071257 DOI: 10.1271/bbb.70353] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We constructed a new plasmid vector for the production of a modified silk fibroin heavy chain protein (H-chain) in the transgenic silkworm. The plasmid (pHC-null) contained the promoter and the 3' region of a gene encoding the H-chain and the coding regions for the N-terminal domain and the C-terminal domain of the H-chain. For the model protein, we cloned a foreign gene that encoded EGFP between the N-terminal domain and the C-terminal domain in pHC-null and generated transgenic silkworms that produced a modified H-chain, HC-EGFP. Transgenic silkworms produced HC-EGFP in the posterior part of silk gland cells, secreted it into the lumen of the gland, and produced a cocoon with HC-EGFP as part of the fibroin proteins. N-terminal sequencing of HC-EGFP localized the signal sequence cleavage site to between positions A((21)) and N((22)). These results indicate that our new plasmid successfully produced the modified H-chain in a transgenic silkworm.
Collapse
|
9
|
Zhang Y, Tian B, Xia H, Guo T, Wang J, Wang S, Wei Z, Lu C. Spread of recombinant Autographa californica nucleopolyhedrovirus in various tissues of silkworm Bombyx mori determined by real-time PCR. Anal Biochem 2007; 373:147-53. [PMID: 17920555 DOI: 10.1016/j.ab.2007.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/02/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
A cassette harboring luciferase reporter driven by Bombyx mori A3 promoter was transferred to the bacmid AcDeltaEGT to generate the recombinant virus AcNPVA3Luc (where Ac represents Autographa californica, NPV represents nucleopolyhedrovirus, and A3Luc represents the firefly luciferase reporter cassette driven by the A3 promoter). Recombinant baculovirus was injected into the hemocoele of newly ecdysed fifth instar larvae of the silkworm. The infection of virus in various silkworm tissues was determined by real-time PCR. The profile of viral infection showed that the copy number of recombinant AcNPV (rAcNPV) increased the fastest in the hemocyte, followed by the fat body, Malpighian tubule, middle gut, and silk gland. Detecting in nonpermissive strain silkworm showed that there was no significant difference in the entry of rAcNPV into all tested tissues. The difference in viral infection reflected mainly the big difference in replication of rAcNPV in various tissues of silkworm larvae. Real-time quantitative RT-PCR showed that it was due to the different expression of genes involved in viral DNA replication.
Collapse
Affiliation(s)
- Yi Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kurihara H, Sezutsu H, Tamura T, Yamada K. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 2007; 355:976-80. [PMID: 17335775 DOI: 10.1016/j.bbrc.2007.02.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 02/13/2007] [Indexed: 11/25/2022]
Abstract
We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although the native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.
Collapse
Affiliation(s)
- H Kurihara
- Toray Industries, Inc., New Frontiers Research Laboratories, 1111 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | | | | | | |
Collapse
|
11
|
Wang SP, Guo TQ, Guo XY, Huang JT, Lu CD. Structural analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori. Acta Biochim Biophys Sin (Shanghai) 2006; 38:507-13. [PMID: 16820867 DOI: 10.1111/j.1745-7270.2006.00189.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To study the minimal length required for the secretion of recombinant proteins and silk proteins in posterior silk gland, the signal peptide (SP) of the fibroin heavy chain (FibH) of silkworm Bombyx mori was systematically shortened from the C-terminal. Its effect on the secretion of protein was observed using enhanced green fluorescent protein (EGFP) as a reporter. Secretion of EGFP fusion proteins was examined under fluorescence microscope. FibH SPs with lengths of 20, 18, 16 and 12 a.a. can direct the secretion of the reporter, yet those with lengths of 11, 10, 9, 8 and 1 a.a. can not. When the FibH SP was shortened to 12 a.a., the secretion efficiency was decreased slightly and cleavage occurred within EGFP. When 16 a.a. of the FibH SP were used, the secretion of fusion protein was normal and the cleavage site was between the Gly-Ser linker and Met, the starting amino acid of EGFP. These findings are applicable for the expression of foreign proteins in silkworm silk gland. The cleavage site of the SP is discussed and compared with the predictive results of the SignalP 3.0 online prediction program.
Collapse
Affiliation(s)
- Sheng-Peng Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|