1
|
Lemke KA, Sarkar CA, Azarin SM. Rapid retinoic acid-induced trophoblast cell model from human induced pluripotent stem cells. Sci Rep 2024; 14:18204. [PMID: 39107470 PMCID: PMC11303561 DOI: 10.1038/s41598-024-68952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
A limited number of accessible and representative models of human trophoblast cells currently exist for the study of placentation. Current stem cell models involve either a transition through a naïve stem cell state or precise dynamic control of multiple growth factors and small-molecule cues. Here, we demonstrated that a simple five-day treatment of human induced pluripotent stem cells with two small molecules, retinoic acid (RA) and Wnt agonist CHIR 99021 (CHIR), resulted in rapid, synergistic upregulation of CDX2. Transcriptomic analysis of RA + CHIR-treated cells showed high similarity to primary trophectoderm cells. Multipotency was verified via further differentiation towards cells with syncytiotrophoblast or extravillous trophoblast features. RA + CHIR-treated cells were also assessed for the established criteria defining a trophoblast cell model, and they possess all the features necessary to be considered valid. Collectively, our data demonstrate a facile, scalable method for generating functional trophoblast-like cells in vitro to better understand the placenta.
Collapse
Affiliation(s)
- Kristen A Lemke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Choi JS, Lee SH, Park HB, Chun C, Kim Y, Kim KH, Weon BM, Kim DH, Kim HJ, Lee JH. The deformation of cancer cells through narrow micropores holds the potential to regulate genes that impact cancer malignancy. LAB ON A CHIP 2023; 23:3628-3638. [PMID: 37448298 DOI: 10.1039/d3lc00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Surgery, radiation, hormonal therapy, chemotherapy, and immunotherapy are standard treatment strategies for metastatic breast cancer. However, the heterogeneous nature of the disease poses challenges and continues to make it life-threatening. It is crucial to elucidate further the underlying signaling pathways to improve treatment efficacy. Our study established two triple-negative breast cancer cell lines (TW-1 and TW-2) that were physically deformed using 3 μm pores to investigate the relationship between cancer cell deformation and metastasis within a heterogeneous population. The physical transformation of TW-1 and TW-2 cells significantly affected their growth and migration speed, as evidenced by wound healing assays for collective cell migration and microchannel assays for single-cell migration. We conducted bulk RNA sequencing to gain insights into the genes influenced by physical deformation. Additionally, we evaluated the effects of trametinib resistance on breast cancer cell metastasis by assessing cell viability and migration rates. Interestingly, TW-1 and TW-2 cells exhibited resistance to trametinib treatment. We observed a significant upregulation of GABRA-3, a protein commonly expressed in malignant breast cancer, and the critical transcription factor Myc in TW-1 and TW-2 cells compared to the control group (Ori). However, we did not observe a significant difference in Myc expression between TW-1 and TW-2 cells. In contrast, in the trametinib-resistant cell lines (TW-1-Tra and TW-2-Tra), we found increased expression of OCT4 and SOX2 rather than GABRA-3 or Myc. These findings highlight the differential expression patterns of these genes in our study, suggesting their potential role in cancer cell deformation and drug resistance. Our study presents a potential in vitro model for metastatic and drug-resistant breast cancer cells. By investigating the correlation between cancer cell deformation and metastasis, we contribute to understanding breast cancer heterogeneity and lay the groundwork for developing improved treatment strategies.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea
| | - Su Han Lee
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Hye Bin Park
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Changho Chun
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Yeseul Kim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Kyung Hoon Kim
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Hyung Jin Kim
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
3
|
Expression of Pregnancy Specific β-1 Glycoprotein 1 in Cervical Cancer Cells. Arch Med Res 2020; 51:504-514. [PMID: 32546445 DOI: 10.1016/j.arcmed.2020.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cervical Cancer (CC) is a worldwide public health concern associated with genetic alterations, among these the gain of the 19q chromosome harboring the Pregnancy Specific Glycoproteins (PSG) gene family. These proteins play a critical role in pregnancy, with participation in immunotolerance, angiogenesis, and invasion processes, which are also observed in carcinogenesis. The aim of this study was to determine the molecular alterations of PSG1 and its relationship with CC. METHODS PSG1 Copy Number Variation (CNV) was evaluated in 31 CC and eight normal cervical tissues by qPCR. PSG1 expression was correlated with HPV detection and IL-10 and TGF-β expression in CC samples. Finally, PSG1 protein expression was evaluated by immunofluorescence in CC cell lines, by immunohistochemistry in a tissue microarray, and by immunoblotting in the sera of women with normal cervix, pre-invasive lesions, and CC. RESULTS PSG1 showed a gain of 25.6% in CNV and gene expression in CC. There was a lack of PSG1 expression in normal cervical epithelium and positive immunostaining in 57% of CC tissues, while all CC cell lines expressed PSG1. Finally, PSG1 was immunodetected in 90% of pre-invasive lesions and in all CC serum samples, but not in healthy women. PSG1 expression correlates with the expression of IL-10 and TGF-β in CC tissues, but not with the presence of HPV. CONCLUSION These data show evidence of the differential expression of PSG1 in CC that could explain its participation in tumor-biology and immunotolerance mechanisms. Further, its immunodetection could provide early detection of this cancer.
Collapse
|
4
|
Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc Natl Acad Sci U S A 2020; 117:9431-9439. [PMID: 32284407 PMCID: PMC7196912 DOI: 10.1073/pnas.1916251117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Among vertebrates, pregnancy has evolved more than 150 times independently. A fundamental problem for pregnancy to evolve is inadvertent rejection of the embryo when being recognized as foreign tissue by the vertebrate’s adaptive immune system. We show that the unique evolution of male pregnancy in pipefishes and seahorses coincided with a genomic modification of one arm of the adaptive immune system. Our findings indicate a trade-off between immunological tolerance and embryo rejection to accompanying the emergence of male pregnancy. That syngnathids survive in an ocean of microbes despite their drastically modified immune defense suggests an unexpected immunological flexibility. Our results may improve the understanding of immune-deficiency diseases and call for a reassessment of vertebrate immunity. A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.
Collapse
|
5
|
Pandian J, Panneerpandian P, Devanandan HJ, Sekar BT, Balakrishnan K, Selvarasu K, Muthupandi K, Ganesan K. Identification of the targeted therapeutic potential of doxycycline for a subset of gastric cancer patients. Ann N Y Acad Sci 2020; 1467:94-111. [PMID: 31944316 DOI: 10.1111/nyas.14288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022]
Abstract
The identification of new drugs for the targeted therapy of gastric cancer remains an important need. The RAS/RAF/MEK/ERK/ELK1 signaling cascade is activated in many cancers, including gastric cancer. To identify the targetable inhibitors of the ERK/MAPK pathway, we performed a repurposing screening of a panel of antimicrobial agents in gastric cancer cells using an ERK/MAPK-driven firefly luciferase reporter assay. Multiple antibiotics were identified to inhibit ERK-mediated transcriptional activity. Among them, doxycycline showed high inhibition of ERK/MAPK-regulated transcriptional activity and the levels of ERK proteins. Doxycycline was further identified to inhibit the proliferation and the colony- and spheroid-forming potential of gastric cancer cells. By in vitro signaling pathway and genome-wide expression profiling analyses, doxycycline was identified to inhibit signaling pathways and transcriptional activities regulated by ER, Myc, E2F1, Wnt, SMAD2/3/4, Notch, and OCT4. Doxycycline was also found to activate p53-, ATF6-, NRF1/2-, and MTF1-mediated transcription and inhibit the transcription of histones, proteasomal genes, fibroblast growth factor, and other oncogenic factors. These observations show the multitargeting and targeted therapeutic features of doxycycline for a subset of gastric tumors.
Collapse
Affiliation(s)
- Jaishree Pandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Ponmathi Panneerpandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Helen Jemimah Devanandan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Balaji T Sekar
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Karthik Balakrishnan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Karthikeyan Selvarasu
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Karthikeyan Muthupandi
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
6
|
Williams JM, Ball M, Ward A, Moore T. Psg22 expression in mouse trophoblast giant cells is associated with gene inversion and co-expression of antisense long non-coding RNAs. Reproduction 2014; 149:125-37. [PMID: 25359516 DOI: 10.1530/rep-14-0390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pregnancy-specific glycoproteins (PSGs) are secreted carcinoembryonic antigen (CEA)-related cell adhesion molecules-related members of the immunoglobulin superfamily and are encoded by multigene families in species with haemochorial placentation. PSGs may be the most abundant trophoblast-derived proteins in human maternal blood in late pregnancy and there is evidence that dysregulation of PSG expression is associated with gestational pathology. PSGs are produced by syncytiotrophoblast in the human placenta and by trophoblast giant cells (TGCs) and spongiotrophoblast in rodents, and are implicated in immune regulation, angiogenesis and regulation of platelet function. PSGs are encoded by 17 genes in the mouse and ten genes in the human. While functions appear to be conserved, the typical protein domain organisation differs between species. We analysed the evolution of the mouse Psg genomic locus structure and report inversion of the Psg22 gene within the locus. Psg22 is the most abundant Psg transcript detected in the first half of mouse pregnancy and we identified antisense long non-coding RNA (lncRNA) transcripts adjacent to Psg22 associated with an active local chromatin conformation. This suggests that an epigenetic regulatory mechanism may underpin high Psg22 expression relative to the other Psg gene family members in TGCs.
Collapse
Affiliation(s)
- John M Williams
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Melanie Ball
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Andrew Ward
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Moore
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
7
|
Yoo JK, Choi SJ, Kim JK. Expression profiles of subtracted mRNAs during cellular senescence in human mesenchymal stem cells derived from bone marrow. Exp Gerontol 2013; 48:464-71. [PMID: 23466301 DOI: 10.1016/j.exger.2013.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 12/17/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest that limits the replicative lifespan of cells. Senescence suppresses development of tumors by regulating aging factors, such as cyclin dependent kinase inhibitor (CKI) and telomerase. Suppression subtractive hybridization (SSH) was used to identify genes that were differentially expressed between young human mesenchymal stem cells (Y-hMSCs) and senescent human mesenchymal stem cells (S-hMSCs). We selected positive clones that were functionally characterized by referring to public databases using NCBI BLAST tool. This search revealed that 19 genes were downregulated, and 43 genes were upregulated in S-hMSCs relative to Y-hMSCs. Among subtracted clones in Y-hMSCs, most of genes markedly were related to metabolic functions. These genes, PDIA3, WDR1, FSTL1, COPG1, LMAN1, and PDIA6, significantly downregulated. Conversely, genes for subtracted clones in S-hMSCs were mostly associated with cell adhesion. In particular, the expression levels of 9 genes, HSP90B1, EID1, ATP2B4, DDAH1, PRNP, RAB1A, PGS5, TM4SF1 and SSR3, gradually increased during senescence. These genes have not previously been identified as being related to cellular senescence, but they seemed to be potentially affected during cellular senescence.
Collapse
Affiliation(s)
- Jung Ki Yoo
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea
| | | | | |
Collapse
|
8
|
PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins. PLoS One 2013; 8:e55992. [PMID: 23418492 PMCID: PMC3572148 DOI: 10.1371/journal.pone.0055992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022] Open
Abstract
Background Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG) are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. Methodology/Principal Findings Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs) up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5′regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, −147/−140), was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA). This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT) function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. Conclusions/Significance Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.
Collapse
|
9
|
Prat C, Blanchon L, Borel V, Gallot D, Herbet A, Bouvier D, Marceau G, Sapin V. Ontogeny of Aquaporins in Human Fetal Membranes1. Biol Reprod 2012; 86:48. [DOI: 10.1095/biolreprod.111.095448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
10
|
Wong CW, Hou PS, Tseng SF, Chien CL, Wu KJ, Chen HF, Ho HN, Kyo S, Teng SC. Krüppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 2010; 28:1510-7. [PMID: 20629177 DOI: 10.1002/stem.477] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The zinc finger Krüppel-like transcription factor 4 (KLF4) has been implicated in cancer formation and stem cell regulation. However, the function of KLF4 in tumorigenesis and stem cell regulation are poorly understood due to limited knowledge of its targets in these cells. In this study, we have revealed a surprising link between KLF4 and regulation of telomerase that offers important insight into how KLF4 contributes to cancer formation and stem cell regulation. KLF4 sufficiently activated expression of the human telomerase catalytic subunit, human telomerase reverse transcriptase (hTERT), in telomerase-low alternative lengthening of telomeres (ALT), and fibroblast cells, while downregulation of KLF4 reduced its expression in cancerous and stem cells, which normally exhibits high expression. Furthermore, KLF4-dependent induction of hTERT was mediated by a KLF4 binding site in the proximal promoter region of hTERT. In human embryonic stem cells, expression of hTERT replaced KLF4 function to maintain their self-renewal. Therefore, our findings demonstrate that hTERT is one of the major targets of KLF4 in cancer and stem cells to maintain long-term proliferation potential.
Collapse
Affiliation(s)
- Chui-Wei Wong
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Expression and transcriptional regulation of individual pregnancy-specific glycoprotein genes in differentiating trophoblast cells. Placenta 2010; 31:312-9. [PMID: 20116096 DOI: 10.1016/j.placenta.2010.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/31/2009] [Accepted: 01/05/2010] [Indexed: 11/23/2022]
Abstract
Human pregnancy-specific glycoproteins (PSGs), encoded by eleven highly conserved genes, are the major placental polypeptides. Low PSG levels in maternal circulation have been associated with complicated pregnancies. However, expression of each PSG gene and their regulation during cytotrophoblast cell differentiation remain poorly explored. Herein, we analyze the expression of five PSG genes and demonstrate that they are almost undetectable in undifferentiated trophoblast, but are all transcribed in differentiated cells. Among them, PSG1, PSG3 and PSG5 genes achieve high mRNA levels while PSG7 and PSG9 are poorly expressed. In addition, total PSG proteins and transcripts markedly increase during trophoblast differentiation, preceding morphological syncytialization and betahCG expression. The 5' regulatory region contributes to the transcriptional control of PSG gene induction in trophoblast cells undergoing differentiation. This responsive region in PSG3 maps within a 130 bp promoter sequence, which overlaps the transcription start site and requires a functional Retinoic Acid Responsive Element (RARE) and a GA-binding protein (GABP) consensus site for basal and differentiation-dependent promoter activity, respectively. Present findings provide novel data for understanding the control of PSG gene expression and demonstrate that their proteins and transcripts represent early markers of trophoblast differentiation.
Collapse
|
12
|
White LJ, Declercq W, Arfuso F, Charles AK, Dharmarajan AM. Function of caspase-14 in trophoblast differentiation. Reprod Biol Endocrinol 2009; 7:98. [PMID: 19747408 PMCID: PMC2753366 DOI: 10.1186/1477-7827-7-98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 09/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. METHODS Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. RESULTS Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. CONCLUSION Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease.
Collapse
Affiliation(s)
- Lloyd J White
- School of Anatomy and Human Biology, Faculty of Life and Physical Sciences, The University of Western Australia, 35 Stirling Hwy Crawley, Perth, Western Australia 6009, Australia
| | - Wim Declercq
- Department of Molecular Biology, Ghent University, Technologie Park 927, B-9052, Ghent, Belgium
| | - Frank Arfuso
- School of Anatomy and Human Biology, Faculty of Life and Physical Sciences, The University of Western Australia, 35 Stirling Hwy Crawley, Perth, Western Australia 6009, Australia
| | - Adrian K Charles
- King Edward Memorial Hospital for Women (KEMH), 374 Bagot Rd, Subiaco, Western Australia 6008, Australia
| | - Arun M Dharmarajan
- School of Anatomy and Human Biology, Faculty of Life and Physical Sciences, The University of Western Australia, 35 Stirling Hwy Crawley, Perth, Western Australia 6009, Australia
| |
Collapse
|
13
|
KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERα. Oncogene 2009; 28:2894-902. [DOI: 10.1038/onc.2009.151] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abstract
Ghrelin, an endogenous ligand of the GH (growth hormone) secretagogue receptor, influences many metabolic processes including GH secretion, food intake, energy balance, insulin secretion and adipogenesis. Although ghrelin exhibits a variety of biological functions, the mechanism by which ghrelin expression is regulated is unknown. Ghrelin is expressed in the gastrointestinal tract, predominantly in the stomach, as is KLF4 (Krüppel-like factor 4). Therefore we investigated whether ghrelin expression is associated with KLF4, and found that the tissue distribution of ghrelin corresponded with that of KLF4. Furthermore, treatment with butyrate, an inducer of KLF4 expression, stimulated ghrelin expression, and fasting, which induces ghrelin expression, also increased KLF4 expression, suggesting that ghrelin expression is associated with KLF4. Then, we investigated the effects of KLF4 on the human ghrelin-promoter activity and identified a KLF4-responsive region in the promoter. KLF4 expression specifically stimulated human ghrelin-promoter activity in a dose-dependent manner in human gastric-cancer AGS cells. However, this effect was not seen in response to a mutant KLF4 construct. Transfection studies using mutant constructs containing 5'-deletions in the human ghrelin promoter revealed that the KLF4-responsive element is located between -1228 and -1105. Electrophoretic mobility shift assays using oligonucleotides containing -1165/-1146 revealed the binding of KLF4 to the human ghrelin promoter. Finally, deletion of the -1165/-1146 region abrogated KLF4-induced transactivation of the ghrelin promoter. Collectively, these results indicate that KLF4 positively regulates human ghrelin expression via binding to a KLF-responsive region in the promoter.
Collapse
|
15
|
Endoh M, Kobayashi Y, Yamakami Y, Yonekura R, Fujii M, Ayusawa D. Coordinate expression of the human pregnancy-specific glycoprotein gene family during induced and replicative senescence. Biogerontology 2008; 10:213-21. [PMID: 18792801 DOI: 10.1007/s10522-008-9173-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Pregnancy-specific glycoproteins (PSGs) comprise a family of highly similar polypeptides encoded by 11 transcriptionally active genes that compactly cluster on band 19q13.2. All members of the PSG family were found to be markedly up-regulated by addition of 5-bromodeoxyuridine in HeLa cells. Similarly, all of the members were markedly up-regulated during replicative senescence in normal human fibroblasts. Promoter analysis of the PSG1, 4, and 11 genes in HeLa cells did not reveal a cis-regulatory element responsive to 5-bromodeoxyuridine in their 5'-flanking sequences. These results suggest that the PSG genes are regulated at a level of higher order chromatin structure besides by a signal of pregnancy.
Collapse
Affiliation(s)
- Morio Endoh
- International Graduate School of Arts and Sciences, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Evans PM, Liu C. Roles of Krüpel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai) 2008; 40:554-64. [PMID: 18604447 DOI: 10.1111/j.1745-7270.2008.00439.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Krüpel-like factor 4 (KLF4) is a zinc finger-type transcription factor expressed in a variety of tissues, including the epithelium of the intestine and the skin, and it plays an important role in differentiation and cell cycle arrest. Depending on the gene targeted, KLF4 can both activate and repress transcription. Moreover, in certain cellular contexts, KLF4 can function as a tumor suppressor or an oncogene. Finally, KLF4 is important in reprogramming differentiated fibroblasts into inducible pluripotent stem cells, which highly resemble embryonic stem cells. This review summarizes what is known about the diverse functions of KLF4 as well as their molecular mechanisms.
Collapse
Affiliation(s)
- Paul M Evans
- Department of Biochemistry and Molecular Biology, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1448, USA
| | | |
Collapse
|
17
|
Guo H, Lin Y, Zhang H, Liu J, Zhang N, Li Y, Kong D, Tang Q, Ma D. Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 2007; 8:110. [PMID: 18053161 PMCID: PMC2233638 DOI: 10.1186/1471-2199-8-110] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 12/03/2007] [Indexed: 12/16/2022] Open
Abstract
Background Tissue factor pathway inhibitor-2 (TFPI-2) is a matrix-associated Kunitz inhibitor that inhibits plasmin and trypsin-mediated activation of zymogen matrix metalloproteinases involved in tumor progression, invasion and metastasis. Here, we have investigated the mechanism of DNA methylation on the repression of TFPI-2 in breast cancer cell lines. Results We found that both protein and mRNA of TFPI-2 could not be detected in highly invasive breast cancer cell line MDA-MB-435. To further investigate the mechanism of TFPI-2 repression in breast cancer cells, 1.5 Kb TFPI-2 promoter was cloned, and several genetic variations were detected, but the promoter luciferase activities were not affected by the point mutation in the promoter region and the phenomena was further supported by deleted mutation. Scan mutation and informatics analysis identified a potential KLF6 binding site in TFPI-2 promoter. It was revealed, by bisulfite modified sequence, that the CpG island in TFPI-2 promoter region was hypermethylated in MDA-MB-435. Finally, using EMSA and ChIP assay, we demonstrated that the CpG methylation in the binding site of KLF-6 diminished the binding of KLF6 to TFPI-2 promoter. Conclusion In this study, we found that the CpG islands in TFPI-2 promoter was hypermethylated in highly invasive breast cancer cell line, and DNA methylation in the entire promoter region caused TFPI-2 repression by inducing inactive chromatin structure and decreasing KLF6 binding to its DNA binding sequence.
Collapse
Affiliation(s)
- Hongshen Guo
- Key Laboratory of Molecular Medicine, Ministry of Education, Yixueyuan Road 138#, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
López-Díaz F, Nores R, Panzetta-Dutari G, Slavin D, Prieto C, Koritschoner NP, Bocco JL. RXRalpha regulates the pregnancy-specific glycoprotein 5 gene transcription through a functional retinoic acid responsive element. Placenta 2007; 28:898-906. [PMID: 17475324 DOI: 10.1016/j.placenta.2007.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 11/15/2022]
Abstract
Human pregnancy-specific glycoproteins (PSG) are major placental polypeptides encoded by eleven highly conserved genes expressed by the syncytiotrophoblast. The minimal promoter region of all PSG genes contains a putative Retinoic Acid Responsive Element (RARE) though the ability of retinoids to regulate PSG gene expression has not been established. Retinoid signaling pathway plays a key role for overall placenta biology and is essential for trophoblast differentiation. In this work, we investigated the participation of the RARE motif in the regulation of PSG5 gene transcription by retinoic acid and its receptors. The minimal promoter region of PSG5 gene was activated by RXRalpha but not by RARalpha, in a ligand-dependent manner. The RARE sequence of PSG5 gene promoter was recognized by endogenous RXRalpha present in placental nuclear extracts as well as by RXRalpha either over expressed in cultured non-placental cells or in vitro translated. Mutations at specific nucleotides within the RARE motif abrogated both RXRalpha DNA binding and transcriptional activation of PSG5 promoter mediated by RXRalpha. Moreover, endogenous PSG expression was significantly induced in trophoblast-derived Jeg-3 cells upon 9-cis retinoic acid treatment. Interestingly, the induction level was higher following methotrexate-induced differentiation of Jeg-3 cells to syncytiotrophoblast-like structures. Altogether, these data provide the first evidences demonstrating that transcriptional activity of PSG5 gene is responsive to an external signal involving the retinoids-RXRalpha axis through a conserved RARE motif shared by all PSG gene family members.
Collapse
Affiliation(s)
- F López-Díaz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología-CONICET, Ciudad Universitaria, Haya de la Torre y M. Allende s/n, 5000 Cordoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
19
|
White L, Dharmarajan A, Charles A. Caspase-14: a new player in cytotrophoblast differentiation. Reprod Biomed Online 2007; 14:300-7. [PMID: 17359582 DOI: 10.1016/s1472-6483(10)60871-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The human placenta is responsible for the exchange of nutrients, gas and wastes through the trophoblast maternal-fetal barrier, which is formed by the fusion of villous cytotrophoblasts to form the continuous multinucleated syncytiotrophoblast separating the maternal and fetal circulations. Caspase-14 is a seemingly non-apoptotic caspase involved in keratinocyte differentiation and cornification. It is proposed that caspase-14 has a conserved role in cellular differentiation and a role in differentiation and fusion in the trophoblast. The human choriocarcinoma BeWo cell line was treated with staurosporine and forskolin to induce apoptosis and differentiation respectively. Staurosporine initiated apoptosis within 3 h of treatment, while apoptosis was completed following 6 h treatment. Caspase-14 gene and protein expression was unchanged throughout this process. During BeWo differentiation, caspase-14 mRNA was elevated after 48 h forskolin treatment, while its protein was increased after 24 h. Therefore, caspase-14 is up-regulated during trophoblast differentiation, as represented by the BeWo cell line. Moreover, caspase-14 may interact with other signalling molecules to facilitate differentiation. This new data confirms the potential for the BeWo cell line in the functional dissection of this unusual caspase and its prospective role in trophoblast differentiation.
Collapse
Affiliation(s)
- L White
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
20
|
Niimi T, Hayashi Y, Sekiguchi K, Kitagawa Y. The Sp family of transcription factors regulates the human laminin alpha1 gene in JAR choriocarcinoma cells. ACTA ACUST UNITED AC 2006; 1759:573-9. [PMID: 17141338 DOI: 10.1016/j.bbaexp.2006.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/05/2006] [Accepted: 10/23/2006] [Indexed: 11/23/2022]
Abstract
Laminin-111 (alpha1beta1gamma1) is the major component of the embryonic and extra-embryonic basement membrane. The laminin alpha1 chain shows a restricted and developmentally regulated expression in basement membranes of distinct epithelial tissues while beta1 and gamma1 chains have a wide tissue distribution. To understand how human laminin alpha1 chain expression is controlled, we cloned and characterized the 5'-flanking region of the human laminin alpha1 (LAMA1) gene. Transfection studies using serially deleted promoter constructs and JAR choriocarcinoma cells revealed that the minimal promoter fragment resided in the +31 to -206 region, which contains a number of GC- and GT/A-rich motifs for the binding of the Sp family of transcription factors. Electrophoretic mobility shift assays and mutational analyses revealed that Sp1 and Sp3 bound specifically to these elements and are important for the promoter activity. Furthermore, we showed that Krüppel-like factors KLF4 and KLF6 also activate transcription of the human LAMA1 gene. Chromatin immunoprecipitation analysis demonstrated recruitment of these transcription factors to the promoter region. These results indicate that transcription of the human LAMA1 gene is controlled by a combination of the actions of Sp1/Sp3 and Krüppel-like factors, KLF4 and KLF6.
Collapse
Affiliation(s)
- Tomoaki Niimi
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|