1
|
Ishihara M, Kishimoto S, Nakamura S, Fukuda K, Sato Y, Hattori H. Biomaterials as cell carriers for augmentation of adipose tissue-derived stromal cell transplantation. Biomed Mater Eng 2019; 29:567-585. [PMID: 30400072 DOI: 10.3233/bme-181009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adipose tissue-derived stromal cells (ADSCs) contain lineage-committed progenitor cells that have the ability to differentiate into various cell types that may be useful for autologous cell transplantation to correct defects of skin, adipose, cartilage, bone, tendon, and blood vessels. The multipotent characteristics of ADSCs, as well as their abundance in the human body, make them an attractive potential resource for wound repair and applications to tissue engineering. ADSC transplantation has been used in combination with biomaterials, including cell sheets, hydrogel, and three-dimensional (3D) scaffolds based on chitosan, fibrin, atelocollagen, and decellularized porcine dermis, etc. Furthermore, low molecular weight heparin/protamine nanoparticles (LH/P NPs) have been used as an inducer of ADSC aggregation. The tissue engineering potential of these biomaterials as cell carriers is increased by the synergistic relationship between ADSCs and the biomaterials, resulting in the release of angiogenic cytokines and growth factors. In this review article, we describe the advantages of ADSC transplantation for tissue engineering, focusing on biomaterials as cell carriers which we have studied.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan
| |
Collapse
|
2
|
Ryu YH, Lee YJ, Kim KJ, Lee SJ, Han YN, Rhie JW. Epidermal Growth Factor (EGF)-Like Repeats and Discoidin I-Like Domains 3 (EDIL3): A Potential New Therapeutic Tool for the Treatment of Keloid Scars. Tissue Eng Regen Med 2017; 14:267-277. [PMID: 30603483 PMCID: PMC6171597 DOI: 10.1007/s13770-017-0034-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
In keloids, the mechanism underlying the excessive accumulation of extracellular matrix after injury of the skin is unclear, and there is no effective treatment because of the incomplete understanding of their pathogenesis; thus, a high recurrence rate is observed. We studied a new marker of keloids to determine a new treatment strategy. First, the keloid gene expression profile (GSE44270) was analyzed (downloaded from the Gene Expression Omnibus database) and the new keloid marker candidate, epidermal growth factor (EGF)-like repeats and discoidin I-like domains 3 (EDIL3) which were upregulated in keloid samples was identified. Knockdown of EDIL3 is known to suppresses angiogenesis by downregulating relevant inhibitory factors that can limit the supply of survival factors to tumor cells from the circulation via the vascular endothelial cells. In keloids, the mechanism of action of EDIL3 may be similar to that in tumors; the inhibition of apoptosis in tumor cells via a reduction in the apoptosis of blood vessels by upregulating an angiogenic factor. To determine whether EDIL3 is involved in keloid formation, we performed knockdown of EDIL3 in keloid fibroblasts in vitro by transfection with anti-EDIL3 small interfering RNA (via microporation). EDIL3 was upregulated in keloid fibroblasts compared with normal fibroblasts in collagen type I, II and III. Our results indicate the control of EDIL3 expression may be a new promising treatment of keloid disease also the molecular targeting of EDIL3 may improve the quality of treatment and reduce the formation of keloids.
Collapse
Affiliation(s)
- Yeon Hee Ryu
- Department of Molecular Biomedicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
| | - Yoon Jae Lee
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
| | - Ki-Joo Kim
- Department of Molecular Biomedicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
| | - Su Jin Lee
- Department of Molecular Biomedicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
| | - Yu-Na Han
- Department of Molecular Biomedicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
| | - Jong-Won Rhie
- Department of Molecular Biomedicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Korea
| |
Collapse
|
3
|
Extracellular matrix and α 5β 1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep 2017; 7:44398. [PMID: 28290502 PMCID: PMC5349595 DOI: 10.1038/srep44398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potential in vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptor α5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion.
Collapse
|
4
|
Hattori H, Ishihara M. Altered protein secretions during interactions between adipose tissue- or bone marrow-derived stromal cells and inflammatory cells. Stem Cell Res Ther 2015; 6:70. [PMID: 25884474 PMCID: PMC4417284 DOI: 10.1186/s13287-015-0052-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 01/04/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Paracrine effects can be exploited in cell-based therapies that secrete factors, such as chemokines and cytokines, and can recruit inflammatory cells to transplants. In this study, mouse adipose tissue-derived stromal cells (ASCs) and bone marrow-derived stromal cells (ST2 cells) were used to examine changes in paracrine interactions with inflammation cells. Methods Green fluorescent protein positive (GFP+) bone marrow cells (BMCs) were injected into an irradiated mouse via the femoral vein, and ASCs and ST2 cells were transplanted intradermally. Subsequently, an in vivo imaging system was used to observe behaviors of GFP+ BMCs. To detect bone marrow-derived inflammatory cells which migrated to the ASC and ST2 cell transplantation area, the sections were immunostained using antibodies against Gr1, CD11c, and F4/80, and secretory proteins were detected in culture medium using enzyme-linked immunosorbent assay. Results Many bone marrow-derived inflammatory cells migrated to ASC and ST2 cell transplantation sites. Among these, neutrophils were detected during the early period and macrophages were predominantly detected at a later point in time. Many chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) were secreted in abundance from ASCs, and the secretion increased by co-culturing with inflammatory cells, except for secretions of insulin-like growth factor-1, MMP-9 and MMP-13. Although secretions from ST2 cells were less than those from ASCs, co-culture with inflammatory cells increased these secretions to levels similar to those of ASCs. However, unlike ASCs, the ST2 cells did not secrete angiostatin, MMP-2, or MMP-3. Finally, ASCs secreted not only proinflammatory cytokines, angiogenic factors and MMPs but also anti-inflammatory cytokines, anti-angiogenesis factors, and TIMPs. Conclusions The effects of cell-based therapies using ASCs and ST2 cells are depended on paracrine effects that are mediated by chemokines, cytokines, growth factors, MMPs, and TIMPs, which comprise responses to interactions between transplanted cells and inflammatory cells. Moreover, paracrine effects of transplanted cells are influenced by inflammatory cells, and are moderated by a balance of secreted inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0052-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidemi Hattori
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
5
|
Jing Z, Qiong Z, Yonggang W, Yanping L. Rat bone marrow mesenchymal stem cells improve regeneration of thin endometrium in rat. Fertil Steril 2013; 101:587-94. [PMID: 24355044 DOI: 10.1016/j.fertnstert.2013.10.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate whether bone marrow mesenchymal stem cell (BMSC) treatment could improve the regeneration of endometrium and improve the endometrial receptivity in an experimental model of thin endometrium. DESIGN Randomized, control trial, animal research. SETTING National key laboratory. ANIMAL(S) Sprague-Dawley rats. INTERVENTION(S) Bone marrow mesenchymal stem cell transplantation by tail vein IV injection. MAIN OUTCOME MEASURE(S) Endometrial thickness, the expression of mark proteins for endometrial cell, and endometrial receptivity. RESULT(S) The endometrium was significantly thicker and the expression of cytokeratin, vimentin, integrin αγβ3, and leukemia inhibitor factor were significantly stronger compared with the control group. Some proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) messenger RNA (mRNA) and interleukin-1β mRNA, were significantly down-regulated, and anti-inflammatory cytokines, such as fibroblast growth factor-β (bFGF) mRNA and interleukin-6 mRNA, were significantly up-regulated in the experimental group compared with the control group. CONCLUSION(S) The BMSCs have beneficial effect on thin endometrium, and may play a role through migration and immunomodulatory of BMSCs.
Collapse
Affiliation(s)
- Zhao Jing
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhang Qiong
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wang Yonggang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Li Yanping
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Benazzo F, Botta L, Scaffino MF, Caliogna L, Marullo M, Fusi S, Gastaldi G. Trabecular titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors. J Biomed Mater Res A 2013; 102:2061-71. [PMID: 23894030 DOI: 10.1002/jbm.a.34875] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 01/25/2023]
Abstract
Trabecular Titanium (TT) is an innovative highly porous structure that imitates the morphology of trabecular bone with good mechanical properties. Adipose-derived stem cells are a multipotent cell population that can be used in regenerative medicine, in particular, for bone therapeutic applications. The ability of TT to induce the osteogenic differentiation of human adipose derived stem cells (hASCs) in the absence of osteogenic factors was evaluated using molecular biological, biochemical, and immunohistochemical methods. At 7 and 21 days from differentiation, the hASCs grown on TT scaffolds showed similar expressions of alkaline phosphatase (ALP) and Runx-2 both in the presence and in the absence of osteogenic factors, as well as at transcript and protein levels. hASCs cultured on monolayer in the presence of the medium obtained from the wells where hASCs/scaffold constructs were cultured in the absence of osteogenic factors differentiated towards the osteogenic phenotype: their gene and protein expression of ALP and Runx-2 was similar to that of the same cells cultured in the presence of osteogenic factors, and significantly higher than that of the ones cultured in growth medium.
Collapse
Affiliation(s)
- Francesco Benazzo
- Department of Orthopedics and Traumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Yamamoto Y, Fujita M, Tanaka Y, Kojima I, Kanatani Y, Ishihara M, Tachibana S. Low oxygen tension enhances proliferation and maintains stemness of adipose tissue-derived stromal cells. Biores Open Access 2013; 2:199-205. [PMID: 23741631 PMCID: PMC3666216 DOI: 10.1089/biores.2013.0004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent evidence indicates that low oxygen tension or hypoxia alters the characteristics of stem cells. The actions of hypoxia are mediated through the hypoxia-inducible factor, a critical mediator of the cellular response to hypoxia. Adipose tissue–derived stromal cells (ASCs) are one of the most promising cell sources for tissue engineering applications. This study investigated the effect of hypoxia on ASCs in terms of the ability to proliferate and differentiate. ASCs were extracted from mice and maintained under hypoxic atmosphere (2% O2) for up to eight in vitro passages. The proliferation rate was examined as a growth curve, and the potency of differentiation was evaluated. To investigate the cell characteristics, we checked several stem-cell markers and growth factors. Compared with the normoxic state (20% O2), hypoxia enhances proliferation with an approximately six- to sevenfold higher ASC expansion over 6 weeks. The expression of Oct3/4 and Nanog (stem-cell marker) and the amount of secreted growth factors were increased under the hypoxic condition. These results suggest that low oxygen tension enhances proliferation and maintains stemness of ASCs. Thus, this study emphasizes the profitability of hypoxic culture for expansion of ASCs and maintenance of their undifferentiated state for further therapeutic use.
Collapse
Affiliation(s)
- Yoritsuna Yamamoto
- Division of Environmental Medicine, National Defense Medical College Research Institute , National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS One 2013; 8:e54500. [PMID: 23336004 PMCID: PMC3545961 DOI: 10.1371/journal.pone.0054500] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.
Collapse
|
9
|
Zachar V, Duroux M, Emmersen J, Rasmussen JG, Pennisi CP, Yang S, Fink T. Hypoxia and adipose-derived stem cell-based tissue regeneration and engineering. Expert Opin Biol Ther 2011; 11:775-86. [PMID: 21413910 DOI: 10.1517/14712598.2011.570258] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Realization that oxygen is one of the key regulators of development and differentiation has a profound significance on how current cell-based and tissue engineering applications using adipose-derived stem cells (ASCs) can be further improved. AREAS COVERED The article provides an overview of mechanisms of hypoxic responses during physiological adaptations and development. Furthermore, a synopsis of the hypoxic responses of ASCs is provided, and this information is presented in context of their utility as a major source of stem cells across the regenerative applications explored to date. EXPERT OPINION The reader will obtain insight into a highly specific area of stem cell research focusing on ASCs and hypoxia. In order to enhance the level of comprehension, a broader context with other stem cell and experimental systems is provided. It is emphasized that the pericellular oxygen tension is a critical regulatory factor that should be taken into account when devising novel stem cell-based therapeutic applications along with other parameters, such as biochemical soluble factors and the growth substrates.
Collapse
Affiliation(s)
- Vladimir Zachar
- Aalborg University, Laboratory for Stem Cell Research, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
10
|
Nojima J, Kanomata K, Takada Y, Fukuda T, Kokabu S, Ohte S, Takada T, Tsukui T, Yamamoto TS, Sasanuma H, Yoneyama K, Ueno N, Okazaki Y, Kamijo R, Yoda T, Katagiri T. Dual roles of smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins. J Biol Chem 2010; 285:15577-15586. [PMID: 20231279 DOI: 10.1074/jbc.m109.028019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) induce ectopic bone formation in muscle tissue in vivo and convert myoblasts such that they differentiate into osteoblastic cells in vitro. We report here that constitutively active Smad1 induced osteoblastic differentiation of C2C12 myoblasts in cooperation with Smad4 or Runx2. In floxed Smad4 mice-derived cells, Smad4 ablation partially suppressed BMP-4-induced osteoblast differentiation. In contrast, the BMP-4-induced inhibition of myogenesis was lost by Smad4 ablation and restored by Smad4 overexpression. A nuclear zinc finger protein, E4F1, was identified as a possible component of the Smad4 complex that suppresses myogenic differentiation in response to BMP signaling. In the presence of Smad4, E4F1 stimulated the expression of Ids. Taken together, these findings suggest that the Smad signaling pathway may play a dual role in the BMP-induced conversion of myoblasts to osteoblastic cells.
Collapse
Affiliation(s)
- Junya Nojima
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Moro Hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495
| | - Kazuhiro Kanomata
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Yumi Takada
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-5555
| | - Toru Fukuda
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Shoichiro Kokabu
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Moro Hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495
| | - Satoshi Ohte
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Takatora Takada
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-5555
| | - Tohru Tsukui
- Divisions of Experimental Animal Laboratory, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Sasanuma
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Katsumi Yoneyama
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Divisions of Functional Genomics and System Research, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-5555
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Moro Hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495
| | - Takenobu Katagiri
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241.
| |
Collapse
|
11
|
Hattori H, Nogami Y, Tanaka T, Amano Y, Fukuda K, Kishimoto S, Kanatani Y, Nakamura S, Takase B, Ishihara M. Expansion and characterization of adipose tissue-derived stromal cells cultured with low serum medium. J Biomed Mater Res B Appl Biomater 2008; 87:229-36. [PMID: 18496860 DOI: 10.1002/jbm.b.31101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adipose tissue contains a population of cells that have extensive self-renewal capacity and the ability to differentiate along multiple lineages. In addition, adipose tissue-derived stromal cells (ATSCs) are able to differentiate into various cell types that may be useful for autologous cell transplantation for defects of bone, cartilage, adipose, and tendon, etc. Most protocols for in vitro cultures of ATSCs include fetal bovine serum (FBS) as a nutritional supplement. However, in some cell cultures, it involves multiple doses of FBS, which raises a concern over possible infections as well as immunological reactions that are caused by medium-derived FBS proteins, sialic acid, etc. In this study, we were able to expand mouse ATSCs using low mouse serum media containing collagen type I, heparin-carrying polystyrene, and fibroblast growth factor (FGF)-2. These expanded mouse ATSCs maintained their multilineage potential for differentiation into adipocytes, osteoblasts, and chondrocytes. Therefore, this method, which uses autologous cells and low serum media, may be able to be utilized for clinical cell therapies.
Collapse
Affiliation(s)
- Hidemi Hattori
- Research Institute, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang YH, Ho ML, Chang JK, Chu HC, Lai SC, Wang GJ. Microporation is a valuable transfection method for gene expression in human adipose tissue-derived stem cells. Mol Ther 2008; 17:302-8. [PMID: 19066595 DOI: 10.1038/mt.2008.267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells are a promising resource for gene therapy. Adipose tissue-derived stem cells (ADSCs) offer advantages because of their abundance and ease of isolation. However, it is difficult to transduce genes into ADSCs by common transfection methods, especially nonviral methods. We report here the use of a new electroporation method, termed "microporation," to transduce plasmids into human ADSCs (hADSCs). We determined optimal conditions that led to efficient transfection of >76.1% of the microporated hADSCs with only minimal cell damage or cytotoxicity. We demonstrated the expression of both enhanced green fluorescent protein (EGFP) and luciferase from different promoters in microporated hADSCs. More important, the microporated hADSCs retained their multipotency and reporter gene expression was maintained for >2 weeks in vitro and in vivo. We further showed that a Tet-ON-inducible gene expression system could be microporated into hADSCs and that this system was functional following transplantation of the microporated cells into nude mice. Taken together, our data demonstrate that microporation allows a highly efficient transfection of hADSCs, without impairing their stem cell properties.
Collapse
Affiliation(s)
- Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Belaid-Choucair Z, Lepelletier Y, Poncin G, Thiry A, Humblet C, Maachi M, Beaulieu A, Schneider E, Briquet A, Mineur P, Lambert C, Mendes-Da-Cruz D, Ahui ML, Asnafi V, Dy M, Boniver J, Nusgens BV, Hermine O, Defresne MP. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells 2008; 26:1556-64. [PMID: 18388301 DOI: 10.1634/stemcells.2008-0068] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adipocytes are part of hematopoietic microenvironment, even though up to now in humans, their role in hematopoiesis is still questioned. We have previously shown that accumulation of fat cells in femoral bone marrow (BM) coincides with increased expression of neuropilin-1 (NP-1), while it is weakly expressed in hematopoietic iliac crest BM. Starting from this observation, we postulated that adipocytes might exert a negative effect on hematopoiesis mediated through NP-1. To test this hypothesis, we set up BM adipocytes differentiated into fibroblast-like fat cells (FLFC), which share the major characteristics of primitive unilocular fat cells, as an experimental model. As expected, FLFCs constitutively produced macrophage colony stimulating factor and induced CD34(+) differentiation into macrophages independently of cell-to-cell contact. By contrast, granulopoiesis was hampered by cell-to-cell contact but could be restored in transwell culture conditions, together with granulocyte colony stimulating factor production. Both functions were also recovered when FLFCs cultured in contact with CD34(+) cells were treated with an antibody neutralizing NP-1, which proved its critical implication in contact inhibition. An inflammatory cytokine such as interleukin-1 beta or dexamethasone modulates FLFC properties to restore granulopoiesis. Our data provide the first evidence that primary adipocytes exert regulatory functions during hematopoiesis that might be implicated in some pathological processes. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Zakia Belaid-Choucair
- Department of Cytology and Histology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Recherche, University of Liege, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 2007; 28:5477-86. [PMID: 17888508 DOI: 10.1016/j.biomaterials.2007.08.042] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/27/2007] [Indexed: 02/08/2023]
Abstract
Adipose derived stem cells (ASCs) with osteogenic differentiation potential have been documented as an alternative cell source for bone regeneration. However, most of previous in vivo studies were carried out on small animals along with relatively short-term follow-up. In this study, we investigated the feasibility of using ASCs and coral scaffolds to repair a cranial bone defect in a canine model, and followed up the outcome for up to 6 month. Autologous ASCs isolated from canine subcutaneous fat were expanded, osteogenically induced, and seeded on coral scaffolds. Bilateral full-thickness defects (20 mm x 20 mm) of parietal bone were created. The defects were either repaired with ASC-coral constructs (experimental group) or with coral alone (control group). Three-dimensional CT scan showed that new bones were formed in the experimental group at 12 weeks post-implantation, while coral scaffolds were partially degraded in the control group. By radiographic analysis at 24 weeks post-transplantation, it was shown that an average of 84.19+/-6.45% of each defect volume had been repaired in experimental side, while the control side had only 25.04+/-18.82% of its volume filled. Histological examination revealed that the defect was repaired by typical bone tissue in experimental side, while only minimal bone formation with fibrous connection was observed in the control group. The successful repair of critical-sized bone defects via the current approach substantiates the potentiality of using ASCs with coral scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Lei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25:818-27. [PMID: 17420225 DOI: 10.1634/stemcells.2006-0589] [Citation(s) in RCA: 766] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared with bone marrow-derived mesenchymal stem cells, adipose tissue-derived stromal cells (ADSC) do have an equal potential to differentiate into cells and tissues of mesodermal origin, such as adipocytes, cartilage, bone, and skeletal muscle. However, the easy and repeatable access to subcutaneous adipose tissue and the simple isolation procedures provide a clear advantage. Since extensive reviews focusing exclusively on ADSC are rare, it is the aim of this review to describe the preparation and isolation procedures for ADSC, to summarize the molecular characterization of ADSC, to describe the differentiation capacity of ADSC, and to discuss the mechanisms and future role of ADSC in cell therapy and tissue engineering. An initial effort has also been made to differentiate ADSC into hepatocytes, endocrine pancreatic cells, neurons, cardiomyocytes, hepatocytes, and endothelial/vascular cells. Whereas the lineage-specific differentiation into cells of mesodermal origin is well understood on a molecular basis, the molecular key events and transcription factors that initially allocate the ADSC to a lineage-specific differentiation are almost completely unknown. Decoding these molecular mechanisms is a prerequisite for developing novel cell therapies.
Collapse
Affiliation(s)
- Andreas Schäffler
- Department of Internal Medicine I, University of Regensburg, D-93042 Regensburg, Germany.
| | | |
Collapse
|
16
|
Tomoyasu A, Higashio K, Kanomata K, Goto M, Kodaira K, Serizawa H, Suda T, Nakamura A, Nojima J, Fukuda T, Katagiri T. Platelet-rich plasma stimulates osteoblastic differentiation in the presence of BMPs. Biochem Biophys Res Commun 2007; 361:62-7. [PMID: 17632078 DOI: 10.1016/j.bbrc.2007.06.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/08/2023]
Abstract
Platelet-rich plasma (PRP) is clinically used as an autologous blood product to stimulate bone formation in vivo. In the present study, we examined the effects of PRP on proliferation and osteoblast differentiation in vitro in the presence of bone morphogenetic proteins (BMPs). PRP and its soluble fraction stimulated osteoblastic differentiation of myoblasts and osteoblastic cells in the presence of BMP-2, BMP-4, BMP-6 or BMP-7. The soluble PRP fraction stimulated osteoblastic differentiation in 3D cultures using scaffolds made of collagen or hydroxyapatite. Moreover, heparin-binding fractions obtained from serum also stimulated osteoblastic differentiation in the presence of BMP-4. These results suggested that platelets contain not only growth factors for proliferation but also novel potentiator(s) for BMP-dependent osteoblastic differentiation.
Collapse
Affiliation(s)
- Akihiro Tomoyasu
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|