1
|
Yang Y, Wang TT, Xie HA, Hu PP, Li P. Experimental cell models of insulin resistance: overview and appraisal. Front Endocrinol (Lausanne) 2024; 15:1469565. [PMID: 39749015 PMCID: PMC11693592 DOI: 10.3389/fendo.2024.1469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases. Cell-based models are extensively employed for the study of pathological mechanisms and drug screening, particularly in relation to insulin resistance in T2DM. Currently, numerous methods are available for the establishment of in vitro insulin resistance models, a comprehensive review of these models is required and can serve as an excellent introduction or understanding for researchers undertaking studies in this filed. This review examines and discusses the primary methods for establishing and evaluating insulin resistance cell models. Furthermore, it highlights key issues and suggestions on cell selection, establishment, evaluation and drug screening of insulin resistance, thereby providing valuable references for the future research efforts.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ting-ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hu-ai Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ping Ping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
3
|
Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int J Mol Sci 2022; 23:ijms23116048. [PMID: 35682723 PMCID: PMC9181642 DOI: 10.3390/ijms23116048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/βI/βII/δ, and its association with the IR, particularly PKCβII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.
Collapse
|
4
|
Tan P, Li X, Xiang X, Dong X, Li S, Mai K, Ai Q. Adipose tissue contributes to hepatic pro-inflammatory response when dietary fish oil is replaced by vegetable oil in large yellow croaker (Larimichthys crocea): An ex vivo study. FISH & SHELLFISH IMMUNOLOGY 2019; 84:955-961. [PMID: 30391531 DOI: 10.1016/j.fsi.2018.10.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 05/28/2023]
Abstract
The shortage of fish oil (FO) leads to the extensive use of vegetable oil (VO) in marine fish diets. High replacement percentage of dietary FO by VO induced pro-inflammatory response of adipose tissue (AT) and liver tissue (LT) in large yellow croaker (Larimichthys crocea). Mammalian studies showed that the secretion of cytokines by AT affected the immune response of LT. To investigate whether or not the inflammation response of LT is related to AT in large yellow croaker, LT and AT cells from fish fed FO diet (FOL and FOA) and VO diet (VOL and VOA) were co-cultured in a trans-well system, which resulted in an assembly of the two cells types sharing the culture medium but being separated by the membrane of the insert. Co-culture of FOL and FOA was selected as the control group (FOL-FOA). Results indicated that, when compared with the control group, the expression of pro-inflammatory genes (toll like receptors [TLRs], tumour necrosis factor α [TNFα], interleukin 1β [IL1β], suppressor of cytokine signalling 3 [SOCS3] and cyclooxygenase 2 [COX2]) in FOL was significantly increased in the co-culture group of FOL and VOA (FOL-VOA), while the expression of anti-inflammatory genes (arginase I [ArgI] and transforming growth factor β1 [TGFβ1]) in FOL was significantly depressed. On the contrary, a significantly depressed expression of pro-inflammatory genes (TLRs, TNFα, IL1β and COX2) and increased expression of anti-inflammatory genes (interleukin 10 [IL10]) in VOL was observed in the co-culture group of VOL and FOA (VOL-FOA) when compared with the co-culture group of VOL and VOA (VOL-VOA). The change of immune-related gene expressions in LT cells was attributed to nuclear factor κB (NF-κB) signalling since the expression of the p65 protein was observed to show a similar trend to the expression of pro-inflammatory genes. It is speculated that dietary VO increased the secretion of cytokines, which induced pro-inflammatory response in LT cells. These ex vivo results indicate that AT plays a vital role in LT pro-inflammatory response in fish fed VO diet.
Collapse
Affiliation(s)
- Peng Tan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Songlin Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, And the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
5
|
Kriebel J, Herder C, Rathmann W, Wahl S, Kunze S, Molnos S, Volkova N, Schramm K, Carstensen-Kirberg M, Waldenberger M, Gieger C, Peters A, Illig T, Prokisch H, Roden M, Grallert H. Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study. PLoS One 2016; 11:e0152314. [PMID: 27019061 PMCID: PMC4809492 DOI: 10.1371/journal.pone.0152314] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10(-5) and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10(-5) and 3.0x10(-3)). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10(-9)). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes-related traits are associated and that these associations are partially BMI-dependent. Furthermore, the interaction of ABCG1 with glucose metabolism is modulated by epigenetic processes.
Collapse
Affiliation(s)
- Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sophie Molnos
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Nadezda Volkova
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Schramm
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universitaet Muenchen, Munich, Germany
| | - Maren Carstensen-Kirberg
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
- Institute of Human Genetics, Hannover Medical School, Hanover, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universitaet Muenchen, Munich, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| |
Collapse
|
6
|
Giraudi PJ, Becerra VJB, Marin V, Chavez-Tapia NC, Tiribelli C, Rosso N. The importance of the interaction between hepatocyte and hepatic stellate cells in fibrogenesis induced by fatty accumulation. Exp Mol Pathol 2014; 98:85-92. [PMID: 25533546 DOI: 10.1016/j.yexmp.2014.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease is characterized by an initial accumulation of triglycerides that can progress to non-alcoholic steatohepatitis, which can ultimately evolve to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells play a key role in liver fibrogenesis by an increased activation and an altered profile of genes involved in the turnover of extracellular matrix components. To reproduce in-vitro the functional cell connections observed in vivo it is essential to consider cell-to-cell proximity and interaction. The aim of this study was to determine the response to free fatty acids in a simultaneous co-culture model of hepatocytes and hepatic stellate cells. METHODS Simultaneous co-culture model and monoculture of each cell type (control) were exposed to FFA for 24 up to 144 h. Quantification of steatosis; stellate cell activation; assessment of fibrogenic response; expression and activity of metalloproteinases as well as collagen biosynthesis were evaluated. RESULTS Free fatty acids induced comparable steatosis in simultaneous co-culture and monoculture. However, the activation of the stellate cells assessed by alpha-smooth muscle actin expression is greater when cells were in close contact. Furthermore, a time-dependent increment of tissue inhibitor metalloproteinase-2 protein was observed, which was inversely correlated with protein expression and activity of matrix-metalloproteinases, suggesting enhanced collagen biosynthesis. This behavior was absent in cell monoculture. CONCLUSIONS These data indicate that cell-to-cell proximity between hepatocytes and stellate cells is necessary for the initiation of the fibrotic process.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy
| | - Varenka J Barbero Becerra
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy; Liver Research Unit, Médica Sur Clinic & Foundation, Puente de Piedra 150, Col. Toriello Guerra, Tlalpan, C.P. 14050 Mexico City, Mexico
| | - Veronica Marin
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy
| | - Norberto C Chavez-Tapia
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy; Liver Research Unit, Médica Sur Clinic & Foundation, Puente de Piedra 150, Col. Toriello Guerra, Tlalpan, C.P. 14050 Mexico City, Mexico
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy; Department of Medical Sciences, University of Trieste, 34100 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy.
| |
Collapse
|
7
|
Li Y, Qin G, Liu J, Mao L, Zhang Z, Shang J. Adipose tissue regulates hepatic cholesterol metabolism via adiponectin. Life Sci 2014; 118:27-33. [DOI: 10.1016/j.lfs.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
|
8
|
Abstract
Background: Obesity is associated with a prothrombotic state, which may contribute to the increased risk of thrombotic events. Objective: To assess the effects of (pre)adipocyte-derived adipokines on fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) production by hepatocytes. Methods: HepG2 hepatocytes were incubated with conditioned media (CM) derived from preadipocytes and adipocytes, which had been untreated or prestimulated with tumor necrosis factor (TNF)-α, interleukin (IL)-1β or IL-6. After 24 h, supernatants and cell lysates were harvested for measurement of fibrinogen, PAI-1 and TF. Results: (Pre)adipocyte CM significantly enhanced the production of PAI-1 by HepG2 cells 2.5- to 4.4-fold. CM from cytokine-stimulated (pre)adipocytes significantly induced fibrinogen secretion 1.5- to 4.2-fold. TF production was not affected by the CM. After specific depletion of TNF-α, IL-1β or IL-6 from the CM, IL-6 was shown to be the most prominent stimulus of fibrinogen secretion and IL-1β of PAI-1 secretion. In addition, fibrinogen, PAI-1 and tissue factor production was evaluated by direct stimulation of HepG2 cells with TNF-α, IL-1β or IL-6. IL-6 enhanced fibrinogen synthesis 4.3-fold (P<0.01), whereas IL-1β induced PAI-1 production 5.0-fold (P<0.01). Gene expression analyses showed that TNF-α and IL-1β stimulate the adipocyte expression of TNF-α, IL-1β and IL-6. Cytokine stimulation of adipocytes may thus have induced an inflammatory response, which may have stimulated fibrinogen and PAI-1 production by HepG2 cells more potently. Conclusions: SGBS (pre)adipocytes release cytokines that increase the production of fibrinogen and PAI-1 by HepG2 cells. IL-6 and IL-1β produced by (pre)adipocytes were the strongest inducers of fibrinogen and PAI-1 secretion, respectively.
Collapse
|
9
|
Iori E, Vinci B, Murphy E, Marescotti MC, Avogaro A, Ahluwalia A. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS One 2012; 7:e34704. [PMID: 22509346 PMCID: PMC3324505 DOI: 10.1371/journal.pone.0034704] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Nutrient balance in the human body is maintained through systemic signaling between different cells and tissues. Breaking down this circuitry to its most basic elements and reconstructing the metabolic network in-vitro provides a systematic method to gain a better understanding of how cross-talk between the organs contributes to the whole body metabolic profile and of the specific role of each different cell type. To this end, a 3-way connected culture of hepatocytes, adipose tissue and endothelial cells representing a simplified model of energetic substrate metabolism in the visceral region was developed. The 3-way culture was shown to maintain glucose and fatty acid homeostasis in-vitro. Subsequently it was challenged with insulin and high glucose concentrations to simulate hyperglycaemia. The aim was to study the capacity of the 3-way culture to maintain or restore normal circulating glucose concentrations in response to insulin and to investigate the effects these conditions on other metabolites involved in glucose and lipid metabolism. The results show that the system’s metabolic profile changes dramatically in the presence of high concentrations of glucose, and that these changes are modulated by the presence of insulin. Furthermore, we observed an increase in E-selectin levels in hyperglycaemic conditions and increased IL-6 concentrations in insulin-free-hyperglycaemic conditions, indicating, respectively, endothelial injury and proinflammatory stress in the challenged 3-way system.
Collapse
Affiliation(s)
- Elisabetta Iori
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Bruna Vinci
- Centro Interdipartimentale di Ricerca ″E.Piaggio″, University of Pisa, Pisa, Italy
- CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ellen Murphy
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Maria Cristina Marescotti
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Arti Ahluwalia
- Centro Interdipartimentale di Ricerca ″E.Piaggio″, University of Pisa, Pisa, Italy
- CNR Institute of Clinical Physiology, Pisa, Italy
- * E-mail:
| |
Collapse
|
10
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
11
|
Du ZY, Ma T, Lock EJ, Hao Q, Kristiansen K, Frøyland L, Madsen L. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes. PLoS One 2011; 6:e20917. [PMID: 21687689 PMCID: PMC3110252 DOI: 10.1371/journal.pone.0020917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 05/16/2011] [Indexed: 01/04/2023] Open
Abstract
We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2) were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64) were higher in the stromal vascular fraction (SVF) isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1) were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2) was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.
Collapse
Affiliation(s)
- Zhen-Yu Du
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
12
|
Guzzardi MA, Domenici C, Ahluwalia A. Metabolic control through hepatocyte and adipose tissue cross-talk in a multicompartmental modular bioreactor. Tissue Eng Part A 2011; 17:1635-42. [PMID: 21303256 DOI: 10.1089/ten.tea.2010.0541] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Physiological processes involve a complex network of signaling molecules that act through paracrinal or endocrinal pathways; however, traditional in vitro models cannot mimic these interactions because of the lack of a dynamic cross-talk between cells belonging to different tissues. The multicompartmental modular bioreactor is a novel cell culture system where hepatocytes and adipose tissue are shown to interact in a more physiological manner. In the multicompartmental modular bioreactor, cells and tissues can be cultured in a common medium, which flows through the system acting as the bloodstream. Primary rat hepatocytes and adipose tissue were cultured separately and together in conventional conditions and in the bioreactor. Urea synthesis, albumin secretion, glycerol, free fatty acid, and glucose concentrations were analyzed and compared. The dynamic connected culture of adipose tissue and hepatocytes led to a significant enhancement of hepatic function in terms of increase of albumin and urea production with respect to conventional cultures. Interestingly, the glycerol gradually released from adipose tissue was buffered in the dynamic connected culture, manifesting a homeostatic-like control. These data show that the dynamic culture not only improves hepatocyte function, but also allows a cross-talk between tissues, leading to enhanced metabolic regulation in vitro.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Scuola Superiore Sant'Anna, Sector of Medicine, Piazza Martiri della Liberta', Pisa, Italy.
| | | | | |
Collapse
|
13
|
Shen N, Yu X, Pan FY, Gao X, Xue B, Li CJ. An early response transcription factor, Egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism. J Biol Chem 2011; 286:14508-15. [PMID: 21321112 DOI: 10.1074/jbc.m110.190165] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
One of the most important characteristics of type 2 diabetes is insulin resistance, during which the patients normally experienced hyperinsulinism stress that would alter insulin signal transduction in insulin target tissues. We have previously found that early growth responsive gene-1 (Egr-1), a zinc finger transcription factor, is highly expressed in db/db mice and in the fat tissue of individuals with type 2 diabetes. In this report, we found that chronic exposure to hyperinsulinism caused persistent Erk/MAPK activity in adipocytes and enhanced insulin resistance in an Egr-1-dependent manner. An elevation in Egr-1 augmented Erk1/2 activation via geranylgeranyl diphosphate synthase (GGPPS). Egr-1-promoted GGPPS transcription increased Ras prenylation and caused Erk1/2 activation. The sustained activation of Erk1/2 resulted in the phosphorylation of insulin receptor substrate-1 at Serine 612. Phosphorylation at this site impaired insulin signaling in adipocytes and reduced glucose uptake. The loss of Egr-1 function, knockdown of GGPPS, or inhibition of Erk1/2 activity in insulin-resistant adipocytes restored insulin receptor substrate-1 tyrosine phosphorylation and increased insulin sensitivity. Our results suggest a new mechanism by which the Egr-1/GGPPS/Erk1/2 pathway is responsible for insulin resistance during hyperinsulinism. This pathway provides a new therapeutic target for increasing insulin sensitivity: inhibiting the function of Egr-1.
Collapse
Affiliation(s)
- Ning Shen
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the Medical School of Nanjing University, Nanjing 210061, China
| | | | | | | | | | | |
Collapse
|
14
|
Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Jurado-Pueyo M, Zalba G, Díez J, Murga C, Fernández-Veledo S, Mayor F, Lorenzo M. G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 2010; 59:2407-17. [PMID: 20627936 PMCID: PMC3279564 DOI: 10.2337/db10-0771] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein-coupled receptor kinase 2 (GRK2), first identified as a G protein-coupled receptor regulator, could have as a modulator of insulin responses. RESEARCH DESIGN AND METHODS We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. RESULTS Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. CONCLUSIONS Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders.
Collapse
Affiliation(s)
- Lucia Garcia-Guerra
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Iria Nieto-Vazquez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Rocio Vila-Bedmar
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - María Jurado-Pueyo
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Javier Díez
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Corresponding authors: Cristina Murga, , and Sonia Fernández-Veledo,
| | - Sonia Fernández-Veledo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
- Corresponding authors: Cristina Murga, , and Sonia Fernández-Veledo,
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Margarita Lorenzo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| |
Collapse
|
15
|
Nov O, Kohl A, Lewis EC, Bashan N, Dvir I, Ben-Shlomo S, Fishman S, Wueest S, Konrad D, Rudich A. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 2010; 151:4247-56. [PMID: 20660063 DOI: 10.1210/en.2010-0340] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Central obesity is frequently associated with adipose tissue inflammation and hepatic insulin resistance. To identify potential individual mediators in this process, we used in vitro systems and assessed if insulin resistance in liver cells could be induced by secreted products from adipocytes preexposed to an inflammatory stimulus. Conditioned medium from 3T3-L1 adipocytes pretreated without (CM) or with TNFalpha (CM-TNFalpha) was used to treat Fao hepatoma cells. ELISAs were used to assess the concentration of several inflammatory mediators in CM-TNFalpha. CM-TNFalpha-treated Fao cells exhibited about 45% diminution in insulin-stimulated phosphorylation of insulin receptor, insulin receptor substrate proteins, protein kinase B, and glycogen synthase kinase-3 as compared with CM-treated cells, without changes in the total abundance of these protein. Insulin increased glycogenesis by 2-fold in CM-treated Fao cells but not in cells exposed to CM-TNFalpha. Expression of IL-1beta mRNA was elevated 3-fold in TNFalpha-treated adipocytes, and CM-TNFalpha had 10-fold higher concentrations of IL-1beta but not TNFalpha or IL-1alpha. IL-1beta directly induced insulin resistance in Fao, HepG2, and in primary rat hepatocytes. Moreover, when TNFalpha-induced secretion/production of IL-1beta from adipocytes was inhibited by the IL-1 converting enzyme (ICE-1) inhibitor II (Ac-YVAD-CMK), insulin resistance was prevented. Furthermore, liver-derived cells treated with IL-1 receptor antagonist were protected against insulin resistance induced by CM-TNFalpha. Finally, IL-1beta secretion from human omental fat explants correlated with body mass index (R(2) = 0.639, P < 0.01), and the resulting CM induced insulin resistance in HepG2 cells, inhibitable by IL-1 receptor antagonist. Our results suggest that adipocyte-derived IL-1beta may constitute a mediator in the perturbed cross talk between adipocytes and liver cells in response to adipose tissue inflammation.
Collapse
Affiliation(s)
- Ori Nov
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
El-Shehaby AM, Obaia EM, Alwakil SS, Hiekal AA. Total and acylated ghrelin in liver cirrhosis: correlation with clinical and nutritional status. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:252-8. [PMID: 20367557 DOI: 10.3109/00365511003763349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The pathogenesis of anorexia in cirrhotic patients is complex and the appetite-modulating hormone ghrelin could be involved. Acylated ghrelin is the biologically active form that modifies insulin sensitivity and body composition. The aim of the present study was to compare acylated and total ghrelin concentration in patients with liver cirrhosis and to investigate the possible relationship between ghrelin and clinical and nutritional parameters. DESIGN AND METHODS Sixty patients with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twenty healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls. Fasting levels of total, acylated ghrelin, leptin, TNF-alpha and insulin were measured in all subjects, in addition, clinical and nutrition parameters were assessed. RESULTS In cirrhotic patients, plasma levels of both acylated and total ghrelin were significantly higher than those in the controls. The mean plasma acylated ghrelin levels were significantly higher in Child C cirrhosis compared to Child A and B. Ghrelin (total and acylated) were negatively correlated with leptin in cirrhotic patients confirming the fact that leptin acts as a physiological counterpart of ghrelin. CONCLUSIONS Nutritional and metabolic abnormalities in cirrhotic patients may be dependent on the changes in the ghrelin/leptin systems, mainly the acylated form of ghrelin.
Collapse
Affiliation(s)
- Amal M El-Shehaby
- Department of Medical Biochemistry, Cairo University, Cairo 11562, Egypt.
| | | | | | | |
Collapse
|
17
|
Hybrid cells differentiate to hepatic lineage cells and repair oxidative damage. Cell Mol Biol Lett 2010; 15:451-72. [PMID: 20563703 PMCID: PMC6275737 DOI: 10.2478/s11658-010-0018-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/26/2010] [Indexed: 02/07/2023] Open
Abstract
Hybrid cells derived from stem cells play an important role in organogenesis, tissue regeneration and cancer formation. However, the fate of hybrid cells and their range of function are poorly understood. Fusing stem cells and somatic cells induces somatic cell reprogramming, and the resulting hybrid cells are embryonic stem cell-like cells. Therefore, we hypothesize that fusion-induced hybrid cells may behave like ES cells in certain microenvironments. In this study, human hepatic cells were induced to apoptosis with H(2)O(2), and then co-cultured with hybrid cells that had been derived from mouse ES cells and human hepatic cells using a transwell. After co-culturing, the degree of apoptosis was evaluated using Annexin-V/PI double-staining analysis, flow cytometry and Western-blot. We observed that H(2)O(2)-induced cell apoptosis was inhibited by co-culture. In addition, the activity of injury-related enzymes (GSH-Px, LDH and SOD) and the level of albumin release in the co-culture system trended toward the level of normal undamaged hepatic cells. The stably increased levels of secretion of ALB in the co-culture system also confirmed that co-culture with hybrid cells helped in recovery from injury. The fate of the hybrid cells was studied by analyzing their gene expression and protein expression profiles. The results of RT-PCR indicated that during co-culturing, like ES cells, hybrid cells differentiated into hepatic lineage cells. Hybrid cells transcripted genes from both parental cell genomes. Via immunocytochemical analysis, hepatic directional differentiation of the hybrid cells was also confirmed. After injecting the hybrid cells into the mouse liver, the GFP-labeled transplanted cells were distributed in the hepatic lobules and engrafted into the liver structure. This research expands the knowledge of fusion-related events and the possible function of hybrid cells. Moreover, it could indicate a new route of differentiation from pluripotent cells to tissue-specific cells via conditional co-culture.
Collapse
|
18
|
Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 2010; 110:564-72. [DOI: 10.1002/jcb.22598] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Guzzardi MA, Vozzi F, Ahluwalia AD. Study of the Crosstalk Between Hepatocytes and Endothelial Cells Using a Novel Multicompartmental Bioreactor: A Comparison Between Connected Cultures and Cocultures. Tissue Eng Part A 2009; 15:3635-44. [DOI: 10.1089/ten.tea.2008.0695] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology-CNR, Pisa, Italy
- Sector of Medicine, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology-CNR, Pisa, Italy
- Faculty of Engineering, Interdepartmental Research Center “E.Piaggio,” University of Pisa, Pisa, Italy
| | - Arti Devi Ahluwalia
- Faculty of Engineering, Interdepartmental Research Center “E.Piaggio,” University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Abstract
Obesity is associated with an increased incidence of insulin resistance (IR), type 2 diabetes mellitus and cardiovascular diseases. The increased risk for cardiovascular diseases could partly be caused by a prothrombotic state that exists because of abdominal obesity. Adipose tissue induces thrombocyte activation by the production of adipose tissue-derived hormones, often called adipokines, of which some such as leptin and adiponectin have been shown to directly interfere with platelet function. Increased adipose tissue mass induces IR and systemic low-grade inflammation, also affecting platelet function. It has been demonstrated that adipose tissue directly impairs fibrinolysis by the production of plasminogen activator inhibitor-1 and possibly thrombin-activatable fibrinolysis inhibitor. Adipose tissue may contribute to enhanced coagulation by direct tissue factor production, but hypercoagulability is likely to be primarily caused by affecting hepatic synthesis of the coagulation factors fibrinogen, factor VII, factor VIII and tissue factor, by releasing free fatty acids and pro-inflammatory cytokines (tumour necrosis factor-alpha, interleukin-1beta and interleukin-6) into the portal circulation and by inducing hepatic IR. Adipose tissue dysfunction could thus play a causal role in the prothrombotic state observed in obesity, by directly and indirectly affecting haemostasis, coagulation and fibrinolysis.
Collapse
Affiliation(s)
- D R Faber
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | |
Collapse
|
21
|
Mimura M, Nabeshima R, Maeda M, Shiomi N. A highly sensitive enzyme-linked immunosorbent assay for quantification of adipocytokines secreted by mouse adipocytes. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: Visceral adipose tissue production and liver metabolism. DIABETES & METABOLISM 2008; 34:439-45. [PMID: 18562233 DOI: 10.1016/j.diabet.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Abstract
Excess visceral adipose tissue is associated with anomalies of blood glucose homoeostasis, elevation of plasma triglycerides and low levels of high-density lipoprotein cholesterol that contribute to the development of type-2 diabetes and cardiovascular syndromes. Visceral adipose tissue releases a large amount of free fatty acids and hormones/cytokines in the portal vein that are delivered to the liver. The secreted products interact with hepatocytes and various immune cells in the liver. Altered liver metabolism and determinants of insulin resistance associated with visceral adipose tissue distribution are discussed, as well as, determinants of an insulin-resistant state promoted by the increased free fatty acids and cytokines delivered by visceral adipose tissue to the liver.
Collapse
|
23
|
Mittra S, Bansal VS, Bhatnagar PK. From a glucocentric to a lipocentric approach towards metabolic syndrome. Drug Discov Today 2008; 13:211-8. [DOI: 10.1016/j.drudis.2008.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/13/2007] [Accepted: 01/15/2008] [Indexed: 12/14/2022]
|
24
|
Abstract
Obesity is characterized by increased adiposity of visceral and subcutaneous depots as well as other organs, including the vasculature. These fat depots secrete various hormone-like proteins implicated in metabolic homeostasis (e.g., adiponectin, resistin), the central control of appetite (e.g., leptin) and the increased production of cytokines. These molecules act either in a paracrine or endocrine manner, contributing to the metabolic and cardiovascular complications of obesity. Explant cultures of white adipose tissue are an important step in analyzing the secretory mechanisms of adipose tissue by preserving the physiological in vivo cross-talk between the various types of cells.
Collapse
|
25
|
Zhou L, Sell H, Eckardt K, Yang Z, Eckel J. Conditioned medium obtained from in vitro differentiated adipocytes and resistin induce insulin resistance in human hepatocytes. FEBS Lett 2007; 581:4303-4308. [PMID: 17716671 DOI: 10.1016/j.febslet.2007.07.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/23/2007] [Accepted: 07/31/2007] [Indexed: 01/19/2023]
Abstract
Adipocyte-derived factors might play a role in the development of hepatic insulin resistance. Resistin was identified as an adipokine linking obesity and insulin resistance. Resistin is secreted from adipocytes in rodents but in humans it was proposed to originate from macrophages and its impact for insulin resistance has remained elusive. To analyze the role of adipokines in general and resistin as a special adipokine, we cultured the human liver cell line HepG2 with adipocyte-conditioned medium (CM) containing various adipokines such as IL-6 and MCP-1, and resistin. CM and resistin both induce insulin resistance with a robust decrease in insulin-stimulated phosphorylation of Akt and GSK3. Insulin resistance could be prevented by co-treatment with troglitazone but not by co-stimulation with adiponectin. As human adipocytes do not secrete resistin, HepG2 cells were also treated with resistin added into CM. CM with resistin addition induced stronger insulin resistance than CM alone pointing to a specific role of resistin in the initiation of hepatic insulin resistance in humans.
Collapse
Affiliation(s)
- Lei Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
26
|
Vu V, Kim W, Fang X, Liu YT, Xu A, Sweeney G. Coculture with primary visceral rat adipocytes from control but not streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: role of adiponectin. Endocrinology 2007; 148:4411-9. [PMID: 17569760 DOI: 10.1210/en.2007-0020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We developed a coculture system comprising primary rat adipocytes and L6 rat skeletal muscle cells to allow investigation of the effects of physiologically relevant mixtures of adipokines. We observed that coculture, or adipocyte-conditioned media, increased glucose uptake in muscle cells. An adipokine that could potentially mediate this effect is adiponectin, and we demonstrated that small interfering RNA-mediated knockdown of adiponectin receptor-2 in muscle cells reduced the uptake of glucose upon coculture with primary rat adipocytes. Analysis of coculture media by ELISA indicated total adiponectin concentration of up to 1 microg/ml, and Western blotting and gel filtration analysis demonstrated that the adipokine profile was hexamer greater than high molecular weight much greater than trimer. We used the streptozotocin-induced rat model of diabetes and found that high-molecular-weight adiponectin levels decreased in comparison with control animals and this correlated with the fact that diabetic rat-derived primary adipocytes in coculture did not stimulate glucose uptake to the same extent as control adipocytes. Coculture induced phosphorylation of AMP-activated protein kinase (T172) and interestingly also insulin receptor substrate-1 (Y612) and Akt (T308 & S473), which could be attenuated after adiponectin receptor-2-small interfering RNA treatment. In summary, we believe that this coculture system represents an excellent model to study the effects of primary adipocyte-derived adipokine mixtures on skeletal muscle metabolism, and here we have established that in the context of physiologically relevant mixtures of adipokines, adiponectin may be an important determinant of positive cross talk between adipocytes and skeletal muscle.
Collapse
Affiliation(s)
- Vivian Vu
- Department of Biology, York University, Toronto M3J 1P3, Ontario, Canada
| | | | | | | | | | | |
Collapse
|