1
|
Solár P, Brázda V, Bareš M, Zamani A, EmamiAref P, Joukal A, Kubíčková L, Kročka E, Hašanová K, Joukal M. Inflammatory changes in the choroid plexus following subarachnoid hemorrhage: the role of innate immune receptors and inflammatory molecules. Front Cell Neurosci 2025; 18:1525415. [PMID: 39839349 PMCID: PMC11747387 DOI: 10.3389/fncel.2024.1525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid. Subarachnoid hemorrhage due to aneurysm rupture is a devastating type of hemorrhagic stroke. Following subarachnoid hemorrhage, blood and the blood degradation products that disperse into the cerebrospinal fluid come in direct contact with choroid plexus epithelial cells. The aim of the current study was to elucidate the pathophysiological cascades responsible for the inflammatory reaction that is seen in the choroid plexus following subarachnoid hemorrhage. Methods Subarachnoid hemorrhage was induced in rats by injecting non-heparinized autologous blood to the cisterna magna. Increased intracranial pressure following subarachnoid hemorrhage was modeled by using artificial cerebrospinal fluid instead of blood. Subarachnoid hemorrhage and artificial cerebrospinal fluid animals were left to survive for 1, 3, 7 and 14 days. Immunohistochemical staining of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β, CCR2 and CX3CR1 was performed on the cryostat sections of choroid plexus tissue. The level of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β was detected by measuring immunofluorescence intensity in randomly selected epithelial cells. The number of CCR2 and CX3CR1 positive cells per choroid plexus area was manually counted. Immunohistochemical changes were confirmed by Western blot analyses. Results Immunohistochemical methods and Western blot showed increased levels of TLR9 and a slight increase in TLR4 and FRP2 following both subarachnoid hemorrhage as well as the application of artificial cerebrospinal fluid over time, although the individual periods were different. The levels of TNFα and IL-1β increased, while CCL2 level decreased slightly. Accumulation of macrophages positive for CCR2 and CX3CR1 was found in all periods after subarachnoid hemorrhage as well as after the application of artificial cerebrospinal fluid. Discussion Our results suggest that the inflammation develops in the choroid plexus and blood-cerebrospinal fluid barrier in response to blood components as well as acutely increased intracranial pressure following subarachnoid hemorrhage. These pro-inflammatory changes include accumulation in the choroid plexus of pro-inflammatory cytokines, innate immune receptors, and monocyte-derived macrophages.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Martin Bareš
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Parisa EmamiAref
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Kubíčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Erik Kročka
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klaudia Hašanová
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Hálková T, Ptáčková R, Semyakina A, Suchánek Š, Traboulsi E, Ngo O, Hejcmanová K, Májek O, Bureš J, Zavoral M, Minárik M, Benešová L. Somatic Mutations in Exon 7 of the TP53 Gene in Index Colorectal Lesions Are Associated with the Early Occurrence of Metachronous Adenoma. Cancers (Basel) 2022; 14:cancers14122823. [PMID: 35740488 PMCID: PMC9221022 DOI: 10.3390/cancers14122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Identifying patients with an increased risk of early recurrence of colorectal lesions is still a problem. In our study, we focused on improving this identification by determining the mutation profile of index lesions. We found a statistically significant association between the mutation in exon 7 of the TP53 gene in the index lesion and the risk of early metachronous adenoma. Abstract (1) Background: this prospective study was focused on detailed analysis of the mutation heterogeneity in colorectal lesions removed during baseline (index) colonoscopy to identify patients at high risk of early occurrence of metachronous adenomas. (2) Methods: a total of 120 patients after endoscopic therapy of advanced colorectal neoplasia size ≥10 mm (index lesion) with subsequent surveillance colonoscopy after 10–18 months were included. In total, 143 index lesions and 84 synchronous lesions in paraffin blocks were divided into up to 30 samples. In each of them, the detection of somatic mutations in 11 hot spot gene loci was performed. Statistical analysis to correlate the mutation profiles and the degree of heterogeneity of the lesions with the risk of metachronous adenoma occurrence was undertaken. (3) Results: mutation in exon 7 of the TP53 gene found in the index lesion significantly correlated with the early occurrence of metachronous adenoma (log-rank test p = 0.003, hazard ratio 2.73, 95% confidence interval 1.14–6.56). We did not find an association between the risk of metachronous adenomas and other markers monitored. (4) Conclusions: the findings of this study could lead to an adjustment of existing recommendations for surveillance colonoscopies in a specific group of patients with mutations in exon 7 of the TP53 gene in an index lesion, where a shortening of surveillance interval may be warranted.
Collapse
Affiliation(s)
- Tereza Hálková
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic; (T.H.); (R.P.); (A.S.); (M.M.); (L.B.)
| | - Renata Ptáčková
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic; (T.H.); (R.P.); (A.S.); (M.M.); (L.B.)
| | - Anastasiya Semyakina
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic; (T.H.); (R.P.); (A.S.); (M.M.); (L.B.)
| | - Štěpán Suchánek
- Department of Medicine, 1st Faculty of Medicine, Charles University and Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic;
- Department of Gastrointestinal Oncology, Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic;
- Correspondence:
| | - Eva Traboulsi
- Department of Pathology, Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic;
| | - Ondřej Ngo
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic; (O.N.); (K.H.); (O.M.)
| | - Kateřina Hejcmanová
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic; (O.N.); (K.H.); (O.M.)
| | - Ondřej Májek
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic; (O.N.); (K.H.); (O.M.)
| | - Jan Bureš
- Department of Gastrointestinal Oncology, Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic;
| | - Miroslav Zavoral
- Department of Medicine, 1st Faculty of Medicine, Charles University and Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic;
- Department of Gastrointestinal Oncology, Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic;
| | - Marek Minárik
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic; (T.H.); (R.P.); (A.S.); (M.M.); (L.B.)
- Elphogene, Drnovská 1112/60, 161 00 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague, Czech Republic
| | - Lucie Benešová
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic; (T.H.); (R.P.); (A.S.); (M.M.); (L.B.)
| |
Collapse
|
3
|
Solár P, Brázda V, Levin S, Zamani A, Jančálek R, Dubový P, Joukal M. Subarachnoid Hemorrhage Increases Level of Heme Oxygenase-1 and Biliverdin Reductase in the Choroid Plexus. Front Cell Neurosci 2020; 14:593305. [PMID: 33328892 PMCID: PMC7732689 DOI: 10.3389/fncel.2020.593305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage is a specific, life-threatening form of hemorrhagic stroke linked to high morbidity and mortality. It has been found that the choroid plexus of the brain ventricles forming the blood-cerebrospinal fluid barrier plays an important role in subarachnoid hemorrhage pathophysiology. Heme oxygenase-1 and biliverdin reductase are two of the key enzymes of the hemoglobin degradation cascade. Therefore, the aim of present study was to investigate changes in protein levels of heme oxygenase-1 and biliverdin reductase in the rat choroid plexus after experimental subarachnoid hemorrhage induced by injection of non-heparinized autologous blood to the cisterna magna. Artificial cerebrospinal fluid of the same volume as autologous blood was injected to mimic increased intracranial pressure in control rats. Immunohistochemical and Western blot analyses were used to monitor changes in the of heme oxygenase-1 and biliverdin reductase levels in the rat choroid plexus after induction of subarachnoid hemorrhage or artificial cerebrospinal fluid application for 1, 3, and 7 days. We found increased levels of heme oxygenase-1 and biliverdin reductase protein in the choroid plexus over the entire period following subarachnoid hemorrhage induction. The level of heme oxygenase-1 was the highest early (1 and 3 days) after subarachnoid hemorrhage indicating its importance in hemoglobin degradation. Increased levels of heme oxygenase-1 were also observed in the choroid plexus epithelial cells at all time points after application of artificial cerebrospinal fluid. Biliverdin reductase protein was detected mainly in the choroid plexus epithelial cells, with levels gradually increasing during subarachnoid hemorrhage. Our results suggest that heme oxygenase-1 and biliverdin reductase are involved not only in hemoglobin degradation but probably also in protecting choroid plexus epithelial cells and the blood-cerebrospinal fluid barrier from the negative effects of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia.,Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Shahaf Levin
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| | - Radim Jančálek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int J Mol Sci 2019; 21:ijms21010127. [PMID: 31878115 PMCID: PMC6982142 DOI: 10.3390/ijms21010127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.
Collapse
|
5
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
6
|
Dubový P, Klusáková I, Hradilová-Svíženská I, Brázda V, Kohoutková M, Joukal M. A Conditioning Sciatic Nerve Lesion Triggers a Pro-regenerative State in Primary Sensory Neurons Also of Dorsal Root Ganglia Non-associated With the Damaged Nerve. Front Cell Neurosci 2019; 13:11. [PMID: 30778286 PMCID: PMC6369159 DOI: 10.3389/fncel.2019.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
The primary sensory neurons of dorsal root ganglia (DRG) are a very useful model to study the neuronal regenerative program that is a prerequisite for successful axon regeneration after peripheral nerve injury. Seven days after a unilateral sciatic nerve injury by compression or transection, we detected a bilateral increase in growth-associated protein-43 (GAP-43) and superior cervical ganglion-10 (SCG-10) mRNA and protein levels not only in DRG neurons of lumbar spinal cord segments (L4-L5) associated with injured nerve, but also in remote cervical segments (C6-C8). The increase in regeneration-associated proteins in the cervical DRG neurons was associated with the greater length of regenerated axons 1 day after ulnar nerve crush following prior sciatic nerve injury as compared to controls with only ulnar nerve crush. The increased axonal regeneration capacity of cervical DRG neurons after a prior conditioning sciatic nerve lesion was confirmed by neurite outgrowth assay of in vitro cultivated DRG neurons. Intrathecal injection of IL-6 or a JAK2 inhibitor (AG490) revealed a role for the IL-6 signaling pathway in activating the pro-regenerative state in remote DRG neurons. Our results suggest that the pro-regenerative state induced in the DRG neurons non-associated with the injured nerve reflects a systemic reaction of these neurons to unilateral sciatic nerve injury.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Laboratory of Cellular and Molecular Neurobiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ilona Klusáková
- Department of Anatomy, Laboratory of Cellular and Molecular Neurobiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Laboratory of Cellular and Molecular Neurobiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Laboratory of Cellular and Molecular Neurobiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marcela Kohoutková
- Department of Anatomy, Laboratory of Cellular and Molecular Neurobiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Laboratory of Cellular and Molecular Neurobiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
7
|
Čechová J, Coufal J, Jagelská EB, Fojta M, Brázda V. p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms. PLoS One 2018; 13:e0195835. [PMID: 29668749 PMCID: PMC5905954 DOI: 10.1371/journal.pone.0195835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/01/2018] [Indexed: 12/12/2022] Open
Abstract
p73 is a member of the p53 protein family and has essential functions in several signaling pathways involved in development, differentiation, DNA damage responses and cancer. As a transcription factor, p73 achieves these functions by binding to consensus DNA sequences and p73 shares at least partial target DNA binding sequence specificity with p53. Transcriptional activation by p73 has been demonstrated for more than fifty p53 targets in yeast and/or human cancer cell lines. It has also been shown previously that p53 binding to DNA is strongly dependent on DNA topology and the presence of inverted repeats that can form DNA cruciforms, but whether p73 transcriptional activity has similar dependence has not been investigated. Therefore, we evaluated p73 binding to a set of p53-response elements with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures. We show by a yeast-based assay that transactivation in vivo correlated more with the relative propensity of a response element to form cruciforms than to its expected in vitro DNA binding affinity. Structural features of p73 target sites are therefore likely to be an important determinant of its transactivation function.
Collapse
Affiliation(s)
- Jana Čechová
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Jan Coufal
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Eva B. Jagelská
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Miroslav Fojta
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Václav Brázda
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Bilateral activation of STAT3 by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and its nuclear translocation in primary sensory neurons following unilateral sciatic nerve injury. Histochem Cell Biol 2018; 150:37-47. [PMID: 29488000 DOI: 10.1007/s00418-018-1656-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 01/06/2023]
Abstract
Unilateral sciatic nerve compression (SNC) or complete sciatic nerve transection (CSNT), both varying degrees of nerve injury, induced activation of STAT3 bilaterally in the dorsal root ganglia (DRG) neurons of lumbar (L4-L5) as well as cervical (C6-C8) spinal cord segments. STAT3 activation was by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and was followed by their nuclear translocation. This is the first evidence of STAT3(S727) activation together with the well-known activation of STAT3(Y705) in primary sensory neurons upon peripheral nerve injury. Bilateral activation of STAT3 in DRG neurons of spinal segments anatomically both associated as well as non-associated with the injured nerve indicates diffusion of STAT3 activation inducers along the spinal cord. Increased levels of IL-6 protein in the CSF following nerve injury as well as activation and nuclear translocation of STAT3 in DRG after intrathecal injection of IL-6 shows that this cytokine, released into the subarachnoid space can penetrate the DRG to activate STAT3. Previous results on increased bilateral IL-6 synthesis and the present manifestation of STAT3 activation in remote DRG following unilateral sciatic nerve injury may reflect a systemic reaction of the DRG neurons to nerve injury.
Collapse
|
9
|
Brázda V, Coufal J. Recognition of Local DNA Structures by p53 Protein. Int J Mol Sci 2017; 18:ijms18020375. [PMID: 28208646 PMCID: PMC5343910 DOI: 10.3390/ijms18020375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
10
|
Hernangómez M, Klusáková I, Joukal M, Hradilová-Svíženská I, Guaza C, Dubový P. CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. J Neuroinflammation 2016; 13:43. [PMID: 26891688 PMCID: PMC4759712 DOI: 10.1186/s12974-016-0508-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background Interaction of CD200 with its receptor CD200R has an immunoregulatory role and attenuates various types of neuroinflammatory diseases. Methods Immunofluorescence staining, western blot analysis, and RT-PCR were used to investigate the modulatory effects of CD200 fusion protein (CD200Fc) on activation of microglia and astrocytes as well as synthesis of pro- (TNF, IL-1β, IL-6) and anti-inflammatory (IL-4, IL-10) cytokines in the L4–L5 spinal cord segments in relation to behavioral signs of neuropathic pain after unilateral sterile chronic constriction injury (sCCI) of the sciatic nerve. Withdrawal thresholds for mechanical hypersensitivity and latencies for thermal hypersensitivity were measured in hind paws 1 day before operation; 1, 3, and 7 days after sCCI operation; and then 5 and 24 h after intrathecal application of artificial cerebrospinal fluid or CD200Fc. Results Seven days from sCCI operation and 5 h from intrathecal application, CD200Fc reduced mechanical and thermal hypersensitivity when compared with control animals. Simultaneously, CD200Fc attenuated activation of glial cells and decreased proinflammatory and increased anti-inflammatory cytokine messenger RNA (mRNA) levels. Administration of CD200Fc also diminished elevation of CD200 and CD200R proteins as a concomitant reaction of the modulatory system to increased neuroinflammatory reactions after nerve injury. The anti-inflammatory effect of CD200Fc dropped at 24 h after intrathecal application. Conclusions Intrathecal administration of the CD200R1 agonist CD200Fc induces very rapid suppression of neuroinflammatory reactions associated with glial activation and neuropathic pain development. This may constitute a promising and novel therapeutic approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Hernangómez
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Ilona Klusáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Ivana Hradilová-Svíženská
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Carmen Guaza
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Petr Dubový
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| |
Collapse
|
11
|
Minamino M, Oka T, Kanouchi H. Growth suppression and cell death by pyridoxal is dependent on p53 in the human breast cancer cell line MCF-7. Biosci Biotechnol Biochem 2015; 79:124-9. [DOI: 10.1080/09168451.2014.952618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Vitamin B6 compound, pyridoxine (PN), has shown antitumor action. Our previous experiments showed that PN induces expression of insulin-like growth factor binding protein-3 to arrest proliferation and induce cell death. This induction is inhibited by the p53-specific inhibitor pifithrin-α. Here, we report that another B6 compound, pyridoxal (PL), strongly inhibited MCF-7 cell growth compared to PN. PL induced the G0/G1 arrest and the accumulation of subG1 population. Although p53 mRNA was not changed by PL, 0.5 mM PL increased the protein level in MCF-7 cells. The cell growth suppression by 0.5 mM PL did not occur when p53 expression was knocked down using siRNA. Together, these data suggest that PL accumulate p53 and PL-induced cell growth suppression is dependent on p53 in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Masaki Minamino
- Joint Faculty of Veterinary Medicine, Department of Veterinary Pathobiology, Kagoshima University, Kagoshima, Japan
| | - Tatsuzo Oka
- Joint Faculty of Veterinary Medicine, Department of Veterinary Pathobiology, Kagoshima University, Kagoshima, Japan
| | - Hiroaki Kanouchi
- Joint Faculty of Veterinary Medicine, Department of Veterinary Pathobiology, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Coufal J, Jagelská EB, Liao JCC, Brázda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem Biophys Res Commun 2013; 441:83-8. [PMID: 24134839 DOI: 10.1016/j.bbrc.2013.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 02/01/2023]
Abstract
p53 Is one of the most critical proteins involved in protecting organisms from malignancies and its gene is frequently mutated in these diseases. p53 Functions as a transcription factor and its role in the cell is mediated by sequence-specific DNA binding. Although the genome contains many p53-binding sequences, the p53 protein binds only a subset of these sequences with high affinity. One likely mechanism of how p53 binds DNA effectively underlies its ability to recognize selective local DNA structure. We analyzed the possibility of cruciform structure formation within different regions of the p21 gene promoter. p53 protein remarkably activates the transcription of p21 gene after genotoxic treatment. In silico analysis showed that p21 gene promoter contains numerous p53 target sequences, some of which have inverted repeats capable of forming cruciform structures. Using chromatin immunoprecipitation, we demonstrated that p53 protein binds preferentially to sequences that not only contain inverted repeats but also have the ability to create local cruciform structures. Gel retardation assay also revealed strong preference of the p53 protein for response element in superhelical state, with cruciform structure in the DNA sequence. Taken together, our results suggest that p53 response element's potential for cruciform structure formation could be an additional determinant in p53 DNA-binding machinery.
Collapse
Affiliation(s)
- Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno 612 65, Czech Republic
| | | | | | | |
Collapse
|
13
|
Svízenská IH, Brázda V, Klusáková I, Dubový P. Bilateral changes of cannabinoid receptor type 2 protein and mRNA in the dorsal root ganglia of a rat neuropathic pain model. J Histochem Cytochem 2013; 61:529-47. [PMID: 23657829 DOI: 10.1369/0022155413491269] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptor type 2 (CB2R) plays a critical role in nociception. In contrast to cannabinoid receptor type 1 ligands, CB2R agonists do not produce undesirable central nervous system effects and thus promise to treat neuropathic pain that is often resistant to medical therapy. In the study presented here, we evaluated the bilateral distribution of the CB2R protein and messenger RNA (mRNA) in rat dorsal root ganglia (DRG) after unilateral peripheral nerve injury using immunohistochemistry, western blot, and in situ hybridization analysis. Unilateral chronic constriction injury (CCI) of the sciatic nerve induced neuropathic pain behavior and bilateral elevation of both CB2R protein and mRNA in lumbar L4-L5 as well as cervical C7-C8 DRG when compared with naive animals. CB2R protein and mRNA were increased not only in DRG neurons but also in satellite glial cells. The fact that changes appear bilaterally and (albeit at a lower level) even in the remote cervical DRG can be related to propagation of neuroinflammation alongside the neuraxis and to the neuroprotective effects of CB2R.
Collapse
|
14
|
Brázda V, Čechová J, Coufal J, Rumpel S, Jagelská EB. Superhelical DNA as a preferential binding target of 14-3-3γ protein. J Biomol Struct Dyn 2012; 30:371-8. [DOI: 10.1080/07391102.2012.682205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Jana Čechová
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Sigrun Rumpel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network , Toronto, Ontario, Canada, M5G 2C4
| | - Eva B. Jagelská
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| |
Collapse
|
15
|
Preferential binding of IFI16 protein to cruciform structure and superhelical DNA. Biochem Biophys Res Commun 2012; 422:716-20. [PMID: 22618232 DOI: 10.1016/j.bbrc.2012.05.065] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/12/2012] [Indexed: 01/01/2023]
Abstract
Interferon (IFN)-inducible HIN-200 proteins play an important role in transcriptional regulation linked to cell cycle control, inflammation, autoimmunity and differentiation. IFI16 has been identified as a target of IFNα and γ and is a member of the HIN-200 protein family. Expression level of IFI16 is often decreased in breast cancers, implicating its role as a tumor suppressor. As a potent transcription factor, IFI16 possesses a transcriptional regulatory region, a PYD/DAPIN/PAAD region which associates with IFN response, DNA-binding domains and binding regions for tumor suppressor proteins BRCA1 and p53. It is also reported that IFI16 protein is capable of binding p53 and cMYC gene promoters. Here, we demonstrate that IFI16 protein binds strongly to negatively superhelical plasmid DNA at a native superhelix density, as evidenced by electrophoretic retardation of supercoiled (sc) DNA in agarose gels. Binding of IFI16 to supercoiled DNA results in the appearance of one or more retarded DNA bands on the gels. After removal of IFI16, the original mobility of the scDNA is recovered. By contrast, IFI16 protein binds very weakly to the same DNA in linear state. Using short oligonucleotide targets, we also detect a strong preference for IFI16 binding to cruciform DNA structure compared to linear DNA topology. Hence, this novel DNA-binding property of IFI16 protein to scDNA and cruciform structures may play critical roles in its tumor suppressor function.
Collapse
|
16
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Huovinen M, Loikkanen J, Myllynen P, Vähäkangas KH. Characterization of human breast cancer cell lines for the studies on p53 in chemical carcinogenesis. Toxicol In Vitro 2011; 25:1007-17. [DOI: 10.1016/j.tiv.2011.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/17/2011] [Accepted: 03/25/2011] [Indexed: 01/08/2023]
|
18
|
Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem 2011; 286:11314-27. [PMID: 21199873 DOI: 10.1074/jbc.m110.193714] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Substantial data from clinical trials and epidemiological studies show promising results for use of statins in many cancers, including mammary carcinoma. Breast tumor primarily metastasizes to bone to form osteolytic lesions, causing severe pain and pathological fracture. Here, we report that simvastatin acts as an inhibitor of osteolysis in a mouse model of breast cancer skeletal metastasis of human mammary cancer cell MDA-MB-231, which expresses the mutant p53R280K. Simvastatin and lovastatin attenuated migration and invasion of MDA-MB-231 and BT-20 breast tumor cells in culture. Acquisition of phenotype to express the cancer stem cell marker, CD44, leads to invasive potential of the tumor cells. Interestingly, statins significantly decreased the expression of CD44 protein via a transcriptional mechanism. shRNA-mediated down-regulation of CD44 markedly reduced the migration and invasion of breast cancer cells in culture. We identified that in the MDA-MB-231 cells, simvastatin elevated the levels of mutated p53R280K, which was remarkably active as a transcription factor. shRNA-derived inhibition of mutant p53R280K augmented the expression of CD44, leading to increased migration and invasion. Finally, we demonstrate an inverse correlation between expression of p53 and CD44 in the tumors of mice that received simvastatin. Our results reveal a unique function of statins, which foster enhanced expression of mutant p53R280K to prevent breast cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center, San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
19
|
Malcikova J, Tichy B, Damborsky J, Kabathova J, Trbusek M, Mayer J, Pospisilova S. Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation. Biol Chem 2010; 391:197-205. [PMID: 20128691 DOI: 10.1515/bc.2010.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sequence-specific DNA binding is the key function through which tumor suppressor p53 exerts transactivation of the downstream target genes, often being impaired in cancer cells by mutations in the TP53 gene. Functional protein microarray technology enables a high-throughput parallel analysis of protein properties within one experiment under the same conditions. Using an array approach, we analyzed the DNA binding activity of wild type p53 protein and of 49 variants. Our results show significant differences in the binding properties between the p53 mutants. The C-terminal mutant R337C displayed the highest DNA binding activity on the array. However, the same mutant showed only a partial activation in the reporter gene assay and almost no activation of downstream target genes after transfection of expression vector into cells lacking endogenous p53. These observations demonstrate that DNA binding itself is not sufficient for activating the p53 target genes in at least some of the p53 mutants and, therefore, in vitro studies might not always reflect in vivo conditions.
Collapse
Affiliation(s)
- Jitka Malcikova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Boris Tichy
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Institute of Experimental Biology and National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, CZ-625 00 Brno, Czech Republic
| | - Jitka Kabathova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Martin Trbusek
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Jiri Mayer
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine - Hematooncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem Cell Biol 2010; 133:323-37. [PMID: 20127490 DOI: 10.1007/s00418-010-0675-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2010] [Indexed: 01/15/2023]
Abstract
There is a growing evidence that chemokines and their receptors play a role in inducing and maintaining neuropathic pain. In the present study, unilateral chronic constriction injury (CCI) of rat sciatic nerve under aseptic conditions was used to investigate changes for stromal derived factor-1 (SDF1) and its CXCR4 receptor in lumbal (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) from both sides of naïve, CCI-operated and sham-operated rats. All CCI-operated rats displayed mechanical allodynia and thermal hyperalgesia in hind paws ipsilateral to CCI, but forepaws exhibited only temporal changes of sensitivity not correlated with alterations in SDF1 and CXCR4 proteins. Naïve DRG displayed immunofluorescence for SDF1 (SDF1-IF) in the satellite glial cells (SGC) and CXCR4-IF in the neuronal bodies with highest intensity in small- and medium-sized neurons. Immunofluorescence staining and Western blot analysis confirmed that unilateral CCI induced bilateral alterations of SDF1 and CXCR4 proteins in both L4-L5 and C7-C8 DRG. Only lumbal DRG were invaded by ED-1+ macrophages exhibiting SDF1-IF while elevation of CXCR4-IF was found in DRG neurons and SGC but not in ED-1+ macrophages. No attenuation of mechanical allodynia, but reversed thermal hyperalgesia, in ipsi- and contralateral hind paws was found in CCI-operated rats after i.p. administration of CXCR4 antagonist (AMD3100). These results indicate that SDF1/CXCR4 changes are not limited to DRG associated with injured nerve but that they also spread to DRG non-associated with such nerve. Functional involvement of these alterations in DRG non-associated with injured nerve in neuropathic pain remains to be elucidated.
Collapse
|
21
|
Brázda V, Klusáková I, Svízenská I, Veselková Z, Dubový P. Bilateral changes in IL-6 protein, but not in its receptor gp130, in rat dorsal root ganglia following sciatic nerve ligature. Cell Mol Neurobiol 2009; 29:1053-62. [PMID: 19330444 PMCID: PMC11505828 DOI: 10.1007/s10571-009-9396-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/16/2009] [Indexed: 01/19/2023]
Abstract
Local intracellular signaling cascades following peripheral nerve injury lead to robust axon regeneration and neuropathic pain induction. Cytokines are classic injury-induced mediators. We used sciatic nerve ligature (ScNL) to investigate temporal changes in IL-6 and its receptor gp130 in both ipsilateral and contralateral lumbal (L4-L5) dorsal root ganglia (DRG). Rats were operated aseptically on unilateral ScNL and allowed to survive for 1, 3, 7, and 14 days. Immunohistochemistry and Western blot analysis were used to determine levels of IL-6 and gp130 in DRG. A distinct increase in immunostaining for IL-6 was found in the neuronal cell bodies of sections through both ipsilateral and contralateral DRG at 1 and 3 days after operation. After 7 and 14 days, the DRG sections displayed only a moderate elevation in immunostaining when compared with sections of naïve DRG. The levels of IL-6 protein increased in both ipsilateral and contralateral lumbal DRG following peripheral nerve injury. The elevation of IL-6 protein was significant in both ipsilateral and contralateral DRG 1, 3, 7, and 14 days after operation. On the other hand, the levels of gp130 receptor did not change significantly. The data provide evidence for changes in IL-6 levels not only in the DRG associated with the damaged nerve but also in those unassociated with nerve injury during the experimental neuropathic pain model.
Collapse
Affiliation(s)
- Václav Brázda
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
22
|
Brázda V, Jagelská EB, Liao JC, Arrowsmith CH. The Central Region of BRCA1 Binds Preferentially to Supercoiled DNA. J Biomol Struct Dyn 2009; 27:97-104. [DOI: 10.1080/07391102.2009.10507299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, Shimon LJW, Frolow F, Liran A, Rotter V, Shakked Z. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J Mol Biol 2008; 385:249-65. [PMID: 18996393 DOI: 10.1016/j.jmb.2008.10.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/19/2008] [Accepted: 10/23/2008] [Indexed: 11/27/2022]
Abstract
The tumor suppressor protein p53 is mutated in more than 50% of invasive cancers. About 30% of the mutations are found in six major "hot spot" codons located in its DNA binding core domain. To gain structural insight into the deleterious effects of such mutations and their rescue by suppressor mutations, we determined the crystal structures of the p53 core domain incorporating the hot spot mutation R249S, the core domain incorporating R249S and a second-site suppressor mutation H168R (referred to as the double mutant R249S/H168R) and its sequence-specific complex with DNA and of the triple mutant R249S/H168R/T123A. The structural studies were accompanied by transactivation and apoptosis experiments. The crystal structures show that the region at the vicinity of the mutation site in the R249S mutant displays a range of conformations [wild-type (wt) and several mutant-type conformations] due to the loss of stabilizing interactions mediated by R249 in the wt protein. As a consequence, the protein surface that is critical to the formation of functional p53-DNA complexes, through protein-protein and protein-DNA interactions, is largely distorted in the mutant conformations, thus explaining the protein's "loss of function" as a transcription factor. The structure of this region is restored in both R249S/H168R and R249S/H168R/T123A and is further stabilized in the complex of R249S/H168R with DNA. Our functional data show that the introduction of H168R as a second-site suppressor mutation partially restores the transactivation capacity of the protein and that this effect is further amplified by the addition of a third-site mutation T123A. These findings together with previously reported data on wt and mutant p53 provide a structural framework for understanding p53 dysfunction as a result of oncogenic mutations and its rescue by suppressor mutations and for a potential drug design aimed at restoring wt activity to aberrant p53 proteins.
Collapse
Affiliation(s)
- Oded Suad
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J 2008; 412:57-63. [PMID: 18271758 DOI: 10.1042/bj20071648] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tumour suppressor protein p53 is one of the most important factors regulating cell proliferation, differentiation and programmed cell death in response to a variety of cellular stress signals. P53 is a nuclear phosphoprotein and its biochemical function is closely associated with its ability to bind DNA in a sequence-specific manner and operate as a transcription factor. Using a competition assay, we investigated the effect of DNA topology on the DNA binding of human wild-type p53 protein. We prepared sets of topoisomers of plasmid DNA with and without p53 target sequences, differing in their internal symmetry. Binding of p53 to DNA increased with increasing negative superhelix density (-sigma). At -sigma < or = 0.03, the relative effect of DNA supercoiling on protein-DNA binding was similar for DNA containing both symmetrical and non-symmetrical target sites. On the other hand, at higher -sigma, target sites with a perfect inverted repeat sequence exhibited a more significant enhancement of p53 binding as a result of increasing levels of negative DNA supercoiling. For -sigma = 0.07, an approx. 3-fold additional increase in binding was observed for a symmetrical target site compared with a non-symmetrical target site. The p53 target sequences possessing the inverted repeat symmetry were shown to form a cruciform structure in sufficiently negative supercoiled DNA. We show that formation of cruciforms in DNA topoisomers at -sigma > or = 0.05 correlates with the extra enhancement of p53-DNA binding.
Collapse
|
25
|
The cell type-specific effect of TAp73 isoforms on the cell cycle and apoptosis. Cell Mol Biol Lett 2008; 13:404-20. [PMID: 18350258 PMCID: PMC6275725 DOI: 10.2478/s11658-008-0011-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 01/11/2008] [Indexed: 12/26/2022] Open
Abstract
p73, a member of the p53 family, exhibits activities similar to those of p53, including the ability to induce growth arrest and apoptosis. p73 influences chemotherapeutic responses in human cancer patients, in association with p53. Alternative splicing of the TP73 gene produces many p73 C- and N-terminal isoforms, which vary in their transcriptional activity towards p53-responsive promoters. In this paper, we show that the C-terminal spliced isoforms of the p73 protein differ in their DNA-binding capacity, but this is not an accurate predictor of transcriptional activity. In different p53-null cell lines, p73β induces either mitochondrial-associated or death receptor-mediated apoptosis, and these differences are reflected in different gene expression profiles. In addition, p73 induces cell cycle arrest and p21WAF1 expression in H1299 cells, but not in Saos-2. This data shows that TAp73 isoforms act differently depending on the tumour cell background, and have important implications for p73-mediated therapeutic responses in individual human cancer patients.
Collapse
|