1
|
Cao M, Peng B, Chen H, Yang M, Chen P, Ye L, Wang H, Ren L, Xie J, Zhu J, Xu X, Xu W, Geng L, Gong S. miR-34a induces neutrophil apoptosis by regulating Cdc42-WASP-Arp2/3 pathway-mediated F-actin remodeling and ROS production. Redox Rep 2022; 27:167-175. [PMID: 35938579 PMCID: PMC9364709 DOI: 10.1080/13510002.2022.2102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The number of neutrophils is significantly reduced in myelodysplastic syndrome (MDS), but the molecular basis remains unclear. We recently found that miR-34a was significantly increased in MDS neutrophils. Therefore, this study aims to clarify the effects of aberrant miR-34a expression on neutrophil counts. Methods miR-34a mimics/inhibitor transfection were performed in neutrophil-like differentiated HL60 (dHL60) cells, and a FACSCalibur flow cytometer was used to measure ROS production and apoptosis. In addition, the Cdc42-WASP-Arp2/3 pathway inhibitor (ML141) and activator (CN02) treated the dHL60 cells, and then ROS production, apoptosis and related proteins expression were detected. And, luciferase reporter assay to verify the relationship of miR-34a and the Cdc42-WASP-Arp2/3 pathway. Results overexpression of miR-34a could induce ROS production and apoptosis, decrease the expression levels of DOCK8, p-WASP, WASP, Arp2, Arp3, and increase F-actin’s expression. Meanwhile, knockdown of miR-34a could decrease ROS production and apoptosis, increase the expression of DOCK8, p-WASP, WASP, Arp2, Arp3, and decrease F-actin’s expression. Immunofluorescence staining showed aberrant miR-34a and Cdc42-WASP-Arp2/3 pathway could induce F-actin membrane transfer. Luciferase reporter assay indicated that DOCK8 was a direct target gene of miR-34a. Conclusion These data indicates miR-34a may induce neutrophil apoptosis by regulating Cdc42-WASP-Arp2/3 pathway-mediated F-actin remodeling and ROS production.
Collapse
Affiliation(s)
- Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baoling Peng
- Center for child health and mental health, Shenzhen Childen’s Hospital, Shenzhen, People’s Republic of China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingnan Zhu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiangye Xu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Eftedal I, Flatberg A, Drvis I, Dujic Z. Immune and inflammatory responses to freediving calculated from leukocyte gene expression profiles. Physiol Genomics 2016; 48:795-802. [PMID: 27614202 DOI: 10.1152/physiolgenomics.00048.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
Freedivers hold their breath while diving, causing blood oxygen levels to decrease (hypoxia) while carbon dioxide increases (hypercapnia). Whereas blood gas changes are presumably involved in the progression of respiratory diseases, less is known about their effect on healthy individuals. Here we have used gene expression profiling to analyze elite athletes' immune and inflammatory responses to freediving. Blood was collected before and 1 and 3 h after a series of maximal dynamic and static freediving apneas in a pool, and peripheral blood gene expression was mapped on genome-wide microarrays. Fractions of phenotypically distinct immune cells were computed by deconvolution of the gene expression data using Cibersort software. Changes in gene activity and associated biological pathways were determined using R and GeneGo software. The results indicated a temporary increase of neutrophil granulocytes, and a decrease of cytotoxic lymphocytes; i.e., CD8+ T cells and resting NK cells. Biological pathway associations indicated possible protective reactions: genes involved in anti-inflammatory responses to proresolving lipid mediators were upregulated, whereas central factors involved in granule-mediated lymphocyte cytotoxicity were downregulated. While it remains unresolved whether freediving alters the immune system's defensive function, these results provide new insight into leukocyte responses and the protection of homeostasis in healthy athletes.
Collapse
Affiliation(s)
- Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway;
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology Microarray Core Facility, Trondheim, Norway
| | - Ivan Drvis
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia; and
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
3
|
Li B, Li R, Zhang C, Bian HJ, Wang F, Xiao J, Liu SW, Yi W, Zhang MX, Wang SX, Zhang Y, Su GH, Ji XP. MicroRNA-7a/b protects against cardiac myocyte injury in ischemia/reperfusion by targeting poly(ADP-ribose) polymerase. PLoS One 2014; 9:e90096. [PMID: 24594984 PMCID: PMC3940823 DOI: 10.1371/journal.pone.0090096] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES MicroRNA-7 (miR-7) is highly connected to cancerous cell proliferation and metastasis. It is also involved in myocardial ischemia-reperfusion (I/R) injury and is upregulated in cardiomyocyte under simulated I/R (SI/R). We aimed to investigate the role of miR-7 during myocardial I/R injury in vitro and in vivo and a possible gene target. METHODS AND RESULTS Real-time PCR revealed that miR-7a/b expression was upregulated in H9c2 cells after SI/R. Flow cytometry showed SI/R-induced cell apoptosis was decreased with miR-7a/b mimic transfection but increased with miR-7a/b inhibitor in H9c2 cells. In a rat cardiac I/R injury model, infarct size determination and TUNEL assay revealed that miR-7a/b mimic decreased but miR-7a/b inhibitor increased cardiac infarct size and cardiomyocyte apoptosis as compared with controls. We previously identified an important gene connected with cell apoptosis--poly(ADP-ribose) polymerase (PARP)--as a candidate target for miR-7a/b and verified the target by luciferase reporter activity assay and western blot analysis. CONCLUSIONS miR-7a/b is sensitive to I/R injury and protects myocardial cells against I/R-induced apoptosis by negatively regulating PARP expression in vivo and in vitro. miR-7a/b may provide a new therapeutic approach for treatment of myocardial I/R injury. Poly(ADP-ribose) polymerase.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Health care, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Rui Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chun Zhang
- Department of Cardiology, Laizhou People's Hospital, Laizhou, Shandong, China
| | - Hong-jun Bian
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Fu Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jie Xiao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shan-wen Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Emergency, Linyi People's Hospital, Linyi, Shandong, China
| | - Wei Yi
- School of Mechanical Engineering, Shandong University, Jinan, Shandong, China
- Engineering Training Center, Shandong University, Jinan, Shandong, China
| | - Ming-xiang Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuang-xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Guo-hai Su
- Department of Health care, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China
- * E-mail: (XJ); (GS)
| | - Xiao-ping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- * E-mail: (XJ); (GS)
| |
Collapse
|
4
|
Liu G, Wang T, Wang T, Song J, Zhou Z. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed Rep 2013; 1:861-867. [PMID: 24649043 DOI: 10.3892/br.2013.153] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 11/06/2022] Open
Abstract
Neuron apoptosis is known to mediate a change of ethology following cerebral ischemia-reperfusion injury in rats. Additionally, Bcl-2, Bax and caspase-3 proteins may exert a significant effect on neuron injury. The aim of this study was to investigate the role, mechanism of action and clinical significance of these proteins in neuron apoptosis and functional impairment following cerebral ischemia-reperfusion injury in rats. Sixty male healthy adult Wistar rats were randomly assigned into control (n=6), sham operation (n=6) and experimental (n=48) groups. The model of rat cerebral ischemia-reperfusion injury was set up according to the method of Zea-Longa. Eight subsets of 6 rats-subset were designed according to time points (at 3, 6, 12, 24 and 48 h and at 3, 7 and 14 days). Nerve functional injury was evaluated and graded using nerve function score, balance, coordination function detection and measurement of forelimb placing. The neurons expressing caspase-3, Bax and Bcl-2 in the cortical area, CA3, CA1, stratum lucidum (Slu) and molecular layer of the dentate gyrus (MoDG) of the hippocampus were detected using immunohistochemistry or the TUNEL method. The expression of caspase-3, Bax and Bcl-2 genes was detected by the reverse transcriptase polymerase chain reaction (RT-PCR). The results indicated that, compared to the sham operation group, the score of nerve function and balance beam walking were distinctly higher (P<0.01) and the percentage of rat foreleg touching the angle or margin of the table was significantly lower in the experimental rat group (P<0.01) at 3 h following reperfusion. The expression of TUNEL-positive neurons was high in the cortical area and the CA3 region of the hippocampus (P<0.01), caspase-3 was at peak value in the cortical area and the CA1 region of the hippocampus (P<0.01), Bax was increased in the cortical area and the Slu of the hippocampus (P<0.01) and Bcl-2 was low in the cortical area and the MoDG of the hippocampus (P<0.01) in the experimental group at 48 h following reperfusion. In conclusion, cerebral ischemia/reperfusion injury may cause neurological impairment and lead to a change of ethology, and neuron apoptosis may be associated with the activation of caspase-3 and Bax and the downregulation of Bcl-2.
Collapse
Affiliation(s)
- Guangyi Liu
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Tao Wang
- Department of Neurology, The Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Tinging Wang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Jinming Song
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Zhen Zhou
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
5
|
Yan W, Chen X, Zhang Y, Zhang J, Jung YS, Chen X. Arsenic suppresses cell survival via Pirh2-mediated proteasomal degradation of ΔNp63 protein. J Biol Chem 2012; 288:2907-13. [PMID: 23271742 DOI: 10.1074/jbc.m112.428607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcription factor p63, a member of the p53 family, shares a high degree of sequence similarity with p53. Because of transcription from two distinct promoters, the p63 gene encodes two isoforms, TAp63 and ΔNp63. Although TAp63 acts as a tumor suppressor, ΔNp63 functions as an oncogene and is often overexpressed in squamous cell carcinomas. Thus, therapeutic agents targeting ΔNp63 might be used to manage tumors that overexpress ΔNp63. Here we found that arsenic trioxide, a frontline agent for acute promyelocytic leukemia, inhibits ΔNp63 but not TAp63 expression in time- and dose-dependent manners. In addition, we found that arsenic trioxide decreases the stability of ΔNp63 protein via a proteasome-dependent pathway but has little effect on the level of ΔNp63 transcript. Furthermore, we found that arsenic trioxide activates the Pirh2 promoter and consequently induces Pirh2 expression. Consistent with this, we found that knockdown of Pirh2 inhibits, whereas ectopic expression of Pirh2 enhances, arsenic-induced degradation of ΔNp63 protein. Importantly, we found that knockdown of ΔNp63 sensitizes, whereas ectopic expression of ΔNp63 inhibits, growth suppression induced by arsenic. Together, these data suggest that arsenic degrades ΔNp63 protein at least in part via Pirh2-dependent proteolysis and that inhibition of ΔNp63 expression facilitates tumor cells to arsenic-induced death.
Collapse
Affiliation(s)
- Wensheng Yan
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Bao MH, Dai W, Li YJ, Hu CP. Rutaecarpine prevents hypoxia-reoxygenation-induced myocardial cell apoptosis via inhibition of NADPH oxidases. Can J Physiol Pharmacol 2012; 89:177-86. [PMID: 21423291 DOI: 10.1139/y11-006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is proposed that myocardial cell apoptosis causes ventricular remodeling and heart failure. The aim of the present study was to determine the effects of rutaecarpine (Rut) on hypoxia-reoxygenation (H-R)-induced apoptosis in myocardial cell line H9c2, as well as the underlying mechanisms. Cultured H9c2 cells were exposed to hypoxia for 24 h, followed by 12 h reoxygenation. Rut (in concentrations of 0.1, 1, and 10 µmol/L) was added 1 h prior to H-R. Cell viability and lactate dehydrogenase were measured to evaluate the cell injuries. Apoptosis was evaluated by Hoechst 33258 staining and flow cytometry. NADPH oxidase activity was measured by assay kit; intracellular reactive oxygen species (ROS) generation was detected by 2',7'-dichlorofluorescein diacetate; and Nox2, Nox4, and p47(phox) mRNA and protein expression were analyzed by real-time PCR and Western blotting, respectively. The results showed that H-R significantly decreased cell viability and increased the lactate dehydrogenase release, as well as the apoptotic rate, concomitantly with enhanced NADPH oxidase activity. H-R also upregulated mRNA and protein expressions of Nox2, Nox4, and p47(phox) and increased ROS production. Treatment with Rut markedly reversed these effects introduced by H-R. These results suggest that the protective effects of Rut against H-R-induced myocardial cell injury and apoptosis might, at least partly, be due to the inhibition of the NADPH oxidase - ROS pathway.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Pharmacy, Changsha Medical University, China
| | | | | | | |
Collapse
|
7
|
Hernández-García D, Wood CD, Castro-Obregón S, Covarrubias L. Reactive oxygen species: A radical role in development? Free Radic Biol Med 2010; 49:130-43. [PMID: 20353819 DOI: 10.1016/j.freeradbiomed.2010.03.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/20/2010] [Accepted: 03/23/2010] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), mostly derived from mitochondrial activity, can damage various macromolecules and consequently cause cell death. This ROS activity has been characterized in vitro, and correlative evidence suggests a role in various pathological conditions. In addition to this passive ROS activity, ROS also participate in cell signaling processes, though the relevance of this function in vivo is poorly understood. Throughout development, elevated cell activity is probably accompanied by highly active metabolism and, consequently, the production of large amounts of ROS. To allow proper development, cells must protect themselves from these potentially damaging ROS. However, to what degree ROS could participate as signaling molecules controlling fundamental and developmentally relevant cellular processes such as proliferation, differentiation, and death is an open question. Here we discuss why available data do not yet provide conclusive evidence on the role of ROS in development, and we review recent methods to detect ROS in vivo and genetic strategies that can be exploited specifically to resolve these uncertainties.
Collapse
Affiliation(s)
- David Hernández-García
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | | | | | | |
Collapse
|
8
|
Grifalconi M, Celotti L, Mognato M. Bystander response in human lymphoblastoid TK6 cells. Mutat Res 2007; 625:102-11. [PMID: 17669438 DOI: 10.1016/j.mrfmmm.2007.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 05/23/2007] [Accepted: 06/01/2007] [Indexed: 05/16/2023]
Abstract
The mechanisms of the medium-mediated bystander response induced by gamma-rays in non-irradiated TK6 cells were investigated. Cell cultures were irradiated and the culture medium discarded immediately after irradiation and replaced with a fresh one. In cells incubated with conditioned medium from irradiated cells (CM), a significant decrease in cell viability and cloning efficiency was observed, together with a significant increase in apoptosis, also in directly irradiated cells. To examine whether bystander apoptosis involved the extrinsic pathway, an inhibitor of caspase-8 was added to CM cultures, which significantly decreased apoptosis to control levels. The addition to CM of ROS scavengers, Cu-Zn superoxide dismutase and N-acetylcysteine did not affect the induction of apoptosis. To assess whether CM treatment activates a DNA damage response, also the formation of gamma-H2AX foci, as markers of double-strand breaks and their colocalisation with 53-binding protein 1 (53BP1) and the protein mutated in the Nijmegen breakage syndrome 1 (NBS1) was analysed. In cultures treated for 2h with CM, 9-11% of cells showed gamma-H2AX foci, which partially or totally lacked colocalisation with 53BP1 and NBS1 foci. About 85% of irradiated cells were positive for gamma-H2AX foci, which colocalised with 53BP1 and NBS1 proteins. At 24h from irradiation, very few irradiated cells retained foci, fitting DNA repair kinetics. The number of foci-positive bystander cells also decreased to background values 24h after CM incubation. Our results suggest that irradiated TK6 cells release into the medium some soluble factors, not ROS, which are responsible for the cytotoxic effects induced in bystander cells. In our experimental system, the role of ROS appeared to be of minor importance in inducing cell mortality, but probably critical in activating the DNA damage response in the responsive fraction of bystander cells.
Collapse
Affiliation(s)
- Mauro Grifalconi
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | |
Collapse
|
9
|
Kim BM, Chung HW. Hypoxia/reoxygenation induces apoptosis through a ROS-mediated caspase-8/Bid/Bax pathway in human lymphocytes. Biochem Biophys Res Commun 2007; 363:745-50. [PMID: 17904098 DOI: 10.1016/j.bbrc.2007.09.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 09/08/2007] [Indexed: 01/22/2023]
Abstract
Recently, we showed that hypoxia/reoxygenation (H/R) induced apoptosis in human lymphocytes via reactive oxygen species (ROS) generation and disruption of the mitochondrial membrane; however, the signaling mechanisms responsible for these events are unclear. Here, we investigated the mechanism of H/R-induced apoptosis in human cultured lymphocytes. H/R increased the proportion of apoptotic cells, while z-IETD-fmk, z-VAD-fmk, and z-DEVD-fmk inhibited H/R-induced apoptosis. H/R also enhanced caspase-3 and caspase-8 activity. Time-sequence analysis of the induction of apoptosis by H/R revealed that H/R triggers apoptosis through a mitochondrial pathway involving caspase-8, Bid cleavage, and Bax activation. Furthermore, suppression of caspase-8 activity with z-IETD-fmk prevented Bid cleavage and Bax activation during apoptosis. N-acetylcysteine (NAC), a well-known ROS scavenger, suppressed caspase-8 activation and the subsequent cleavage of caspase-9 and caspase-3, indicating the role of ROS in caspase-8-mediated apoptosis. Overall, our results indicate that H/R induces apoptosis via a mitochondrial pathway involving caspase-8/Bid/Bax activation in human lymphocytes. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in H/R-treated human lymphocytes.
Collapse
Affiliation(s)
- Byeong Mo Kim
- School of Public Health and Institute of Health and Environment, 28 Yunkeun-dong, Chongno-ku, Seoul National University, Seoul 110-460, Republic of Korea
| | | |
Collapse
|
10
|
Kim BM, Choi JY, Kim YJ, Woo HD, Chung HW. Reoxygenation following hypoxia activates DNA-damage checkpoint signaling pathways that suppress cell-cycle progression in cultured human lymphocytes. FEBS Lett 2007; 581:3005-12. [PMID: 17544403 DOI: 10.1016/j.febslet.2007.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/11/2007] [Accepted: 05/20/2007] [Indexed: 11/18/2022]
Abstract
Cellular responses to DNA damage after hypoxia and reoxygenation (H/R) were examined in human lymphocytes. Cultured lymphocytes exposed to H/R showed a lower cytokinesis block proliferation index and a higher frequency of micronuclei in comparison to control cells. Western blots showed that H/R exposure induced p53 expression; however, p21 and Bax expression did not increase, indicating that H/R did not affect p53 transactivational activity. Phosphorylation of p53 (Ser15), Chk1 (Ser345), and Chk2 (Thr68) was also observed, suggesting that H/R activates p53 through checkpoint signals. In addition, H/R exposure caused the phosphorylation and negative regulation of Cdc2 and Cdc25C, proteins that are involved in cell-cycle arrest at the G2/M checkpoint. The S-phase checkpoint, regulated by the ATM-p95/NBS1-SMC1 pathway, was also triggered in H/R-exposed lymphocytes. These results demonstrate that H/R exposure triggers checkpoint signaling and induces cell-cycle arrest in cultured human lymphocytes.
Collapse
Affiliation(s)
- Byeong-Mo Kim
- School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|