1
|
Cao Y, Yi Y, Han C, Shi B. NF-κB signaling pathway in tumor microenvironment. Front Immunol 2024; 15:1476030. [PMID: 39493763 PMCID: PMC11530992 DOI: 10.3389/fimmu.2024.1476030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The genesis and progression of tumors are multifaceted processes influenced by genetic mutations within the tumor cells and the dynamic interplay with their surrounding milieu, which incessantly impacts the course of cancer. The tumor microenvironment (TME) is a complex and dynamic entity that encompasses not only the tumor cells but also an array of non-cancerous cells, signaling molecules, and the extracellular matrix. This intricate network is crucial in tumor progression, metastasis, and response to treatments. The TME is populated by diverse cell types, including immune cells, fibroblasts, endothelial cells, alongside cytokines and growth factors, all of which play roles in either suppressing or fostering tumor growth. Grasping the nuances of the interactions within the TME is vital for the advancement of targeted cancer therapies. Consequently, a thorough understanding of the alterations of TME and the identification of upstream regulatory targets have emerged as a research priority. NF-κB transcription factors, central to inflammation and innate immunity, are increasingly recognized for their significant role in cancer onset and progression. This review emphasizes the crucial influence of the NF-κB signaling pathway within the TME, underscoring its roles in the development and advancement of cancer. By examining the interactions between NF-κB and various components of the TME, targeting the NF-κB pathway appears as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Yaning Cao
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingwei Shi
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Lin L, Gao W, Feng L, Wang C, Yang R, Wang W, Wu Q. Autophagy Induced by Low Shear Stress Leads to Endothelial Glycocalyx Disruption. J Vasc Res 2024; 61:77-88. [PMID: 38503274 DOI: 10.1159/000537772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. METHODS Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. RESULTS LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I-1 and Beclin-1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. CONCLUSION LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.
Collapse
Affiliation(s)
- Lina Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linya Feng
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chundong Wang
- Department of Anaesthesiology, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua, China
| | - Ruiqi Yang
- Department of the Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiaolin Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Wu B, Zhong Y, Chen J, Pan X, Fan X, Chen P, Fu C, Ou C, Chen M. A dual-targeting peptide facilitates targeting anti-inflammation to attenuate atherosclerosis in ApoE -/- mice. Chem Commun (Camb) 2022; 58:8690-8693. [PMID: 35833251 DOI: 10.1039/d2cc01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a peptidic dual-targeting drug delivery platform (integrins targeting and self-assembly instructed by matrix metalloproteinases) towards inflamed endothelial cells, which improved the anti-inflammatory ability of the loaded drug (i.e., puerarin) in vitro and thus improved the antiatherogenic effect of the loaded drug (i.e., puerarin) in vivo.
Collapse
Affiliation(s)
- Bo Wu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Yuanzhi Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Jinmin Chen
- Cardiovascular Department of The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xianmei Pan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Xianglin Fan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Peier Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Chenxing Fu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523059, P. R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| |
Collapse
|
4
|
Green JP, Souilhol C, Xanthis I, Martinez-Campesino L, Bowden NP, Evans PC, Wilson HL. Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling. Cardiovasc Res 2019; 114:324-335. [PMID: 29126223 PMCID: PMC5852506 DOI: 10.1093/cvr/cvx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Methods and results Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory) shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluorescent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 µM 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this process required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7 expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow induced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism. Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta. Conclusions These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic signalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or reduce atherosclerosis.
Collapse
Affiliation(s)
- Jack P Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ioannis Xanthis
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Laura Martinez-Campesino
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Neil P Bowden
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield, UK.,INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Heather L Wilson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Garczorz W, Gallego-Colon E, Kosowska A, Kłych-Ratuszny A, Woźniak M, Marcol W, Niesner KJ, Francuz T. Exenatide exhibits anti-inflammatory properties and modulates endothelial response to tumor necrosis factor α-mediated activation. Cardiovasc Ther 2018; 36. [PMID: 29283509 DOI: 10.1111/1755-5922.12317] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Cardiovascular disease is the main cause of mortality and morbidity in the industrialized world. Incretin-mimetic compounds such as exenatide are currently used in the treatment of type 2 diabetes. AIMS We investigated the effects of incretin drugs on apoptosis, adhesion molecule expression, and concentration of extracellular matrix (ECM) metalloproteinases under inflammatory conditions within the context of atherosclerotic plaque formation of both human coronary artery endothelial cells (hCAECs) and human aortic endothelial cells (hAoECs). TNF-α-stimulated hCAEC and hAoEC were treated with exenatide (1 and 10 nmol/L) and GLP-1 (10 and 100 nmol/L) then evaluated for caspase 3/7 activity and assayed for protein levels of adhesion molecules sICAM-1, sVCAM-1, and P-selectin. Concentrations of matrix metalloproteinases (MMPs) MMP-1, MMP-2, MMP-9, and their inhibitors-tissue inhibitor of metalloproteinases (TIMPs), TIMP-1, TIMP-2 were also measured to evaluate the effects on extracellular matrix turnover within an inflammatory environment. Intracellular signaling pathways were evaluated via transfection of endothelial cells with a GFP vector under the NF-κB promoter. RESULTS Our experimental data suggest that GLP-1 receptor (GLP-1R) agonists downregulate activation of NF-κB and adhesion molecules ICAM and VCAM, but not P-selectin, in both endothelial cell lines. Exendin-4 and GLP-1 modulate the expression of MMPs and TIMPs, with statistically significant effects observed at high concentrations of both incretins. Expressive modulation may be mediated by NF-κB as observed by activation of the vector when stimulated under inflammatory conditions. CONCLUSION These findings indicate that GLP-1 analogs have anti-inflammatory properties in endothelial cells that may play an important role in preventing atherosclerosis.
Collapse
Affiliation(s)
- Wojciech Garczorz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Enrique Gallego-Colon
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kosowska
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kłych-Ratuszny
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Woźniak
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - K J Niesner
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
7
|
Schrimpf C, Koppen T, Duffield J, Böer U, David S, Ziegler W, Haverich A, Teebken O, Wilhelmi M. TIMP3 is Regulated by Pericytes upon Shear Stress Detection Leading to a Modified Endothelial Cell Response. Eur J Vasc Endovasc Surg 2017; 54:524-533. [DOI: 10.1016/j.ejvs.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
|
8
|
Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, Zhang H, Liu A. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. ACTA ACUST UNITED AC 2017; 49:S0100-879X2016000700606. [PMID: 27383124 PMCID: PMC4942229 DOI: 10.1590/1414-431x20165326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/29/2016] [Indexed: 01/15/2023]
Abstract
Quercetin shows protective effects against hepatopulmonary syndrome (HPS), as demonstrated in a rat model. However, whether these effects involve pulmonary vascular angiogenesis in HPS remains unclear. Therefore, this study aimed to assess the effect of quercetin on pulmonary vascular angiogenesis and explore the underlying mechanisms. Male Sprague-Dawley rats weighing 200-250 g underwent sham operation or common bile duct ligation (CBDL). Two weeks after surgery, HIF-1α and NFκB levels were assessed in rat lung tissue by immunohistochemistry and western blot. Then, CBDL and sham-operated rats were further divided into 2 subgroups each to receive intraperitoneal administration of quercetin (50 mg/kg daily) or 0.2% Tween for two weeks: Sham (Sham+Tween; n=8), CBDL (CBDL+Tween; n=8), Q (Sham+quercetin; n=8), and CBDL+Q (CBDL+quercetin; n=8). After treatment, lung tissue specimens were assessed for protein (immunohistochemistry and western blot) and/or gene expression (quantitative real-time PCR) levels of relevant disease markers, including VEGFA, VEGFR2, Akt/p-Akt, HIF-1α, vWf, and IκB/p-IκB. Finally, arterial blood was analyzed for alveolar arterial oxygen pressure gradient (AaPO2). Two weeks after CBDL, HIF-1α expression in the lung decreased, but was gradually restored at four weeks. Treatment with quercetin did not significantly alter HIF-1α levels, but did reduce AaPO2 as well as lung tissue NF-κB activity, VEGFA gene and protein levels, Akt activity, and angiogenesis. Although hypoxia is an important feature in HPS, our findings suggest that HIF-1α was not the main cause for the VEGFA increase. Interestingly, quercetin inhibited pulmonary vascular angiogenesis in rats with HPS, with involvement of Akt/NF-κB and VEGFA/VEGFR-2 pathways.
Collapse
Affiliation(s)
- X Li
- Department of Physiology, Changzhi Medical College, Changzhi, China
| | - Y Chen
- Department of Microbiology, Changzhi Medical College, Changzhi, China
| | - L Wang
- Functional Laboratory of Changzhi Medical College, Changzhi, China
| | - G Shang
- Department of Physiology, Changzhi Medical College, Changzhi, China
| | - C Zhang
- Department of Physiology, Changzhi Medical College, Changzhi, China
| | - Z Zhao
- Liver Disease Institute of Changzhi Medical College, Changzhi, China
| | - H Zhang
- Department of Physiology, Changzhi Medical College, Changzhi, China
| | - A Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 2016; 3:257-67. [PMID: 27482467 PMCID: PMC4966293 DOI: 10.1093/rb/rbw021] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Shisui Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Xiang Xie
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Yiming Zheng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Kang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Wanqian Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Hans Gregersen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| |
Collapse
|
10
|
Gitsioudis G, Chatzizisis YS, Wolf P, Missiou A, Antoniadis AP, Mitsouras D, Bartling S, Arica Z, Stuber M, Rybicki FJ, Nunninger M, Erbel C, Libby P, Giannoglou GD, Katus HA, Korosoglou G. Combined non-invasive assessment of endothelial shear stress and molecular imaging of inflammation for the prediction of inflamed plaque in hyperlipidaemic rabbit aortas. Eur Heart J Cardiovasc Imaging 2016; 18:19-30. [PMID: 27013245 DOI: 10.1093/ehjci/jew048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS To evaluate the incremental value of low endothelial shear stress (ESS) combined with high-resolution magnetic resonance imaging (MRI)- and computed tomography angiography (CTA)-based imaging for the prediction of inflamed plaque. METHODS AND RESULTS Twelve hereditary hyperlipidaemic rabbits underwent quantitative analysis of plaque in the thoracic aorta with 256-slice CTA and USPIO-enhanced (ultra-small superparamagnetic nanoparticles, P904) 1.5-T MRI at baseline and at 6-month follow-up. Computational fluid dynamics using CTA-based 3D reconstruction of thoracic aortas identified the ESS patterns in the convex and concave curvature subsegments of interest. Subsegments with low baseline ESS exhibited significant increase in wall thickness and plaque inflammation by MRI, in non-calcified plaque burden by CTA, and developed increased plaque size, lipid and inflammatory cell accumulation (high-risk plaque features) at follow-up by histopathology. Multiple regression analysis identified baseline ESS and inflammation by MRI to be independent predictors of plaque progression, while receiver operating curve analysis revealed baseline ESS alone or in combination with inflammation by MRI as the strongest predictor for augmented plaque burden and inflammation (low ESS at baseline: AUC = 0.84, P < 0.001; low ESS and inflammation by molecular MRI at baseline: AUC = 0.89, P < 0.001). CONCLUSION Low ESS predicts progression of plaque burden and inflammation as assessed by non-invasive USPIO-enhanced MRI. Combined non-invasive assessment of ESS and imaging of inflammation may serve to predict plaque with high-risk features.
Collapse
Affiliation(s)
| | - Yiannis S Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, Nebraska, USA .,First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Wolf
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Anna Missiou
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Antonios P Antoniadis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dimitrios Mitsouras
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sönke Bartling
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Zeynep Arica
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Stuber
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Biomedical Imaging, University Hospital Lausanne, Lausanne, Switzerland
| | - Frank J Rybicki
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Nunninger
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Christian Erbel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Peter Libby
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George D Giannoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
11
|
Baeyens N, Nicoli S, Coon BG, Ross TD, Van den Dries K, Han J, Lauridsen HM, Mejean CO, Eichmann A, Thomas JL, Humphrey JD, Schwartz MA. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 2015; 4. [PMID: 25643397 PMCID: PMC4337723 DOI: 10.7554/elife.04645] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or ‘set point’, that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo. DOI:http://dx.doi.org/10.7554/eLife.04645.001 Blood and lymphatic vessels remodel their shape, diameter and connections during development, and throughout life in response to growth, exercise and disease. This process is called vascular remodeling. The endothelial cells that line the inside of blood and lymphatic vessels are constantly exposed to the frictional force from flowing blood, termed fluid shear stress. Changes in shear stress are sensed by the endothelial cells, which trigger vascular remodeling to return the stress to the original level. It has been proposed that remodeling is governed by a preferred level of fluid shear stress, or set point, against which deviations in the shear stress are compared. Thus, changing the fluid flow through a blood vessel increases or decreases shear stress, which results in the vessel remodeling to restore the original level of shear stress. Like all remodeling, this process involves inflammation to recruit white blood cells, which assist with the process. Baeyens et al. investigated whether such a shear stress set point exists and what its biological basis might be using cultured endothelial cells from human umbilical veins. These cells remained stable and in a resting state when a particular level of shear stress was applied to them; above or below this shear stress level, the cells produced an inflammatory response like that seen during vascular remodeling. This suggests that these cells do indeed have a set point for shear stress. The same response occurred in human lymphatic endothelial cells, although in these cells the shear stress set point was much lower, correlating with the low flow in lymphatic vessels. Baeyens et al. then discovered that the shear stress set point is related to the level of a protein called VEGFR3 in the cells, which was recently found to participate in shear stress sensing. Endothelial cells from lymphatic vessels normally produce much greater quantities of VEGFR3 than those from blood vessels. Reducing the amount of VEGFR3 in lymphatic endothelial cells increased the set point shear stress, while increasing the levels in blood vessel cells decreased the set point. This suggests that the levels of this protein account for the difference in the response of these two cell types. Baeyens et al. then tested this pathway by reducing the levels of VEGFR3 in zebrafish embryos and in adult mice. In both animals, this caused arteries to narrow, showing that VEGFR3 levels also control sensitivity to shear stress—and hence vascular remodeling—inside living creatures. Understanding in detail how vascular remodeling is regulated could help improve treatments for a wide range of cardiovascular conditions. To do so, further work will be needed to develop methods to control the sensitivity of endothelial cells to shear stress and to identify other proteins that might specifically control the narrowing or the expansion of vessels in human patients. DOI:http://dx.doi.org/10.7554/eLife.04645.002
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Stefania Nicoli
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Brian G Coon
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Tyler D Ross
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Koen Van den Dries
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jinah Han
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Holly M Lauridsen
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Cecile O Mejean
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Martin A Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
12
|
Li J, Zhang K, Wu J, Liao Y, Yang P, Huang N. Co-culture of endothelial cells and patterned smooth muscle cells on titanium: Construction with high density of endothelial cells and low density of smooth muscle cells. Biochem Biophys Res Commun 2015; 456:555-61. [DOI: 10.1016/j.bbrc.2014.10.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022]
|
13
|
Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm 2013; 2013:928315. [PMID: 23840100 PMCID: PMC3694547 DOI: 10.1155/2013/928315] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022] Open
Abstract
Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction with extracellular matrix (ECM) play a critical role in the processes. Matrix metalloproteinases (MMPs), well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.
Collapse
|
14
|
Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress. Cell Mol Bioeng 2011; 4:547-559. [PMID: 22247741 DOI: 10.1007/s12195-011-0208-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The process of sprouting angiogenesis involves activating endothelial cells in a quiescent monolayer of an existing vessel to degrade and migrate into the underlying matrix to form new blood vessels. While the roles of biochemical factors in angiogenic sprouting have been well characterized, the roles of fluid forces have received much less attention. This review summarizes results that support a role for wall shear stress in post-capillary venules as a mechanical factor capable of synergizing with biochemical factors to stimulate pro-angiogenic signaling in endothelial cells and promote sprout formation.
Collapse
|
15
|
Takahashi S, Papafaklis MI, Sakamoto S, Antoniadis AP, Coskun AU, Feldman CL, Stone PH. The effect of statins on high-risk atherosclerotic plaque associated with low endothelial shear stress. Curr Opin Lipidol 2011; 22:358-364. [PMID: 21841484 DOI: 10.1097/mol.0b013e32834ab106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Low endothelial shear stress (ESS) plays an important role in the progression and severity of atherosclerotic lesions. As 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) appear to stabilize plaque, it would be valuable to understand how statins affect the nature of lesions in the proatherogenic and proinflammatory environment of low ESS and the effect of statins on that atherosclerotic process. The purpose of this review is to summarize the relationship among low ESS, high-risk plaque and statins. RECENT FINDINGS Low ESS is a critically important determinant of plaque development and progression to high-risk plaques with large necrotic lipid core, intensive inflammation and thin fibrous cap. In addition to the proatherogenic phenotypic switching in areas of low ESS, local LDL cholesterol concentrations are also increased in areas of low ESS, which exacerbates the local atherogenic process. In experimental models, statins appear to reduce the inflammation in lesions associated with low ESS and reduce the atherosclerotic phenotype even in these high-risk prone vascular areas. SUMMARY The relationship between low ESS and statins has not been fully investigated, but the available data underscore the vasculoprotective effect of statins. Understanding the mechanisms whereby statins reduce the atherogenic and inflammatory phenotype resulting from a low ESS environment would provide new insights to design strategies to prevent regional formation of high-risk, inflamed plaques likely to rupture and cause an adverse clinical event.
Collapse
Affiliation(s)
- Saeko Takahashi
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Bridoux A, Khan RA, Chen C, Chevé G, Cui H, Dyskin E, Yasri A, Mousa SA. Design, synthesis, and biological evaluation of bifunctional thyrointegrin inhibitors: new anti-angiogenesis analogs. J Enzyme Inhib Med Chem 2011; 26:871-82. [DOI: 10.3109/14756366.2011.557023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre Bridoux
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Vascular Vision Pharmaceuticals, Rensselaer, NY, USA
| | - Riaz A. Khan
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Department of Chemistry, Manav Rachna International University (MRIU), Faridabad, Haryana, India
| | - Celei Chen
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Gwenaël Chevé
- NOVADECISION, Rond point Benjamin Franklin–C539521, 34950 Montpellier Cedex 2, France
| | - Huadong Cui
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Evgeny Dyskin
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Aziz Yasri
- NOVADECISION, Rond point Benjamin Franklin–C539521, 34950 Montpellier Cedex 2, France
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Vascular Vision Pharmaceuticals, Rensselaer, NY, USA
- King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Chatzizisis YS, Baker AB, Sukhova GK, Koskinas KC, Papafaklis MI, Beigel R, Jonas M, Coskun AU, Stone BV, Maynard C, Shi GP, Libby P, Feldman CL, Edelman ER, Stone PH. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 2011; 123:621-630. [PMID: 21282495 PMCID: PMC3066078 DOI: 10.1161/circulationaha.110.970038] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 11/30/2010] [Indexed: 11/16/2022]
Abstract
Background- The molecular mechanisms that determine the localized formation of thin-capped atheromata in the coronary arteries remain unknown. This study tested the hypothesis that low endothelial shear stress augments the expression of matrix-degrading proteases and thereby promotes the formation of thin-capped atheromata. Methods and Results- Intravascular ultrasound-based, geometrically correct 3-dimensional reconstruction of the coronary arteries of 12 swine was performed in vivo 23 weeks after initiation of diabetes mellitus and a hyperlipidemic diet. Local endothelial shear stress was calculated in plaque-free subsegments of interest (n=142) with computational fluid dynamics. At week 30, the coronary arteries (n=31) were harvested and the same subsegments were identified. The messenger RNA and protein expression and elastolytic activity of selected elastases and their endogenous inhibitors were assessed. Subsegments with low preceding endothelial shear stress at week 23 showed reduced endothelial coverage, enhanced lipid accumulation, and intense infiltration of activated inflammatory cells at week 30. These lesions showed increased expression of messenger RNAs encoding matrix metalloproteinase-2, -9, and -12, and cathepsins K and S relative to their endogenous inhibitors and increased elastolytic activity. Expression of these enzymes correlated positively with the severity of internal elastic lamina fragmentation. Thin-capped atheromata developed in regions with lower preceding endothelial shear stress and had reduced endothelial coverage, intense lipid and inflammatory cell accumulation, enhanced messenger RNA expression and elastolytic activity of MMPs and cathepsins, and severe internal elastic lamina fragmentation. Conclusions- Low endothelial shear stress induces endothelial discontinuity and accumulation of activated inflammatory cells, thereby augmenting the expression and activity of elastases in the intima and shifting the balance with their inhibitors toward matrix breakdown. Our results provide new insight into the mechanisms of regional formation of plaques with thin fibrous caps.
Collapse
Affiliation(s)
- Yiannis S Chatzizisis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
WANG RUI, LI ZHAOQING, HAN XU, LI BAILIN, MI XIAOYI, SUN LIMEI, SONG MIN, HAN YANCHUN, ZHAO YAN, WANG ENHUA. Integrin β3 and its ligand regulate the expression of uPA through p38 MAPK in breast cancer. APMIS 2010; 118:909-17. [DOI: 10.1111/j.1600-0463.2010.02687.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci U S A 2010; 107:15886-91. [PMID: 20798044 DOI: 10.1073/pnas.1001253107] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a newly discovered homolog of ACE whose actions oppose those of angiotensin II (AngII). However, the underlying mechanisms by which ACE2 effectively suppresses early atherosclerotic lesions remain poorly understood. Here, we show, both in vitro and in vivo, that ACE2 inhibited the development of early atherosclerotic lesions by suppressing the growth of vascular smooth muscle cells (VSMCs) and improving endothelial function. In a relatively large cohort animal study (66 rabbits), aortic segments transfected by Ad-ACE2 showed significantly attenuated fatty streak formation, neointimal macrophage infiltration, and alleviation of impaired endothelial function. Segments also showed decreased expression of monocyte chemoattractant protein 1, lectin-like oxidized low-density lipoprotein receptor 1, and proliferating cell nuclear antigen, which led to the delayed onset of atherosclerotic lesions. At the cellular level, ACE2 significantly modulated AngII-induced growth and migration in human umbilical vein endothelial cells and VSMCs. The antiatherosclerotic effect of ACE2 involved down-regulation of the ERK-p38, JAK-STAT, and AngII-ROS-NF-kappaB signaling pathways and up-regulation of the PI3K-Akt pathway. These findings revealed the molecular mechanisms of the antiatherosclerotic activity of ACE2 and suggested that modulation of ACE2 could offer a therapeutic option for treating atherosclerosis.
Collapse
|
21
|
Di Simone N, Di Nicuolo F, D'Ippolito S, Castellani R, Tersigni C, Caruso A, Meroni P, Marana R. Antiphospholipid Antibodies Affect Human Endometrial Angiogenesis1. Biol Reprod 2010; 83:212-9. [DOI: 10.1095/biolreprod.110.083410] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
22
|
Young SRL, Gerard-O'Riley R, Harrington M, Pavalko FM. Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts. Bone 2010; 47:74-82. [PMID: 20353839 PMCID: PMC2891440 DOI: 10.1016/j.bone.2010.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/24/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
When bone is mechanically loaded fluid shear stress (FSS) is generated as a result of the movement of interstitial fluid across the membranes of osteoblasts and osteocytes. This external mechanical loading stimulates changes in the activity of cytoplasmic signaling molecules and alters gene expression in bone cells. This process, referred to as mechanotransduction, is vital for maintaining bone health in vivo by regulating the balance between bone formation and bone resorption. This current study focuses on the role of focal adhesions, sites of integrin-mediated cellular attachment to the extracellular matrix, and their proposed function as mechanosensors in bone cells. We examined the role of a key component of focal adhesions and of mechanotransduction, focal adhesion kinase (FAK) in regulation of FSS- and tumor necrosis factor-alpha (TNF-alpha)-induced activation of nuclear factor-kappa B (NF-kappaB) signaling in osteoblasts. Immortalized FAK(+/+) and FAK(-)(/)(-) osteoblasts were exposed to periods of oscillatory fluid shear stress (OFF) and NF-kappaB activation was analyzed. We determined that FAK is required for OFF-induced nuclear translocation and activation of NF-kappaB in osteoblasts. In addition we found that OFF-induced phosphorylation of the IkappaB kinases (IKKalpha/beta) in both FAK(+/+) and FAK(-/-) osteoblasts, but only FAK(+/+) osteoblasts demonstrated the resulting degradation of NF-kappaB inhibitors IkappaBalpha and IkappaBbeta. OFF did not induce the degradation of IkappaBepsilon or the processing of p105 in either FAK(+/+) and FAK(-/-) osteoblasts. To compare the role of FAK in mediating OFF-induced mechanotransduction to the well characterized activation of NF-kappaB by inflammatory cytokines, we exposed FAK(+/+) and FAK(-/-) osteoblasts to TNF-alpha. Interestingly, FAK was not required for TNF-alpha induced NF-kappaB activation in osteoblasts. In addition we determined that TNF-alpha treatment did not induce the degradation of IkappaBbeta as did OFF. These data indicate a novel relationship between FAK and NF-kappaB activation in osteoblast mechanotransduction and demonstrates that the mechanism of FSS-induced NF-kappaB activation in osteoblasts differs from the well characterized TNF-alpha-induced activation.
Collapse
Affiliation(s)
- Suzanne R L Young
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
23
|
Gene expression patterns of osteocyte-like MLO-Y4 cells in response to cyclic compressive force stimulation. Cell Biol Int 2010; 34:425-32. [DOI: 10.1042/cbi20090061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Magnussen AL, Rennel ES, Hua J, Bevan HS, Beazley Long N, Lehrling C, Gammons M, Floege J, Harper SJ, Agostini HT, Bates DO, Churchill AJ. VEGF-A165b is cytoprotective and antiangiogenic in the retina. Invest Ophthalmol Vis Sci 2010; 51:4273-81. [PMID: 20237249 DOI: 10.1167/iovs.09-4296] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A(165), the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A(165)b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF(165)b and its effect on retinal epithelial and endothelial cell survival. METHODS VEGF-A(165)b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A(165)b. RESULTS VEGF-A(165)b dose dependently inhibited angiogenesis (IC(50), 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A(165) across monolayers in culture (IC(50), 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A(165)b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC(50), 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A(165)b. CONCLUSIONS The survival effects of VEGF-A(165)b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A(165)b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Anette L Magnussen
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shin HW, Han DH, Lim YS, Kim HJ, Kim DY, Lee CH, Min YG, Rhee CS. Nonasthmatic nasal polyposis patients with allergy exhibit greater epithelial MMP positivity. Otolaryngol Head Neck Surg 2009; 141:442-7. [PMID: 19786210 DOI: 10.1016/j.otohns.2009.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/02/2009] [Accepted: 07/23/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the influence of allergic rhinitis (AR) on the expression of matrix metalloproteinase (MMP)-9, MMP-2, and tissue inhibitor-1 of metalloproteinase (TIMP-1) in nasal polyposis. STUDY DESIGN A case-control study. SETTING A tertiary referral center. SUBJECTS AND METHODS The expression of MMP-9, MMP-2, and TIMP-1 was investigated in the nasal polyp tissue (NP) and maxillary sinus mucosa (MM) samples from 20 AR patients and 20 nonallergic patients undergoing endoscopic sinus surgery. Trichrome, periodic acid-Schiff, and hematoxylin-eosin staining were also performed and those expression levels were compared. RESULTS Infiltration of eosinophils was shown more intensely in NP rather than in MM, especially in the presence of AR. In the NP of AR patients, increased expression of MMP-9, MMP-2, and TIMP-1 was observed more prominently than in that of the control group. In case of MM, however, there was no significant difference between AR patients and the control group. CONCLUSION The presence of AR may enhance the expression of MMP-9, MMP-2, and TIMP-1 associated with airway remodeling in nasal polyposis.
Collapse
Affiliation(s)
- Hyun-Woo Shin
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Koskinas KC, Chatzizisis YS, Baker AB, Edelman ER, Stone PH, Feldman CL. The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Curr Opin Cardiol 2009; 24:580-90. [PMID: 19809311 PMCID: PMC10926252 DOI: 10.1097/hco.0b013e328331630b] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Local hemodynamic factors are major determinants of the natural history of individual atherosclerotic plaque progression in coronary arteries. The purpose of this review is to summarize the role of low endothelial shear stress (ESS) in the transition of early, stable plaques to high-risk atherosclerotic lesions. RECENT FINDINGS Low ESS regulates multiple pathways within the atherosclerotic lesion, resulting in intense vascular inflammation, progressive lipid accumulation, and formation and expansion of a necrotic core. Upregulation of matrix-degrading proteases promotes thinning of the fibrous cap, severe internal elastic lamina fragmentation, and extracellular matrix remodeling. In the setting of plaque-induced changes of the local ESS, coronary regions persistently exposed to very low ESS develop excessive expansive remodeling, which further exacerbates the proinflammatory low ESS stimulus. Recent studies suggest that the effect of recognized cardioprotective medications may be mediated by attenuation of the proinflammatory effect of the low ESS environment in which a plaque develops. SUMMARY Low ESS determines the severity of vascular inflammation, the status of the extracellular matrix, and the nature of wall remodeling, all of which synergistically promote the transition of stable lesions to thin cap fibroatheromata that may rupture with subsequent formation of an occlusive thrombus and result in an acute coronary syndrome.
Collapse
Affiliation(s)
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Aaron B. Baker
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Elazer R. Edelman
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Peter H. Stone
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Charles L. Feldman
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Castier Y, Ramkhelawon B, Riou S, Tedgui A, Lehoux S. Role of NF-kappaB in flow-induced vascular remodeling. Antioxid Redox Signal 2009; 11:1641-9. [PMID: 19320561 DOI: 10.1089/ars.2008.2393] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vascular remodeling associated with increased blood flow involves reactive oxygen species (ROS)-dependent activation of matrix metalloproteinases (MMPs). To investigate the potential role of NF-kappaB in this process, human umbilical vein endothelial cells were subjected to different flow conditions during a 24-h period. Normal (15 dynes/cm(2)) and high (30 dynes/cm(2)) shear stress induced IkappaBalpha degradation and NF-kappaB p65 phosphorylation, and activated MMP-2 and MMP-9. These effects were blunted in cells incubated with the NF-kappaB inhibitor pyrrolidine dithio-carbamate (PDTC). In mice, creation of a carotid artery-jugular vein arteriovenous fistula (AVF) increased carotid blood flow sixfold, triggering the increase in carotid diameter from 459 +/- 8 microm (before AVF) to 531 +/- 13 and 669 +/- 21 microm (7 and 21 days after AVF). ROS production and NF-kappaB activity were enhanced in fistulated carotids, but only the latter was blocked by PDTC, although PDTC blocked ROS production in vitro. In PDTC-treated mice, changes in carotid caliber and shear stress matched controls at 7 days, but carotids enlarged only marginally thereafter, reaching only 578 +/- 8 microm at 21 days (p < 0.01 vs. untreated). Similarly, both MMP-9 expression and activity were abrogated by PDTC at 3 weeks. Hence, induction of NF-kappaB by shear stress contributes to MMP induction and allows long-term flow-induced vascular enlargement.
Collapse
Affiliation(s)
- Yves Castier
- Parts Cardiovascular Research Center, Inserm U970, HEGP, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Effect of metoprolol on vulnerable plaque in rabbits by changing shear stress around plaque and reducing inflammation. Eur J Pharmacol 2009; 613:79-85. [PMID: 19356726 DOI: 10.1016/j.ejphar.2009.03.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/22/2009] [Accepted: 03/31/2009] [Indexed: 11/22/2022]
Abstract
The beta-adrenoceptor antagonists are known to reduce cardiovascular events, but less is known about their effects on vulnerable plaque. The purpose of this study is to explore the role of metoprolol on vulnerable plaque and the possible mechanism. Vulnerable plaque model was established by local transfection with p53 gene in New Zealand Rabbits. Metoprolol treatment attenuated vessel positive remodeling and reduced vulnerability index (1.61+/-0.58 vs. 2.33+/-0.12, P<0.01). Although the difference did not reach statistical significance, the rate of rupture of atherosclerotic plaque (31% vs. 75%) and intima-media thickness (0.05+/-0.01 vs. 0.08+/-0.01 cm) were less in the metoprolol group than in the control group. The level of shear stress-related inflammatory cytokines such as intercellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), matrix metalloproteinase 1 (MMP-1), were lower in the metoprolol group than in the control group (P<0.01). Compared with control group, total cholesterol and low-density lipoprotein cholesterol were lower (P<0.01) in the metoprolol group. After metoprolol treatment, shear stress increased, and was not different to baseline (physiological shear stress, P>0.05). Shear stress and vulnerability index showed a negative correlation. These findings suggest that metoprolol could inhibit the development of atherosclerosis and stabilize vulnerable plaque by regulation of lipid and reduction of inflammation, in which the change from low shear stress to physiological shear stress around plaque may play an important role.
Collapse
|
29
|
Jiang L, Wei XF, Yi DH, Xu P, Liu H, Chang Q, Yang SM, Li ZF, Gao HB, Hao GJ. Synergistic effects of cyclic strain and Th1-like cytokines on tenascin-C production by rheumatic aortic valve interstitial cells. Clin Exp Immunol 2009; 155:216-23. [PMID: 19040616 PMCID: PMC2675252 DOI: 10.1111/j.1365-2249.2008.03747.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2008] [Indexed: 12/19/2022] Open
Abstract
Tenascin-C (TN-C) is a key component of extracellular matrix (ECM) and its expression process is poorly understood during rheumatic heart valvular disease (RHVD). In this study, we found that interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha and TN-C concentrations in patients with RHVD were significantly higher than in normal controls. More IFN-gamma receptors and TNF receptors were found being expressed on rheumatic aortic valves interstitial cells than on non-rheumatic ones and their expression was patients' sera dependent. Antibodies neutralizing IFN-gamma or TNF-alpha could attenuate patients' sera-induced TN-C transcription by isolated rheumatic aortic valves interstitial cells. By application with different protein kinase inhibitors, we found that combined with cyclic strain, TNF-alpha and IFN-gamma induced TN-C transcription through the RhoA/ROCK signalling pathway. At the same time, p38 mitogen-activated protein kinase was involved in TNF-alpha and IFN-gamma induced TN-C transcription. TNF-alpha also increased TN-C mRNA level by additional PKC and ERK 1/2 activation. Our finding revealed a new insight into ECM remodelling during RHVD pathogenesis and new mechanisms involved in the clinical anti-IFN-gamma and anti-TNF-alpha therapy.
Collapse
Affiliation(s)
- L Jiang
- Department of Cardiac Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lowering caveolin-1 expression in human vascular endothelial cells inhibits signal transduction in response to shear stress. Int J Cell Biol 2008; 2009:532432. [PMID: 20111626 PMCID: PMC2809413 DOI: 10.1155/2009/532432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/19/2008] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial cells have an extensive response to physiological levels of shear stress. There is evidence that the protein caveolin-1 is involved in the early phase of this response. In this study, caveolin-1 was downregulated in human endothelial cells by RNAi. When these cells were subjected to a shear stress of 15 dyn/cm(2) for 10 minutes, activation of Akt and ERK1/2 was significantly lower than in control cells. Moreover, activation of Akt and ERK1/2 in response to vascular endothelial growth factor was significantly lower in cells with low levels of caveolin-1. However, activation of integrin-mediated signaling during cell adhesion onto fibronectin was not hampered by lowered caveolin-1 levels. In conclusion, caveolin-1 is an essential component in the response of endothelial cells to shear stress. Furthermore, the results suggest that the role of caveolin-1 in this process lies in facilitating efficient VEGFR2-mediated signaling.
Collapse
|
31
|
Martínez-Poveda B, Muñoz-Chápuli R, Riguera R, Fernández A, Medina MA, Quesada AR. DTD, an anti-inflammatory ditriazine, inhibits angiogenesis in vitro and in vivo. J Cell Mol Med 2008; 12:1211-9. [PMID: 18782185 PMCID: PMC3865665 DOI: 10.1111/j.1582-4934.2008.00147.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ditriazine derivative DTD (4,10-dichloropyrido[5,6:4,5]thieno[3,2-d':3,2-d]-1,2,3-ditriazine) has been previously reported to reduce the degree of granulomatous inflammation and vascular density in a murine air pouch granuloma model. The aim of this study was to test whether DTD affects angiogenesis. Our results show that DTD inhibits in vivo angiogenesis in the chorioallantoic membrane (CAM) assay at doses equal or lower than 0.3 nmol/egg. Different in vitro assays were used to study the potential effects of this compound on key steps of angiogenesis, namely, a colorimetric assay of cell proliferation/viability, a morphogenesis on Matrigel assay, zymographic assays for gelatinases and nuclear morphology and cell cycle analysis for apoptosis induction. Our data indicate that DTD inhibits proliferation but does not induce apoptosis in endothelial cells in vitro. DTD suppresses the endothelial capillary-like chord formation at concentrations lower than those required to inhibit proliferation. DTD treatment inhibits the matrix metalloproteinase-2 production in endothelial and fibrosarcoma cells, but does not affect the cyclooxygenase-2 expression in endothelial cells, as assessed by western blot analysis. Taken together, results here presented indicate that DTD exhibits an anti-angiogenic activity that is independent of inflammatory processes and make it a promising drug for further evaluation in the treatment of angiogenesis-related pathologies.
Collapse
Affiliation(s)
- Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Qi Q, Lu N, Wang XT, Gu HY, Yang Y, Liu W, Li C, You QD, Guo QL. Anti-invasive effect of gambogic acid in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol 2008; 86:386-95. [DOI: 10.1139/o08-104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gambogic acid (GA) has been known to have antitumor activity in vitro and in vivo. In the present study, we investigated the anti-invasive effects of GA in MDA-MB-231 human breast carcinoma cells. The results indicated that GA significantly inhibited the adhesion, migration, and invasion of the cells in vitro tested by the heterotypic adhesion assay, wound migration assay, and chamber invasion assay. Results of Western blotting and immunocytochemistry analysis showed that GA could suppress the expressions of matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) in MDA-MB-231 cells. Furthermore, gelatin zymography revealed that GA decreased the activities of MMP-2 and MMP-9. Additionally, GA exerted an inhibitory effect on the phosphorylation of ERK1/2 and JNK, while it had no effect on p38. Taken together, our results demonstrated the anti-invasive property of GA for the first time and indicated it could serve as a promising drug for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Qi Qi
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Na Lu
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xiao-tang Wang
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Hong-yan Gu
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yong Yang
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Wei Liu
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Chenglin Li
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Qi-dong You
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Qing-long Guo
- Key Laboratory of Carcinogenesis and Intervention, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People’s Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
33
|
The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput 2008; 46:479-84. [PMID: 18228072 PMCID: PMC2329736 DOI: 10.1007/s11517-008-0304-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/10/2008] [Indexed: 12/24/2022]
Abstract
It is evident that hemodynamic factors have a dominant function already during early cardiogenesis. Flow and ensuing shear stress are sensed by endothelial cells by, ciliary modified, cytoskeletal deformation which then activates a number of subcellular structures and molecules. Shear stress dependent changes mostly converge towards NF kappa B signaling and DNA binding, thereby altering metabolic paths and influencing differentiation of the cells. Geometry of the vascular system heavily affects the flow and shear patterns, as is the case in the adult vasculature where atheroprone areas nicely coincide with the frequency of the primary cilium as shear stress sensor.
Collapse
|
34
|
Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch 2008; 457:963-77. [DOI: 10.1007/s00424-008-0563-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022]
|
35
|
Groenendijk BCW, Van der Heiden K, Hierck BP, Poelmann RE. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology (Bethesda) 2008; 22:380-9. [PMID: 18073411 DOI: 10.1152/physiol.00023.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, the role of wall shear stress in the chicken embryonic heart is analyzed to determine its effect on cardiac development through regulating gene expression. Therefore, background information is provided for fluid dynamics, normal chicken and human heart development, cardiac malformations, cardiac and vitelline blood flow, and a chicken model to induce cardiovascular anomalies. A set of endothelial shear stress-responsive genes coding for endothelin-1 (ET-1), lung Krüppel-like factor (LKLF/KLF2), and endothelial nitric oxide synthase (eNOS/NOS-3) are active in development and are specifically addressed.
Collapse
|
36
|
Arciniegas E, Carrillo LM, De Sanctis JB, Candelle D. Possible role of NFkappaB in the embryonic vascular remodeling and the endothelial mesenchymal transition process. Cell Adh Migr 2008; 2:17-29. [PMID: 19262121 DOI: 10.4161/cam.2.1.5789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The NFkappaB family of transcription factors, particularly the activated p50/p65 heterodimer, is expressed in vascular cells during intimal thickening formation when hemodynamic conditions are altered. Here, we report that p50, p65, IkappaBalpha and IKKalpha display different spatial and temporal patterns of expression and distribution during both chicken embryo aortic wall remodeling and intimal thickening development. Additionally, we show that both p50 and p65 were located in the nucleus of some mesenchymal cells expressing alpha-smooth muscle actin which are present in the spontaneous intimal thickening observed at embryonic days 12-14 of development. We also demonstrated that both NFkappaB subunits are present in monolayers of primary embryonic aortic endothelial cells attached to fibronectin and stimulated with complete medium. This study demonstrates for the first time the presence of activated NFkappaB during the remodeling of the embryonic aortic wall and the formation of intimal thickening, providing evidence that suggest a possible role for this transcription factor in the EndoMT process.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Facultad de Medicina, Servicio Autónomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | |
Collapse
|
37
|
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1358-75. [PMID: 17481747 DOI: 10.1016/j.bbamcr.2007.03.010] [Citation(s) in RCA: 1037] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 11/28/2022]
Abstract
Mammalian p38 mitogen-activated protein kinases (MAPKs) are activated by a wide range of cellular stresses as well as in response to inflammatory cytokines. There are four members of the p38MAPK family (p38alpha, p38beta, p38gamma and p38delta) which are about 60% identical in their amino acid sequence but differ in their expression patterns, substrate specificities and sensitivities to chemical inhibitors such as SB203580. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. The p38MAPK pathway is a key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of this pathway potential targets for the treatment of autoimmune and inflammatory diseases. However, recent studies have shed light on the broad effect of p38MAPK activation in the control of many other aspects of the physiology of the cell, such as control of cell cycle or cytoskeleton remodelling. Here we focus on these emergent roles of p38MAPKs and their implication in different pathologies.
Collapse
Affiliation(s)
- Ana Cuenda
- MRC Protein Phosphorylation Unit, College of life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | |
Collapse
|