1
|
Nicholas J, De SL, Thawornpan P, Brashear AM, Kolli SK, Subramani PA, Barnes SJ, Cui L, Chootong P, Ntumngia FB, Adams JH. Preliminary characterization of Plasmodium vivax sporozoite antigens as pre-erythrocytic vaccine candidates. PLoS Negl Trop Dis 2023; 17:e0011598. [PMID: 37703302 PMCID: PMC10519608 DOI: 10.1371/journal.pntd.0011598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Plasmodium vivax pre-erythrocytic (PE) vaccine research has lagged far behind efforts to develop Plasmodium falciparum vaccines. There is a critical gap in our knowledge of PE antigen targets that can induce functionally inhibitory neutralizing antibody responses. To overcome this gap and guide the selection of potential PE vaccine candidates, we considered key characteristics such as surface exposure, essentiality to infectivity and liver stage development, expression as recombinant proteins, and functional immunogenicity. Selected P. vivax sporozoite antigens were surface sporozoite protein 3 (SSP3), sporozoite microneme protein essential for cell traversal (SPECT1), sporozoite surface protein essential for liver-stage development (SPELD), and M2 domain of MAEBL. Sequence analysis revealed little variation occurred in putative B-cell and T-cell epitopes of the PE candidates. Each antigen was tested for expression as refolded recombinant proteins using an established bacterial expression platform and only SPELD failed. The successfully expressed antigens were immunogenic in vaccinated laboratory mice and were positively reactive with serum antibodies of P. vivax-exposed residents living in an endemic region in Thailand. Vaccine immune antisera were tested for reactivity to native sporozoite proteins and for their potential vaccine efficacy using an in vitro inhibition of liver stage development assay in primary human hepatocytes quantified on day 6 post-infection by high content imaging analysis. The anti-PE sera produced significant inhibition of P. vivax sporozoite invasion and liver stage development. This report provides an initial characterization of potential new PE candidates for a future P. vivax vaccine.
Collapse
Affiliation(s)
- Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Sai Lata De
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Awtum M. Brashear
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Pradeep Annamalai Subramani
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Samantha J. Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Liwang Cui
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
2
|
Cravo P, Machado RB, Leite JA, Leda T, Suwanarusk R, Bittencourt N, Albrecht L, Judice C, Lopes SCP, Lacerda MVG, Ferreira MU, Soares IS, Goh YS, Bargieri DY, Nosten F, Russell B, Rénia L, Costa FTM. In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate. Malar J 2018; 17:20. [PMID: 29316918 PMCID: PMC5761135 DOI: 10.1186/s12936-017-2144-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Technical limitations for culturing the human malaria parasite Plasmodium vivax have impaired the discovery of vaccine candidates, challenging the malaria eradication agenda. The immunogenicity of the M2 domain of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) antigen cloned from the Plasmodium yoelii murine parasite, has been previously demonstrated. RESULTS Detailed epitope mapping of MAEBL through immunoinformatics identified several MHCI, MHCII and B cell epitopes throughout the peptide, with several of these lying in the M2 domain and being conserved between P. vivax, P. yoelii and Plasmodium falciparum, hinting that the M2-MAEBL is pan-reactive. This hypothesis was tested through functional assays, showing that P. yoelii M2-MAEBL antisera are able to recognize and inhibit erythrocyte invasion from both P. falciparum and P. vivax parasites isolated from Thai patients, in ex vivo assays. Moreover, the sequence of the M2-MAEBL is shown to be highly conserved between P. vivax isolates from the Amazon and Thailand, indicating that the MAEBL antigen may constitute a vaccine candidate outwitting strain-specific immunity. CONCLUSIONS The MAEBL antigen is promising candidate towards the development of a malaria vaccine.
Collapse
Affiliation(s)
- Pedro Cravo
- Global Health and Tropical Medicine Centre (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira, nº 100, 1349-008, Lisbon, Portugal. .,GenoBio, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil. .,PPG-SOMA, Centro Universitário de Anápolis, Anápolis, GO, Brazil.
| | - Renato B Machado
- GenoBio, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana A Leite
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Taizy Leda
- GenoBio, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rossarin Suwanarusk
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Najara Bittencourt
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil.,Instituto Carlos Chagas, Fundação Oswaldo Cruz-FIOCRUZ, Curitiba, PR, Brazil
| | - Carla Judice
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stefanie C P Lopes
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil.,Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz-FIOCRUZ, Manaus, AM, Brazil
| | - Marcus V G Lacerda
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz-FIOCRUZ, Manaus, AM, Brazil.,Fundação de Medicina Tropical-Dr. Heitor Vieira Dourado, Gerência de Malária, Manaus, AM, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, University of São Paulo-USP, São Paulo, SP, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, Pharmaceutical Sciences, University of São Paulo-USP, São Paulo, SP, Brazil
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel Y Bargieri
- Department of Parasitology, University of São Paulo-USP, São Paulo, SP, Brazil
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fabio T M Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
3
|
Reyes C, Moreno-Vranich A, Patarroyo ME. The role of pi-interactions and hydrogen bonds in fully protective synthetic malaria vaccine development. Biochem Biophys Res Commun 2017; 484:501-507. [DOI: 10.1016/j.bbrc.2017.01.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
|
4
|
The Aotus nancymaae erythrocyte proteome and its importance for biomedical research. J Proteomics 2016; 152:131-137. [PMID: 27989940 DOI: 10.1016/j.jprot.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
The Aotus nancymaae species has been of great importance in researching the biology and pathogenesis of malaria, particularly for studying Plasmodium molecules for including them in effective vaccines against such microorganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte protein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a correlation between categories having the greatest amount of proteins and vital cell function. Integral membrane molecules were also identified which could be possible receptors facilitating interaction with Plasmodium species. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories interested in carrying out basic and applied biomedical investigation studies which involve using this primate. SIGNIFICANCE An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fascinating area for research regarding the study of the pathogenesis of malaria since these are the main target for Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains unknown. According to the above and bearing in mind the lack of information about the A. nancymaae species genome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra with the available information for Homo sapiens. The great similarity found between the primate's molecules and those for humans supported the use of the monkeys or their cells for continuing assays involved in studying malaria. Integral membrane receptors used by Plasmodium for invading cells were also found; this required timely characterisation for evaluating their therapeutic role. The list of erythrocyte protein composition reported here represents a useful source of basic knowledge for advancing biomedical investigation in this field.
Collapse
|
5
|
Curtidor H, Patiño LC, Arévalo-Pinzón G, Vanegas M, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides 2014; 53:210-7. [PMID: 23932940 DOI: 10.1016/j.peptides.2013.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Plasmodium falciparum malaria parasite invasion of erythrocytes is an essential step in host infection and the proteins involved in such invasion are the main target in developing an antimalarial vaccine. Secretory organelle-derived proteins (micronemal AMA1 protein and the RON2, 4, and 5 rhoptry neck proteins) have been recently described as components of moving junction complex formation allowing merozoites to move into a newly created parasitophorous vacuole. This study led to identifying RON5 regions involved in binding to human erythrocytes by using a highly robust, sensitive and specific receptor-ligand interaction assay; it is further shown that the RON5 protein remains highly conserved throughout different parasite strains. It is shown that the binding peptide-erythrocyte interaction is saturable and sensitive to chymotrypsin and trypsin. Invasion inhibition assays using erythrocyte binding peptides showed that the RON5-erythrocyte interaction could be critical for merozoite invasion of erythrocytes. This work provides evidence (for the first time) suggesting a fundamental role for RON5 in erythrocyte invasion.
Collapse
Affiliation(s)
- Hernando Curtidor
- Universidad de la Sabana, Km. 7, Autopista Norte, Bogotá, Colombia; Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia.
| | - Liliana C Patiño
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia
| | - Magnolia Vanegas
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia; Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia
| | - Manuel A Patarroyo
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia
| |
Collapse
|
6
|
Ocampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D studies ofMycobacterium tuberculosisprotein peptides for an effective anti-tuberculosis vaccine. Crit Rev Microbiol 2013; 40:117-45. [DOI: 10.3109/1040841x.2013.763221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine 2012; 30:637-46. [DOI: 10.1016/j.vaccine.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/27/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
|
8
|
Binding activity, structure, and immunogenicity of synthetic peptides derived from Plasmodium falciparum CelTOS and TRSP proteins. Amino Acids 2011; 43:365-78. [PMID: 21952731 DOI: 10.1007/s00726-011-1087-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/30/2011] [Indexed: 01/08/2023]
Abstract
Several sporozoite proteins have been associated with Plasmodium falciparum cell traversal and hepatocyte invasion, including the cell-traversal protein for ookinetes and sporozoites (CelTOS), and thrombospondin-related sporozoite protein (TRSP). CelTOS and TRSP amino acid sequences have been finely mapped to identify regions specifically binding to HeLa and HepG2 cells, respectively. Three high-activity binding peptides (HABPs) were found in CelTOS and one HABP was found in TRSP, all of them having high α-helical structure content. These HABPs' specific binding was sensitive to HeLa and HepG2 cells' pre-treatment with heparinase I and chondroitinase ABC. Despite their similarity at three-dimensional (3D) structural level, TRSP and TRAP HABPs located in the TSR domain did not compete for the same binding sites. CelTOS and TRSP HABPs were used as a template for designing modified sequences to then be assessed in the Aotus monkey experimental model. Antibodies directed against these modified HABPs were able to recognize both the native parasite protein by immunofluorescence assay and the recombinant protein (expressed in Escherichia coli) by Western blot and ELISA assays. The results suggested that these modified HABPs could be promising targets in designing a fully effective, antimalarial vaccine.
Collapse
|
9
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
10
|
Obando-Martinez AZ, Curtidor H, Vanegas M, Arévalo-Pinzón G, Patarroyo MA, Patarroyo ME. Conserved regions from Plasmodium falciparum MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells. J Cell Biochem 2010; 110:882-92. [DOI: 10.1002/jcb.22600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol 2010; 26:297-304. [PMID: 20347614 DOI: 10.1016/j.pt.2010.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/13/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Apicomplexan parasites possess specialized secretory organelles (rhoptries and micronemes) that release their contents during host cell invasion. Although the rhoptries were once thought to be merely a bulbous 'protein reservoir' connected to an anterior neck region, the localization of a protein specifically to the neck suggested that this region was more than just a duct. Recent studies have shown that the rhoptry neck sub-compartment possesses a distinct protein repertoire. Some of these proteins share common features, including conservation across the phylum and involvement in tight-junction formation. A sub-group of rhoptry neck proteins, the RONs, their association with the microneme protein apical membrane antigen AMA1, and their involvement in invasion are discussed.
Collapse
|
12
|
Pinzón CG, Curtidor H, García J, Vanegas M, Vizcaíno C, Patarroyo MA, Patarroyo ME. Sequences of the Plasmodium falciparum cytoadherence-linked asexual protein 9 implicated in malaria parasite invasion to erythrocytes. Vaccine 2010; 28:2653-63. [PMID: 20085836 DOI: 10.1016/j.vaccine.2010.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/17/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
In this study, we synthesized the complete sequence of the CLAG-9 protein as 67 20-mer-long non-overlapped peptides and assessed their ability to bind to erythrocytes in receptor-ligand assays. Twenty CLAG-9 peptides were found to have specific high-affinity binding ability to erythrocytes (thereby named as HABPs), with nanomolar dissociation constants. CLAG-9 HABPs interacted with different erythrocyte surface receptors having apparent molecular weights of 85, 63 and 34 kDa. CLAG-9 HABPs binding was also affected by pre-treatment of RBCs with enzymes and inhibited erythrocyte invasion in vitro by up to 72% at 200 microM. These results suggest that some protein fragments of CLAG-9 may be part of the molecular machinery used by malaria parasites to invade erythrocytes, hence supporting their study as possible vaccine candidates.
Collapse
|
13
|
García J, Curtidor H, Pinzón CG, Patarroyo MA, Vanegas M, Forero M, Patarroyo ME. Well-Defined Regions of the Plasmodium falciparum Reticulocyte Binding Protein Homologue 4 Mediate Interaction with Red Blood Cell Membrane. J Med Chem 2009; 53:811-21. [DOI: 10.1021/jm901540n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Carlos G. Pinzón
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia
| |
Collapse
|
14
|
Garcia J, Curtidor H, Obando-Martinez AZ, Vizcaíno C, Pinto M, Martinez NL, Patarroyo MA, Patarroyo ME. Synthetic peptides from conserved regions of the Plasmodium falciparum early transcribed membrane and ring exported proteins bind specifically to red blood cell proteins. Vaccine 2009; 27:6877-86. [PMID: 19755146 DOI: 10.1016/j.vaccine.2009.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 12/01/2022]
Abstract
Severe malaria pathology is directly associated with cytoadherence of infected red blood cells (iRBCs) to healthy RBCs and/or endothelial cells occurring during the intraerythrocytic development of Plasmodium falciparum. We synthesized, as 20-mer long peptides, the members of the ring exported (REX) protein family encoded in chromosome 9, as well as the early transcribed membrane proteins (E-TRAMP) 10.2 and 4, to identify specific RBC binding regions in these proteins. Twelve binding peptides were identified (designated as HABPs): three were identified in REX1, two in REX2, one in REX3, two in REX4 and four in E-TRAMP 10.2. The majority of these HABPs was conserved among different P. falciparum strains, according to sequence analysis. No HABPs were found in E-TRAMP 4. Bindings of HABPs were saturable and sensitive to the enzymatic treatment of RBCs and HABPs had different structural features, according to circular dichroism studies. Our results suggest that the REX and E-TRAMP families participate in relevant interactions with RBC membrane proteins, which highlight these proteins as potential targets for the development of fully effective immunoprophylactic methods.
Collapse
Affiliation(s)
- Jeison Garcia
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Structural characteristics of immunogenic liver-stage antigens derived from P. falciparum malarial proteins. Biochem Biophys Res Commun 2009; 384:455-60. [DOI: 10.1016/j.bbrc.2009.04.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022]
|
16
|
García J, Curtidor H, Pinzón CG, Vanegas M, Moreno A, Patarroyo ME. Identification of conserved erythrocyte binding regions in members of the Plasmodium falciparum Cys6 lipid raft-associated protein family. Vaccine 2009; 27:3953-62. [PMID: 19389446 DOI: 10.1016/j.vaccine.2009.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 11/15/2022]
Abstract
Detergent-resistant lipid raft membrane-associated Pf12, Pf38 and Pf41 proteins belong to the Cys(6) family, whose members are implicated in Plasmodium falciparum invasion to erythrocytes. We have analyzed the interaction between 20-mer-long synthetic peptides spanning the entire Pf12, Pf38 and Pf41 sequences and erythrocytes. Eight high-activity binding peptides (HABPs) were identified in these proteins, which presented saturable bindings susceptible to erythrocytes' enzymatic treatment, and beta-turn, random coil and alpha-helical elements as principal structural features. Some of these HABPs inhibited merozoite invasion in vitro, suggesting a possible role of Pf12, Pf38 and Pf41 during erythrocyte invasion and supporting their inclusion in the design of a fully effective antimalarial vaccine.
Collapse
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
17
|
Patarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi-epitope, subunit-based, chemically synthesized anti-malarial vaccines. J Cell Mol Med 2009; 12:1915-35. [PMID: 19012725 PMCID: PMC4506160 DOI: 10.1111/j.1582-4934.2008.00174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An anti-malarial vaccine against the extremely lethal Plasmodium falciparum is desperately needed. Peptides from this parasite's proteins involved in invasion and having high red blood cell-binding ability were identified; these conserved peptides were not immun genic or protection-inducing when used for immunizing Aotus monkeys. Modifying some critical binding residues in these high-activi binding peptides' (HABPs') attachment to red blood cells (RBC) allowed them to induce immunogenicity and protection against expermental challenge and acquire the ability to bind to specific HLA-DRp1* alleles. These modified HABPs adopted certain characterist structural configurations as determined by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) associated with certain HLA-DRβ1* haplotype binding activities and characteristics, such as a 2-Å-distance difference between amino acids fitting into HLA-DRp1 Pockets 1 to 9, residues participating in binding to HLA-DR pockets and residues making contact with the TCR, suggesting haplotyp and allele-conscious TCR. This has been demonstrated in HLA-DR-like genotyped monkeys and provides the basis for designing high effective, subunit-based, multi-antigen, multi-stage, synthetic vaccines, for immediate human use, malaria being one of them.
Collapse
Affiliation(s)
- M E Patarroyo
- Fundación Instituto de Inmunólogia de Colombia (FIDIC), Bogotá, Colombia.
| | | | | | | |
Collapse
|
18
|
A Maurer’s cleft-associated Plasmodium falciparum membrane-associated histidine-rich protein peptide specifically interacts with the erythrocyte membrane. Biochem Biophys Res Commun 2009; 380:122-6. [DOI: 10.1016/j.bbrc.2009.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/13/2009] [Indexed: 11/18/2022]
|
19
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
20
|
Pinzón CG, Curtidor H, Bermúdez A, Forero M, Vanegas M, Rodríguez J, Patarroyo ME. Studies of Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) protein peptides specifically binding to human RBC. Vaccine 2007; 26:853-62. [PMID: 18191882 DOI: 10.1016/j.vaccine.2007.11.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/02/2007] [Accepted: 11/07/2007] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) peptides used in normal red blood cell (RBC) binding assays revealed that peptides 33426 (79NINILSSVHRKGRILYDSF97) and 33460 (777HKKREKSISPHSYQKVSTKVQ797) bound with high activity, presenting nanomolar affinity constants. Such high binding activity peptides (HABPs) displayed helicoid and random coil structures as determined by circular dichroism. HABPs inhibited P. falciparumin vitro invasion of normal RBC by up to 61% (depending on concentration), suggesting that some RAMA protein regions could be involved in P. falciparum invasion of RBC. The nature and localisation of receptors on RBC surface responsible for HABP binding were studied using enzyme-treated erythrocytes and structural analysis.
Collapse
|