1
|
Alam MS, Kurohmaru M. Di-n-butyl phthalate diminishes testicular steroidogenesis by blocking the hypothalamic-pituitary-testicular axis: relationship with germ cell apoptosis in Japanese quail. Reprod Fertil Dev 2021; 33:319-327. [PMID: 33632378 DOI: 10.1071/rd20150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Although di-n-butyl phthalate (DBP) induces germ cell apoptosis, the underlying mechanism is not yet clear in quail. In this study, prepubertal quails were given a single dose of 500mg kg-1 DBP by gavage and were then killed 3, 6 and 24h after treatment. There was a significant reduction in intratesticular testosterone (ITT) concentrations and testicular steroidogenic enzyme mRNA expression and a significant increase in germ cell apoptosis in DBP-treated compared with control quails at all time points. Maximum apoptosis was detected 6h after treatment and the maximum reduction in testosterone concentrations was at 3h. To investigate whether DBP suppressed testicular steroidogenesis by affecting the hypothalamic-pituitary-testicular axis, we analysed pituitary LH subunit β (Lhb) mRNA expression and serum LH concentrations. At all time points, pituitary Lhb expression and serum LH concentrations were significantly decreased following DBP treatment. The present observations suggest the possibility that DBP blocked LH secretion from the hypothalamus and/or pituitary, thereby decreasing LH stimulation of Leydig cells and reducing ITT concentrations. DBP-induced decreases in ITT concentrations may cause changes to the physical structure of Sertoli cells, which, in turn, may induce germ cell apoptosis.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Faculty of Veterinary Medicine and Animal Sciences, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh; and Department of Veterinary Anatomy, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and Corresponding author.
| | - Masamichi Kurohmaru
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan; and Department of Veterinary Anatomy, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Sarma SN, Nagano R, Ohsako S. Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20112687. [PMID: 31159217 PMCID: PMC6600215 DOI: 10.3390/ijms20112687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The neurological effects of short-term dioxin exposure during the fetal period is an important health risk in humans. Here, we investigated the effects of dioxin on neural differentiation using human embryonic stem cells (hESCs) to evaluate human susceptibility to dioxin. Methods: Using an enzymatic bulk passage, neural differentiation from human ESCs was carried out. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was added to various stages of culture. The expression levels of the neuronal markers microtubule-associated protein 2 (MAP2) and thyroxine hydroxylase (TH) were measured by RT-qPCR and image analysis of immunostaining. Results: Although early-stage neuronal cells are quite resistant to TCDD, the numbers of neural rosettes and increases in mRNA expression levels and the number of cells positive for MAP2 and TH were significant by temporal exposure at embryoid body stage (Day9-exposure group). In contrast, the TCDD exposures against ESCs (Day0-exposure group) and differentiated neural cells (Day35-exposure group) were not affected at all. The increment was similarly observed by continuous exposure of TCDD from Day9 through Day60. Conclusions: These results indicated that dioxin exposure during the early stage of differentiation from hESCs increases the contents of neuronal cells, especially TH-positive neuronal cells. Regulations of aryl hydrocarbon receptor (AHR) signaling in an early stage of embryogenesis should be investigated extensively to understand the mechanism underlying the increase in neuronal cell populations and to apply the knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Sailendra Nath Sarma
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Nagano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
3
|
Feki-Tounsi M, Khlifi R, Louati I, Fourati M, Mhiri MN, Hamza-Chaffai A, Rebai A. Polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes, CYP1A1 xenobiotic metabolism gene, and tobacco are associated with bladder cancer susceptibility in Tunisian population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22476-22484. [PMID: 28803404 DOI: 10.1007/s11356-017-9767-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Other than the established environmental risk factors associated with bladder cancer (BC), little is known about the genetic variations determining the individual susceptibility of this complex disease. This study aimed to investigate the relationship of BC with environmental agents and polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes and CYP1A1, CYP2D6, NAT1, and NAT2 xenobiotic metabolism genes through a hospital-based case-control study in Tunisia. The selection of the single nucleotide polymorphisms (SNPs) (rs25487, rs 13181, rs415407, rs446421, rs1058172, rs4921880, and rs1208) was performed using the dbSNP database. DNA genotyping was determined by PCR-RFLP after DNA extraction from whole blood. The risks of BC associated with every polymorphism as well as the studied environmental factors were estimated by multivariate-adjusted logistic regression using R software. In addition, gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) methods. Results showed that tobacco smoking and chewing parameters were significantly associated with BC risk. Single-gene variant analysis showed significant associations of the TT genotype of CYP1A1 and the rare GG genotype of ERCC2 with bladder cancer susceptibility (OR = 1.34, 95% CI 1.22-1.40, P < 0.0001). According to GMDR analysis, our findings indicated a significant association between BC and gene-gene interaction among the CYP1A1, ERCC3, and XRCC1. The present results suggest a potential role of XRCC1, ERCC2, ERCC3, and CYP1A1 besides tobacco intake in susceptibility to BC.
Collapse
Affiliation(s)
- Molka Feki-Tounsi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Po Box 1177, 3018, Sfax, Tunisia.
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia.
| | - Rim Khlifi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Po Box 1177, 3018, Sfax, Tunisia
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Ibtihel Louati
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Po Box 1177, 3018, Sfax, Tunisia
| | - Mohamed Fourati
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Po Box 1177, 3018, Sfax, Tunisia
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
- Department of Urology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, UR 09-03, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Po Box 1177, 3018, Sfax, Tunisia
| |
Collapse
|
4
|
Amenya HZ, Tohyama C, Ohsako S. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver. Sci Rep 2016; 6:34989. [PMID: 27713569 PMCID: PMC5054525 DOI: 10.1038/srep34989] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.
Collapse
Affiliation(s)
- Hesbon Z Amenya
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Experimental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Khlifi R, Chakroun A, Hamza-Chaffai A, Rebai A. Association of CYP1A1 and CYP2D6 gene polymorphisms with head and neck cancer in Tunisian patients. Mol Biol Rep 2014; 41:2591-600. [PMID: 24449363 DOI: 10.1007/s11033-014-3117-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the relationship between head and neck cancer (HNC) and environmental agents and polymorphisms in CYP1A1, CYP2D6, NAT1 and NAT2 metabolic enzymes genes. To the best of our knowledge, this is the first report on polymorphisms in CYP1A1 6310C>T, CYP2D6 Arg365His, NAT1 52936A>T and NAT2 Arg268Lys (NAT2*12A) genes and susceptibility to HNC in Tunisian population. We study the prevalence of these polymorphisms in 169 patients with HNC and 261 control subjects using polymerase chain reaction based methods in a Tunisian population. We detected an association between HNC and CYP1A1 6310C>T (TT) and CYP2D6 Arg365His (His/His) variant carriers (OR 1.75, P = 0.008 and OR 1.66, P = 0.016, respectively). No association was found between the polymorphisms genotypes of NAT1 52936T>A and NAT2 Arg268Lys and risk of HNC. An association between HNC and CYP1A1 (TT) genotype was found among patients with smoking (P = 0.011) and drinking habit (P = 0.009). The combinations of NAT1 (AT or AA) and NAT2 (AA) at-risk genotypes increased HNC risk (OR 4.23, P = 0.005 and OR 3.60, P = 0.048, respectively). However, the combinations of CYP1A1 (AA) and CYP2D6 (CC) genotypes decreased risk of HNC (OR 0.20; P = 0.006). Genetic polymorphisms in CYP1A1 and CYP2D6 may significantly associate with HNC in the Tunisian population. The results of this study suggest a possible gene-environment interaction for certain carcinogen metabolizing enzymes, but larger studies that fully evaluate the interaction are needed.
Collapse
Affiliation(s)
- Rim Khlifi
- Unit of Marine and Environmental Toxicology, UR 09-03, IPEIS, Sfax University, BP 1172, 3018, Sfax, Tunisia,
| | | | | | | |
Collapse
|
6
|
He X, Imanishi S, Sone H, Nagano R, Qin XY, Yoshinaga J, Akanuma H, Yamane J, Fujibuchi W, Ohsako S. Effects of methylmercury exposure on neuronal differentiation of mouse and human embryonic stem cells. Toxicol Lett 2012; 212:1-10. [PMID: 22555245 DOI: 10.1016/j.toxlet.2012.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/19/2022]
Abstract
The establishment of more efficient in vitro approaches has been widely acknowledged as a critical need for toxicity testing. In this study, we examined the effects of methylmercury (MeHg), which is a well-known developmental neurotoxicant, in two neuronal differentiation systems of mouse and human embryonic stem cells (mESCs and hESCs, respectively). Embryoid bodies were generated from gathering of mESCs and hESCs using a micro-device and seeded onto ornithine-laminin-coated plates to promote proliferation and neuronal differentiation. The cells were exposed to MeHg from the start of neuronal induction until the termination of cultures, and significant reductions of mESCs and hESCs were observed in the cell viability assays at 1,10,100 and 1000nM, respectively. Although the mESC derivatives were more sensitive than the hESC derivatives to MeHg exposure in terms of cell viability, the morphological evaluation demonstrated that the neurite length and branch points of hESC derivatives were more susceptible to a low concentration of MeHg. Then, the mRNA levels of differentiation markers were examined using quantitative RT-PCR analysis and the interactions between MeHg exposure and gene expression levels were visualized using a network model based on a Bayesian algorithm. The Bayesian network analysis showed that a MeHg-node was located on the highest hierarchy in the hESC derivatives, but not in the mESC derivatives, suggesting that MeHg directly affect differentiation marker genes in hESCs. Taken together, effects of MeHg were observed in our neuronal differentiation systems of mESCs and hESCs using a combination of morphological and molecular markers. Our study provided possible, but limited, evidences that human ESC models might be more sensitive in particular endpoints in response to MeHg exposure than that in mouse ESC models. Further investigations that expand on the findings of the present paper may solve problems that occur when the outcomes from laboratory animals are extrapolated for human risk evaluation.
Collapse
Affiliation(s)
- Xiaoming He
- Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li F, Hu DY, Liu S, Mahavadi S, Yen W, Murthy KS, Khalili K, Hu W. RNA-binding protein HuR regulates RGS4 mRNA stability in rabbit colonic smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C1418-29. [PMID: 20881234 DOI: 10.1152/ajpcell.00093.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regulator of G protein signaling 4 (RGS4) regulates the strength and duration of G protein signaling and plays an important role in smooth muscle contraction, cardiac development, and psychiatric disorders. Little is known about the posttranscriptional regulation of RGS4 expression. We cloned the full-length cDNA of rabbit RGS4, which contains a long 3'-untranslated region (UTR) with several AU-rich elements (AREs). We determined whether RGS4 mRNA stability is mediated by the RNA-binding protein human antigen R (HuR) and contributes to IL-1β-induced upregulation of RGS4 expression. We show that IL-1β treatment in colonic smooth muscle cells doubled the half-life of RGS4 mRNA. Addition of RGS4 3'-UTR to the downstream of Renilla luciferase reporter induced dramatic reduction in the enzyme activity and mRNA expression of luciferase, which was attenuated by the site-directed mutation of the two 3'-most ARE sites. IL-1β increased luciferase mRNA stability in a UTR-dependent manner. Knockdown of HuR significantly aggravated UTR-mediated instability of luciferase and inhibited IL-1β-induced upregulation of RGS4 mRNA. In addition, IL-1β increased cytosolic translocation and RGS4 mRNA binding of HuR. These findings suggest that 3'-most ARE sites within RGS4 3'-UTR are essential for the instability of RGS4 mRNA and IL-1β promotes the stability of RGS4 mRNA through HuR.
Collapse
Affiliation(s)
- Fang Li
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Weems JM, Yost GS. 3-Methylindole metabolites induce lung CYP1A1 and CYP2F1 enzymes by AhR and non-AhR mechanisms, respectively. Chem Res Toxicol 2010; 23:696-704. [PMID: 20187624 PMCID: PMC2843511 DOI: 10.1021/tx9004506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
3-Methylindole (3MI) is a highly selective pneumotoxicant that is present in abundant amounts (as high as 1.4 mug/cigarette) in cigarette smoke. Several human cytochrome P450 enzymes that are expressed in lung, such as CYP1A1, CYP2F1, CYP2A13, and CYP4B1, catalyze the dehydrogenation of 3MI to the reactive intermediate 3-methyleneindolenine, which alkylates DNA and induces cell death through apoptosis. In addition, 3MI potently damages DNA at low concentrations (observable at 0.1 muM). However, it seemed possible that 3MI could induce the levels of P450 enzymes, so transcription and translation of 1A1 and 2F1 genes were measured in primary normal human bronchial epithelial cells. In this study, 3MI-induced DNA damage at the 10 muM concentration was ameliorated when P450 turnover was inactivated with the cytochrome P450 suicide substrate inhibitor 1-aminobenzotriazole. Thus, the observed DNA damage was cytochrome P450-dependent. Quantitative real-time polymerase chain reaction analysis revealed both concentration- and time-dependent increases in CYP1A1 and CYP2F1 transcription by the same 3MI concentrations that damaged DNA. Aryl hydrocarbon receptor (AhR) activation lead to CYP1A1 induction. Treatment with 3MI in combination with the AhR antagonist alpha-naphthoflavone prevented 3MI-mediated CYP1A1 induction, indicating that the induction was AhR-dependent. Conversely, CYP2F1 induction did not appear to require activation of AhR. These intriguing findings show that not only is induction of 1A1 and 2F1 caused by 3MI metabolites, rather than 3MI itself, but transcriptional activation of these pulmonary genes occurs through disparate mechanisms. Thus, the induction process, and subsequent increased bioactivation of 3MI to toxic intermediates, is a facile process that might enhance the acute toxicity and/or mutagenicity of this chemical.
Collapse
Affiliation(s)
- Jessica M. Weems
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Room 201, Salt Lake City, Utah, 84112
| | - Garold S. Yost
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Room 201, Salt Lake City, Utah, 84112
| |
Collapse
|
9
|
Alam MS, Ohsako S, Matsuwaki T, Zhu XB, Tsunekawa N, Kanai Y, Sone H, Tohyama C, Kurohmaru M. Induction of spermatogenic cell apoptosis in prepubertal rat testes irrespective of testicular steroidogenesis: a possible estrogenic effect of di(n-butyl) phthalate. Reproduction 2010; 139:427-37. [DOI: 10.1530/rep-09-0226] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although di(n-butyl) phthalate (DBP), a suspected endocrine disruptor, induces testicular atrophy in prepubertal male rats, whether it exerts estrogenic activity in vivo remains a matter of debate. In the present study, we explored the estrogenic potency of DBP using 3-week-old male rats, and then examined the relationship between estrogen-induced spermatogenic cell apoptosis and testicular steroidogenesis. Daily exposure to DBP for 7 days caused testicular atrophy due to loss of spermatogenic cells, whereas testicular steroidogenesis was almost the same with the control values. A single exposure of DBP decreased testicular steroidogenesis in addition to decreasing the level of serum LH at 3 h after DBP treatment, with an extremely high incidence of apoptotic spermatogenic cells at 6 h after administration. To elucidate the estrogenic activity of DBP, we carried out an inhibition study using pure antiestrogen ICI 182,780 (ICI) in a model of spermatogenic cell apoptosis induced by DBP or estradial-3-benzoate (EB). Although both the DBP- and EB-treated groups showed a significant increase in spermatogenic cell apoptosis, ICI pretreatment significantly decreased the number of apoptotic spermatogenic cells in these two groups. In contrast, testicular steroidogenesis and serum FSH were significantly reduced in all the treated groups, even in the DBP+ICI and EB+ICI groups. Taken together, these findings led us to conclude that estrogenic compounds such as DBP and EB induce spermatogenic cell apoptosis in prepubertal rats, probably by activating estrogen receptors in testis, and that reduction in testicular steroidogenic function induced by estrogenic compounds is not associated with spermatogenic cell apoptosis.
Collapse
|
10
|
Dioxin activation of CYP1A5 promoter/enhancer regions from two avian species, common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus): Association with aryl hydrocarbon receptor 1 and 2 isoforms. Toxicol Appl Pharmacol 2009; 234:1-13. [DOI: 10.1016/j.taap.2008.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/24/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022]
|
11
|
Li R, Shugart YY, Zhou W, An Y, Yang Y, Zhou Y, Zhang B, Lu D, Wang H, Qian J, Jin L. Common genetic variations of the cytochrome P450 1A1 gene and risk of hepatocellular carcinoma in a Chinese population. Eur J Cancer 2008; 45:1239-1247. [PMID: 19110417 DOI: 10.1016/j.ejca.2008.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/29/2008] [Accepted: 11/07/2008] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 1A1 is a major enzyme in the bioactivation of exogenous procarcinogens of hepatocellular carcinoma (HCC). However, the contribution of common genetic variants in CYP1A1 to the HCC risk in Chinese populations has not been thoroughly investigated. In this study, we examined the association between HCC and four selected tagging single nucleotide polymorphisms (SNPs) of CYP1A1, and the risk of CYP1A1 haplotypes/diplotypes in 1006 pathologically confirmed HCC patients and 1015 cancer-free controls, from a Han Chinese population. Haplotypes/diplotypes were constructed from observed genotypes using the Haplo.Stats program. Relative risk was estimated by using multivariable logistic regression method. To summarise, we detected an increased HCC risk in rs4646421 variant carriers (OR 1.30, 95% CI 1.05-1.61) and rs2198843 variant carriers (OR 1.33, 95% CI 1.05-1.69), and a reduced risk of HCC (OR 0.70. 95% CI 0.52-0.94) associated with homozygote carriers of rs4886605 variant. These association signals were also observed in non-smokers with rs4646421 (OR 1.56, 95% CI 1.16-2.08) and rs4886605 (OR 0.61, 95% CI 0.40-0.91). Compared to the most common CYP1A1 haplotype CCAG, the haplotype TTGC conferred an increased risk of HCC (OR 1.26, 95% CI 1.04-1.52). Similarly, the TTGC/TTGC diplotype conferred an increased risk of HCC compared with diplotype CCAG/CCAG (OR 2.06, 95% CI 1.23-3.45, P=0.006). Interestingly, the diplotype TTAC/CCAG also conferred an increased risk of HCC (OR 1.76, 95% CI 1.22-2.54, P=0.003). Our results suggested that common genetic variants in CYP1A1 may modulate the risk of developing HCC in the study population, particularly in non-smokers. However, our findings need to be validated in at least one independent study of Han Chinese population.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Rd., Shanghai 200433, PR China
| | - Yin Yao Shugart
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | - Yu An
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Rd., Shanghai 200433, PR China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Shanghai, PR China
| | - Yun Zhou
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Shanghai, PR China
| | - Beibei Zhang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Shanghai, PR China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Rd., Shanghai 200433, PR China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Shanghai, PR China.
| | - Ji Qian
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Rd., Shanghai 200433, PR China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Rd., Shanghai 200433, PR China
| |
Collapse
|
12
|
Vrzal R, Stejskalova L, Monostory K, Maurel P, Bachleda P, Pavek P, Dvorak Z. Dexamethasone controls aryl hydrocarbon receptor (AhR)-mediated CYP1A1 and CYP1A2 expression and activity in primary cultures of human hepatocytes. Chem Biol Interact 2008; 179:288-96. [PMID: 19022236 DOI: 10.1016/j.cbi.2008.10.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 10/01/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
CYP1A1 and CYP1A2 genes encode members of the cytochrome P450 superfamily of enzymes primarily involved in xenobiotic and drug metabolism. In this paper we examined the effects of synthetic glucocorticoid dexamethasone (DEX) on aryl hydrocarbon receptor (AhR)-mediated regulation of CYP1A1 and CYP1A2 genes and their enzymatic activity in primary cultures of human hepatocytes obtained from 17 donors and prepared in 3 countries. Dexamethasone significantly reduced both basal and inducible CYP1A1/2 ethoxyresorufin-O-deethylase (EROD) activities by more than 75 and 50%, respectively. Glucocorticoid receptor (GR) antagonist RU486 abolished this effect suggesting the involvement of GR in the process. In contrast, dexamethasone significantly augmented transcriptional activation of CYP1A2 mRNA but not CYP1A1 gene by prototype AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3MC). Dexamethasone had no effect on basal and TCDD-inducible levels of CYP1As proteins; however, it reduced the levels of AhR and GRalpha mRNAs and AhR protein levels. In addition, using RT(2) Profiler PCR Array, we found the effect of dexamethasone on the expression of several co-activators of AhR and GR nuclear receptors in the primary human hepatocytes. We conclude that dexamethasone controls CYP1A1 and CYP1A2 expression and activity in human hepatocytes via multiple mechanisms, which remain to be elucidated.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetic, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang X, Wang TT, White JH, Studzinski GP. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D(3) and is required for optimal cell differentiation. Exp Cell Res 2007; 313:3034-45. [PMID: 17599832 PMCID: PMC3351793 DOI: 10.1016/j.yexcr.2007.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 11/24/2022]
Abstract
Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D(3) (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Tian-Tian Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H. White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - George P. Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
- Correspondence to: George P. Studzinski, M.D., Ph.D., Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, C-543, Newark, NJ 07103, USA, Tel: (973) 972-5869, Fax: (973) 973-972-7293,
| |
Collapse
|