1
|
Wang R, Ganbold M, Ferdousi F, Tominaga K, Isoda H. A Rare Olive Compound Oleacein Improves Lipid and Glucose Metabolism, and Inflammatory Functions: A Comprehensive Whole-Genome Transcriptomics Analysis in Adipocytes Differentiated from Healthy and Diabetic Adipose Stem Cells. Int J Mol Sci 2023; 24:10419. [PMID: 37445596 DOI: 10.3390/ijms241310419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Oleacein (OLE), a rare natural compound found in unfiltered extra virgin olive oil, has been shown to have anti-inflammatory and anti-obesity properties. However, little is known regarding the mechanisms by which OLE influences metabolic processes linked to disease targets, particularly in the context of lipid metabolism. In the present study, we conducted whole-genome DNA microarray analyses in adipocytes differentiated from human adipose-derived stem cells (hASCs) and diabetic hASCs (d-hASCs) to examine the effects of OLE on modulating metabolic pathways. We found that OLE significantly inhibited lipid formation in adipocytes differentiated from both sources. In addition, microarray analysis demonstrated that OLE treatment could significantly downregulate lipid-metabolism-related genes and modulate glucose metabolism in both adipocyte groups. Transcription factor enrichment and protein-protein interaction (PPI) analyses identified potential regulatory gene targets. We also found that OLE treatment enhanced the anti-inflammatory properties in adipocytes. Our study findings suggest that OLE exhibits potential benefits in improving lipid and glucose metabolism, thus holding promise for its application in the management of metabolic disorders.
Collapse
Affiliation(s)
- Rui Wang
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Munkhzul Ganbold
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
2
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Mulberry Leaf and Radix Astragali Regulates Differentially Expressed Genes and Proteins in the Streptozotocin-Induced Diabetic Mice Liver. Processes (Basel) 2021. [DOI: 10.3390/pr9111898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a chronic non-infectious disease, severely affecting human quality and health of life, diabetes mellitus (DM) and its complications have gradually developed into a major global public health problem. Mulberry Leaf and Radix Astragali have been used as a traditional medicinal formulation in diabetic patients for a long time, whose combination is usually found in traditional Chinese medicine prescriptions. However, due to the unclear synergistic mechanism of them for DM, the changes of differential genes and proteins in the liver tissue of streptozotocin-induced diabetic mice were analyzed, and then the potential synergistic mechanism of them in anti-diabetes was investigated in our research. Compared with the diabetic model group, there were 699 differentially expressed genes and 169 differentially expressed proteins in the Mulberry Leaf and Radix Astragali treated group, and there were 35 common specific genes both in the transcriptome and the proteome. These common genes participated mainly in the pathways, such as retinol metabolism, steroid hormone biosynthesis, and arachidonic acid metabolism. Quantitative real-time PCR() and Western blot results speculated that the synergistic effect on anti-diabetes was mainly through regulating the expression of Tap1, Ncoa4, and Alas2, by down-regulating Fabp2 and Hmox1 and up-regulating Hmgcr, Cyp7a1. All these genes would affect bile acid secretion, alleviate the occurrence of iron death, promote the metabolism and synthesis of glycolipid substances, and ultimately maintain the body’s glucose homeostasis.
Collapse
|
4
|
Drouin-Chartier JP, Tremblay AJ, Lemelin V, Lépine MC, Lamarche B, Couture P. Ezetimibe increases intestinal expression of the LDL receptor gene in dyslipidaemic men with insulin resistance. Diabetes Obes Metab 2016; 18:1226-1235. [PMID: 27460541 DOI: 10.1111/dom.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
AIM To gain further insight into intestinal cholesterol homeostasis in dyslipidaemic men with insulin resistance (IR) by examining the impact of treatment with ezetimibe on the expression of key genes involved in cholesterol synthesis and LDL receptor (R)-mediated uptake of lipoproteins. METHODS A total of 25 men with dyslipidaemia and IR were recruited to participate in this double-blind, randomized, crossover, placebo-controlled trial. Participants received 10 mg/day ezetimibe or placebo for periods of 12 weeks each. Intestinal gene expression was measured by quantitative PCR in duodenal biopsy samples collected by gastroduodenoscopy at the end of each treatment. RESULTS A total of 20 participants completed the protocol. Treatment with ezetimibe significantly increased intestinal LDLR (+16.2%; P = .01), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoAR; +14.0%; P = .04) and acetyl-Coenzyme A acetyltransferase 2 (ACAT-2) mRNA expression (+12.5%; P = .03). Changes in sterol regulatory element-binding transcription factor 2 (SREBP-2) expression were significantly correlated with changes in HMG-CoAR (r = 0.55; P < .05), ACAT-2 (r = 0.69; P < .001) and proprotein convertase substilisin/kexin type 9 (PCSK9) expression (r = 0.45; P < .05). CONCLUSIONS These results show that inhibition of intestinal cholesterol absorption by ezetimibe increases expression of the LDLR gene, supporting the concept that increased LDL clearance with ezetimibe treatment occurs not only in the liver but also in the small intestine.
Collapse
Affiliation(s)
| | - André J Tremblay
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Valéry Lemelin
- Department of Gastroenterology, CHU de Québec-Université Laval, Quebec City, Canada
| | - Marie-Claude Lépine
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Benoît Lamarche
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Patrick Couture
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
- Department of Medicine, Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Canada
| |
Collapse
|
5
|
Chen Y, Gall MG, Zhang H, Keane FM, McCaughan GW, Yu DMT, Gorrell MD. Dipeptidyl peptidase 9 enzymatic activity influences the expression of neonatal metabolic genes. Exp Cell Res 2016; 342:72-82. [PMID: 26930324 DOI: 10.1016/j.yexcr.2016.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
The success of dipeptidyl peptidase 4 (DPP4) inhibition as a type 2 diabetes therapy has encouraged deeper examination of the post-proline DPP enzymes. DPP9 has been implicated in immunoregulation, disease pathogenesis and metabolism. The DPP9 enzyme-inactive (Dpp9 gene knock-in; Dpp9 gki) mouse displays neonatal lethality, suggesting that DPP9 enzyme activity is essential in neonatal development. Here we present gene expression patterns in these Dpp9 gki neonatal mice. Taqman PCR arrays and sequential qPCR assays on neonatal liver and gut revealed differential expression of genes involved in cell growth, innate immunity and metabolic pathways including long-chain-fatty-acid uptake and esterification, long-chain fatty acyl-CoA binding, trafficking and transport into mitochondria, lipoprotein metabolism, adipokine transport and gluconeogenesis in the Dpp9 gki mice compared to wild type. In a liver cell line, Dpp9 knockdown increased AMP-activated protein kinase phosphorylation, which suggests a potential mechanism. DPP9 protein levels in liver cells were altered by treatment with EGF, HGF, insulin or palmitate, suggesting potential natural DPP9 regulators. These gene expression analyses of a mouse strain deficient in DPP9 enzyme activity show, for the first time, that DPP9 enzyme activity regulates metabolic pathways in neonatal liver and gut.
Collapse
Affiliation(s)
- Yiqian Chen
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Margaret G Gall
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hui Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona M Keane
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Denise M T Yu
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Han D, Zhang C, Fan WJ, Pan WJ, Feng DM, Qu SL, Jiang ZS. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C2H2 zinc finger protein. ACTA ACUST UNITED AC 2014; 48:1-5. [PMID: 25493376 PMCID: PMC4288486 DOI: 10.1590/1414-431x20144029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/23/2014] [Indexed: 11/22/2022]
Abstract
Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.
Collapse
Affiliation(s)
- D Han
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - C Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - W J Fan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - W J Pan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - D M Feng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - S L Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| | - Z S Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province, PR China
| |
Collapse
|
7
|
Ya-Feng Z, Gang S, Xiao-Tong Z, Zhi-Qi Z, Xia-Jing L, Song-Bo W, Li-Na W, Yong-Liang Z, Qing-Yan J. Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system. J Anim Sci Biotechnol 2012; 3:32. [PMID: 23111091 PMCID: PMC3527164 DOI: 10.1186/2049-1891-3-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 10/15/2012] [Indexed: 12/04/2022] Open
Abstract
Background α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside) in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. Methods To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG) and an α-galactosidase substrate, α-lactose. We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. Results The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P < 0.05) luciferase activity by approximately 6.5-fold and reduced the percentage of cells expressing green fluorescent protein (GFP) by approximately 2-fold. In addition, the expression level of α-galactosidase mRNA was decreased by 6-fold and α-galactosidase activity was reduced by 8-fold. In line with our expectations, IPTG and α-lactose supplementation reversed (P < 0.05) the inhibition and produced a 5-fold increase of luciferase activity, an 11-fold enhancement in the percentage of cells with GFP expression and an increase in α-galactosidase mRNA abundance (by about 5-fold) and α-galactosidase activity (by about 7-fold). Conclusions We have successfully constructed a high specificity inducible lac operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production.
Collapse
Affiliation(s)
- Zhai Ya-Feng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nitz I, Kruse ML, Klapper M, Döring F. Specific regulation of low-abundance transcript variants encoding human Acyl-CoA binding protein (ACBP) isoforms. J Cell Mol Med 2011; 15:909-27. [PMID: 20345851 PMCID: PMC3922676 DOI: 10.1111/j.1582-4934.2010.01055.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Despite intensive efforts on annotation of eukaryotic transcriptoms, little is known about the regulation of low-abundance transcripts. To address this question, we analysed the regulation of novel low-abundance transcript variants of human acyl-CoA binding protein (ACBP), an important multifunctional housekeeping protein, which we have identified by screening of human expressed sequence tags in combination with ab initio gene prediction. By using RT-, real-time RT- and rapid amplification of cDNA ends-PCR in five human tissues, we find these transcripts, which are generated by a consequent use of alternative promoters and alternate first or first two exons, to be authentic ones. They show a tissue-specific distribution and intrinsic responsiveness to glucose and insulin. Promoter analyses of the corresponding transcripts revealed a differential regulation mediated by sterol regulatory element-binding protein-2, hepatocyte nuclear factor-4α and nuclear factor κB (NF-κB), central transcription factors of fat and glucose metabolism and inflammation. Subcellular localization studies of deduced isoforms in liver HepG2 cells showed that they are distributed in different compartments. By demonstrating that ACBP is a target of NF-κB, our findings link fatty acid metabolism with inflammation. Furthermore, our findings show that low-abundance transcripts are regulated in a similar mode than their high-abundance counterparts.
Collapse
Affiliation(s)
- Inke Nitz
- Institute of Human Nutrition and Food Science, Department of Molecular Prevention, Christian-Albrechts University, Kiel, Germany
| | | | | | | |
Collapse
|
9
|
Ströhle A, Döring F. Molecularization in nutritional science: a view from philosophy of science. Mol Nutr Food Res 2011; 54:1385-404. [PMID: 20568236 DOI: 10.1002/mnfr.201000078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SCOPE Over the past decade, a trend toward molecularization, which could be observed in almost all bioscientific disciplines, now appears to have also developed in nutritional science. However, molecular nutrition research gives birth to a series of questions. Therefore, we take a look at the epistemological foundation of (molecular) nutritional science. METHODS AND RESULTS We (i) analyze the scientific status of (molecular) nutritional science and its position in the canon of other scientific disciplines, (ii) focus on the cognitive aims of nutritional science in general and (iii) on the chances and limits of molecular nutrition research in particular. By taking up the thoughts of an earlier work, we are analyzing (molecular) nutritional science from a strictly realist and emergentist-naturalist perspective. CONCLUSION Methodologically, molecular nutrition research is bound to a microreductive research approach. We emphasize, however, that it need not be a radical microreductionism whose scientific reputation is not the best. Instead we favor moderate microreductionism, which combines reduction with integration. As mechanismic explanations are one of the primary aims of factual sciences, we consider it as the task of molecular nutrition research to find profound, i.e. molecular-mechanismic, explanations for the conditions, characteristics and changes of organisms related to the organism-nutrition environment interaction.
Collapse
Affiliation(s)
- Alexander Ströhle
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrecht-University Kiel, Germany.
| | | |
Collapse
|
10
|
Drozdowski LA, Clandinin T, Thomson ABR. Ontogeny, growth and development of the small intestine: Understanding pediatric gastroenterology. World J Gastroenterol 2010; 16:787-99. [PMID: 20143457 PMCID: PMC2825325 DOI: 10.3748/wjg.v16.i7.787] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout our lifetime, the intestine changes. Some alterations in its form and function may be genetically determined, and some are the result of adaptation to diet, temperature, or stress. The critical period programming of the intestine can be modified, such as from subtle differences in the types and ratios of n3:m6 fatty acids in the diet of the pregnant mother, or in the diet of the weanlings. This early forced adaptation may persist in later life, such as the unwanted increased intestinal absorption of sugars, fatty acids and cholesterol. Thus, the ontogeny, early growth and development of the intestine is important for the adult gastroenterologist to appreciate, because of the potential for these early life events to affect the responsiveness of the intestine to physiological or pathological challenges in later life.
Collapse
|
11
|
Babeu JP, Darsigny M, Lussier CR, Boudreau F. Hepatocyte nuclear factor 4alpha contributes to an intestinal epithelial phenotype in vitro and plays a partial role in mouse intestinal epithelium differentiation. Am J Physiol Gastrointest Liver Physiol 2009; 297:G124-34. [PMID: 19389805 DOI: 10.1152/ajpgi.90690.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a regulator of hepatocyte and pancreatic transcription. Hnf4alpha deletion in the mouse is embryonically lethal with severe defects in visceral endoderm formation. It has been concluded in the past that the role of Hnf4alpha in the developing colon was much less important than in the liver. However, the precise role of Hnf4alpha in the homeostasis of the small intestinal epithelium remains unclear. Our aim was to evaluate the potential of Hnf4alpha to support an intestinal epithelial phenotype. First, Hnf4alpha potential to dictate this phenotype was assessed in nonintestinal cell lines in vitro. Forced expression of Hnf4alpha in fibroblasts showed an induction of features normally restricted to epithelial cells. Combinatory expression of Hnf4alpha with specific transcriptional regulators of the intestine resulted in the induction of intestinal epithelial genes in this context. Second, the importance of Hnf4alpha in maintaining the homeostasis of the intestinal epithelium was investigated in mice. Mice conditionally deficient for intestinal Hnf4alpha developed normally throughout adulthood with an epithelium displaying normal morphological and functional structures with minor alterations. Subtle but statistical differences were observed at the proliferation and the cytodifferentiation levels. Hnf4alpha mutant mice displayed an increase in the number of goblet and enteroendocrine cells compared with controls. Given the fundamental role of this transcription factor in other tissues, these findings dispute the crucial role for this regulator in the maintenance of intestinal epithelial cell function at a period of time that follows cytodifferentiation but may suggest a functional role in instructing cells to become specific to the intestinal epithelium.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke,Canadian Institutes of Health Research Team on Digestive Epithelium, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | |
Collapse
|
12
|
Yamaguchi N, Miyamoto S, Ogura Y, Goda T, Suruga K. Hepatocyte nuclear factor-4alpha regulates human cellular retinol-binding protein type II gene expression in intestinal cells. Am J Physiol Gastrointest Liver Physiol 2009; 296:G524-33. [PMID: 19147806 DOI: 10.1152/ajpgi.90469.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cellular retinol-binding protein type II (CRBPII) is abundantly expressed in the small intestinal enterocytes of many vertebrates and plays important physiological roles in intestinal absorption, transport, and metabolism of vitamin A. In the present study, we investigated regulation of human CRBPII gene expression using human intestinal Caco-2 BBe cells. We found that the human CRBPII gene contained a direct repeat 1 (DR-1)-like nuclear receptor response element in the proximal promoter region and that endogenous hepatocyte nuclear factor-4alpha (HNF-4alpha) was a major transcription factor binding to the DR-1-like element. Cotransfection of HNF-4alpha expression vector transactivated the human CRBPII gene promoter activity, whereas mutation of the DR-1-like element abolished the promoter activity. Stably transfected Caco-2 BBe cells overexpressing HNF-4alpha significantly increased endogenous CRBPII gene expression and retinyl ester synthesis. Reduction of HNF-4alpha protein levels by HNF-4alpha small interference RNA decreased CRBPII gene expression. Caco-2 BBe cells treated with phorbol 12-myristate 13-acetate, a protein kinase C activator, decreased nuclear HNF-4alpha protein level and binding activity to the human CRBPII gene DR-1-like element, as well as CRBPII gene expression. Moreover, nuclear HNF-4alpha protein levels, HNF-4alpha protein binding to human CRBPII DR-1-like elements, and CRBPII gene expression level were coordinately increased during Caco-2 BBe cell differentiation. These results suggest that HNF-4alpha is an important transcriptional factor that regulates human CRBPII gene expression and provide the possibility for a novel function of HNF-4alpha in the regulation of human intestinal vitamin A absorption and metabolism.
Collapse
Affiliation(s)
- Noriaki Yamaguchi
- Graduate School of Human Health Sciences, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | | | | | | | | |
Collapse
|
13
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Klapper M, Böhme M, Nitz I, Döring F. Transcriptional regulation of the fatty acid binding protein 2 (FABP2) gene by the hepatic nuclear factor 1 alpha (HNF-1alpha). Gene 2008; 416:48-52. [PMID: 18440731 DOI: 10.1016/j.gene.2008.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/17/2008] [Accepted: 02/29/2008] [Indexed: 12/29/2022]
Abstract
The human fatty acid binding protein (FABP2) is involved in intestinal absorption and intracellular trafficking of long-chain fatty acids. Here we investigate transcriptional regulation of FABP2 by the endodermal hepatic nuclear factor 1 alpha (HNF-1alpha). In electromobility shift and supershift assays we show the presence of two adjacent HNF-1alpha binding sites within the FABP2 promoter regions -185 to -165 and -169 to -149. HNF-1alpha activates an FABP2 promoter luciferase construct by 3.5 and 20-fold in Caco-2 and Hela cells, respectively. Mutational analysis of HNF-1alpha elements resulted in about 50% reduction of basal and HNF-1alpha induced activity of FABP2 promoter constructs, predominantly caused by deletion of the -185 to -165 site. Thus, our data suggest a major role of HNF-1alpha in control of FABP2 expression in intestine via a functional HNF-1alpha recognition element within FABP2 promoter region -185 to -165.
Collapse
Affiliation(s)
- Maja Klapper
- Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel, Germany.
| | | | | | | |
Collapse
|
15
|
Klapper M, Böhme M, Nitz I, Döring F. Type 2 diabetes-associated fatty acid binding protein 2 promoter haplotypes are differentially regulated by GATA factors. Hum Mutat 2007; 29:142-9. [DOI: 10.1002/humu.20618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|