1
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Durel B, Kervrann C, Bertolin G. Quantitative dSTORM super-resolution microscopy localizes Aurora kinase A/AURKA in the mitochondrial matrix. Biol Cell 2021; 113:458-473. [PMID: 34463964 DOI: 10.1111/boc.202100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND INFORMATION Mitochondria are dynamic organelles playing essential metabolic and signaling functions in cells. Their ultrastructure has largely been investigated with electron microscopy (EM) techniques. However, quantifying protein-protein proximities using EM is extremely challenging. Super-resolution microscopy techniques as direct stochastic optical reconstruction microscopy (dSTORM) now provide a fluorescent-based, quantitative alternative to EM. Recently, super-resolution microscopy approaches including dSTORM led to valuable advances in our knowledge of mitochondrial ultrastructure, and in linking it with new insights in organelle functions. Nevertheless, dSTORM is mostly used to image integral mitochondrial proteins, and there is little or no information on proteins transiently present at this compartment. The cancer-related Aurora kinase A/AURKA is a protein localized at various subcellular locations, including mitochondria. RESULTS We first demonstrate that dSTORM coupled to GcoPS can resolve protein proximities within individual submitochondrial compartments. Then, we show that dSTORM provides sufficient spatial resolution to visualize and quantify the most abundant pool of endogenous AURKA in the mitochondrial matrix, as previously shown for overexpressed AURKA. In addition, we uncover a smaller pool of AURKA localized at the OMM, which could have a potential functional readout. We conclude by demonstrating that aldehyde-based fixatives are more specific for the OMM pool of the kinase instead. CONCLUSIONS Our results indicate that dSTORM coupled to GcoPS colocalization analysis is a suitable approach to explore the compartmentalization of non-integral mitochondrial proteins as AURKA, in a qualitative and quantitative manner. This method also opens up the possibility of analyzing the proximity between AURKA and its multiple mitochondrial partners with exquisite spatial resolution, thereby allowing novel insights into the mitochondrial functions controlled by AURKA. SIGNIFICANCE Probing and quantifying the presence of endogenous AURKA - a cell cycle-related protein localized at mitochondria - in the different organelle subcompartments, using quantitative dSTORM super-resolution microscopy.
Collapse
Affiliation(s)
- Béatrice Durel
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Charles Kervrann
- Serpico Project-Team, Inria - Centre Inria Rennes-Bretagne Atlantique, CNRS UMR144, Campus Universitaire de Beaulieu, Rennes, F-35042, France.,Institut Curie, PSL Research University, Paris, F-75005, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, F-35000, France
| |
Collapse
|
3
|
Bertolin G, Alves-Guerra MC, Cheron A, Burel A, Prigent C, Le Borgne R, Tramier M. Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and Prohibitin 2. Life Sci Alliance 2021; 4:4/6/e202000806. [PMID: 33820826 PMCID: PMC8046421 DOI: 10.26508/lsa.202000806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The multifunctional Ser/Thr kinase AURKA uses the Inner Mitochondrial Membrane receptor PHB2 and MAP1LC3 as a signalling platform to orchestrate the elimination of dysfunctional mitochondria. Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin–independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.
Collapse
Affiliation(s)
- Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marie-Clotilde Alves-Guerra
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Paris, France
| | - Angélique Cheron
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Agnès Burel
- University of Rennes, MRic CNRS, INSERM, Structure Fédérative de Recherche (SFR) Biosit, UMS 3480, Rennes, France
| | - Claude Prigent
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Roland Le Borgne
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| |
Collapse
|
4
|
Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci 2020; 77:1031-1047. [PMID: 31562563 PMCID: PMC11104877 DOI: 10.1007/s00018-019-03310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
AURKA is a serine/threonine kinase overexpressed in several cancers. Originally identified as a protein with multifaceted roles during mitosis, improvements in quantitative microscopy uncovered several non-mitotic roles as well. In physiological conditions, AURKA regulates cilia disassembly, neurite extension, cell motility, DNA replication and senescence programs. In cancer-like contexts, AURKA actively promotes DNA repair, it acts as a transcription factor, promotes cell migration and invasion, and it localises at mitochondria to regulate mitochondrial dynamics and ATP production. Here we review the non-mitotic roles of AURKA, and its partners outside of cell division. In addition, we give an insight into how structural data and quantitative fluorescence microscopy allowed to understand AURKA activation and its interaction with new substrates, highlighting future developments in fluorescence microscopy needed to better understand AURKA functions in vivo. Last, we will recapitulate the most significant AURKA inhibitors currently in clinical trials, and we will explore how the non-mitotic roles of the kinase may provide new insights to ameliorate current pharmacological strategies against AURKA overexpression.
Collapse
Affiliation(s)
- Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
5
|
Bertolin G, Sizaire F, Déméautis C, Chapuis C, Mérola F, Erard M, Tramier M. Optimized FRET Pairs and Quantification Approaches To Detect the Activation of Aurora Kinase A at Mitosis. ACS Sens 2019; 4:2018-2027. [PMID: 31317736 DOI: 10.1021/acssensors.9b00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically encoded Förster's Resonance Energy Transfer (FRET) biosensors are indispensable tools to sense the spatiotemporal dynamics of signal transduction pathways. Investigating the crosstalk between different signaling pathways is becoming increasingly important to follow cell development and fate programs. To this end, FRET biosensors must be optimized to monitor multiple biochemical activities simultaneously and in single cells. In addition, their sensitivity must be increased to follow their activation even when the abundance of the biosensor is low. We describe here the development of a second generation of Aurora kinase A/AURKA biosensors. First, we adapt the original AURKA biosensor-GFP-AURKA-mCherry-to multiplex FRET by using dark acceptors as ShadowG or ShadowY. Then, we use the novel superYFP acceptor protein to measure FRET by 2-color Fluorescence Cross-Correlation Spectroscopy, in cytosolic regions where the abundance of AURKA is extremely low and undetectable with the original AURKA biosensor. These results pave the way to the use of FRET biosensors to follow AURKA activation in conjunction with substrate-based activity biosensors. In addition, they open up the possibility of tracking the activation of small pools of AURKA and its interaction with novel substrates, which would otherwise remain undetectable with classical biochemical approaches.
Collapse
Affiliation(s)
- Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000 Rennes, France
| | - Florian Sizaire
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000 Rennes, France
| | - Claire Déméautis
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000 Rennes, France
| | - Fabienne Mérola
- Univ Paris Sud, CNRS, LCP (Laboratoire de Chimie Physique), UMR 800, F-91400 Orsay, France
| | - Marie Erard
- Univ Paris Sud, CNRS, LCP (Laboratoire de Chimie Physique), UMR 800, F-91400 Orsay, France
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000 Rennes, France
- Univ Rennes, BIOSIT, UMS CNRS 3480, US INSERM
018, F-35000 Rennes, France
| |
Collapse
|
6
|
Shen S, Feng H, Le Y, Ni J, Yu L, Wu J, Bai M. RACK1 affects the progress of G2/M by regulating Aurora-A. Cell Cycle 2019; 18:2228-2238. [PMID: 31357906 DOI: 10.1080/15384101.2019.1642065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aurora-A is a serine/threonine kinase, which is overexpressed in multiple human cancers and plays a key role in tumorigenesis and tumor development. In this study, we found that the receptor of activated C-kinase1 (RACK1), an important regulator of biological functions, interacted with Aurora-A and co-localized with Aurora-A at centrosomes. Moreover, RACK1 induces the auto-phosphorylation of Aurora-A in vitro and in vivo. Depletion of RACK1 impaired the activation of Aurora-A in late G2 phase, then inhibited the mitotic entry and leaded to multi-polarity, severe chromosome alignment defects, or centrosome amplification. Taken together, these results suggest that RACK1 is a new partner of Aurora-A and play a critical role in the regulation of the Aurora-A activity during mitosis, which may provide a basis for future anticancer studies targeting Aurora-A.
Collapse
Affiliation(s)
- Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Huan Feng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Yichen Le
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jun Ni
- Department Oncology, Hutchison Medi Pharma , Shanghai , China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China.,Cardiovascular Research Institute and Department of Physiology, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
7
|
The multifaceted allosteric regulation of Aurora kinase A. Biochem J 2018; 475:2025-2042. [PMID: 29946042 PMCID: PMC6018539 DOI: 10.1042/bcj20170771] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
The protein kinase Aurora A (AurA) is essential for the formation of bipolar mitotic spindles in all eukaryotic organisms. During spindle assembly, AurA is activated through two different pathways operating at centrosomes and on spindle microtubules. Recent studies have revealed that these pathways operate quite differently at the molecular level, activating AurA through multifaceted changes to the structure and dynamics of the kinase domain. These advances provide an intimate atomic-level view of the finely tuned regulatory control operating in protein kinases, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop. Here, I review these advances in our understanding of AurA function, and discuss their implications for the use of allosteric small molecule inhibitors to address recently discovered roles of AurA in neuroblastoma, prostate cancer and melanoma.
Collapse
|
8
|
Damodaran AP, Vaufrey L, Gavard O, Prigent C. Aurora A Kinase Is a Priority Pharmaceutical Target for the Treatment of Cancers. Trends Pharmacol Sci 2017; 38:687-700. [DOI: 10.1016/j.tips.2017.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
|
9
|
Vo TTL, Park JH, Seo JH, Lee EJ, Choi H, Bae SJ, Le H, An S, Lee HS, Wee HJ, Kim KW. ARD1-mediated aurora kinase A acetylation promotes cell proliferation and migration. Oncotarget 2017; 8:57216-57230. [PMID: 28915666 PMCID: PMC5593637 DOI: 10.18632/oncotarget.19332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Aurora kinase A (AuA) is a prerequisite for centrosome maturation, separation, and mitotic spindle assembly, thus, it is essential for cell cycle regulation. Overexpression of AuA is implicated in poor prognosis of many types of cancer. However, the regulatory mechanisms underlying the functions of AuA are still not fully understood. Here, we report that AuA colocalizes with arrest defective protein 1 (ARD1) acetyltransferase during cell division and cell migration. Additionally, AuA is acetylated by ARD1 at lysine residues at positions 75 and 125. The double mutations at K75/K125 abolished the kinase activity of AuA. Moreover, the double mutant AuA exhibited diminished ability to promote cell proliferation and cell migration. Mechanistic studies revealed that AuA acetylation at K75/K125 promoted cell proliferation via activation of cyclin E/CDK2 and cyclin B1. In addition, AuA acetylation stimulated cell migration by activating the p38/AKT/MMP-2 pathway. Our findings indicate that ARD1-mediated acetylation of AuA enhances cell proliferation and migration, and probably contributes to cancer development.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Eun Ji Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoon Choi
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang Le
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sunho An
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
10
|
Bertolin G, Sizaire F, Herbomel G, Reboutier D, Prigent C, Tramier M. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells. Nat Commun 2016; 7:12674. [PMID: 27624869 PMCID: PMC5027284 DOI: 10.1038/ncomms12674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation.
Collapse
Affiliation(s)
- Giulia Bertolin
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Florian Sizaire
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Gaëtan Herbomel
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - David Reboutier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Claude Prigent
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Marc Tramier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Microscopy Rennes Imaging Centre, Biosit, Université de Rennes 1, Rennes 35043, France
| |
Collapse
|
11
|
Lindon C, Grant R, Min M. Ubiquitin-Mediated Degradation of Aurora Kinases. Front Oncol 2016; 5:307. [PMID: 26835416 PMCID: PMC4716142 DOI: 10.3389/fonc.2015.00307] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting of these critical mitotic regulators and discuss the different factors that contribute to proteolytic control of Aurora kinase activity in the cell.
Collapse
Affiliation(s)
- Catherine Lindon
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Mingwei Min
- Department of Cell Biology, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
12
|
Bai M, Ni J, Shen S, Huang Q, Wu J, Le Y, Yu L. Aurora-A kinase-inactive mutants disrupt the interaction with Ajuba and cause defects in mitotic spindle formation and G2/M phase arrest in HeLa cells. BMB Rep 2015; 47:631-6. [PMID: 24499673 PMCID: PMC4281342 DOI: 10.5483/bmbrep.2014.47.11.250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 11/20/2022] Open
Abstract
Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. We previously reported an intramolecular inhibitory regulation of Aurora-A between its N-terminal regulatory domain (Nt, amino acids [aa] 1-128) and the C-terminal catalytic domain (Cd, aa 129-403). Here, we demonstrate that although both Aurora-A mutants (AurA-K250G and AurA-D294G/Y295G) lacked interactions between the Nt and Cd, they also failed to interact with Ajuba, an essential activator of Aurora-A, leading to loss of kinase activity. Additionally, overexpression of either of the mutants resulted in centrosome amplification and mitotic spindle formation defects. Both mutants were also able to cause G2/M arrest and apoptosis. These results indicate that both K250 and D294/Y295 are critical for direct interaction between Aurora-A and Ajuba and the function of the Aurora-A complex in cell cycle progression.
Collapse
Affiliation(s)
- Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Jun Ni
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Yichen Le
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Bai M, Ni J, Shen S, Wu J, Huang Q, Le Y, Yu L. Two newly identified sites in the N-terminal regulatory domain of Aurora-A are essential for auto-inhibition. Biotechnol Lett 2014; 36:1595-604. [PMID: 24682789 DOI: 10.1007/s10529-014-1516-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Aurora-A, a centrosome-localized serine/threonine kinase, is over-expressed in multiple human cancers. We previously reported Zhang et al. (Biochem Biophys Res Commun 2007, 357:347-352) intramolecular inhibitory regulation of Aurora-A between its N-terminal (Nt) regulatory domain (amino acids 1-128, Nt) and C-terminal catalytic domain (aa 129-403, Cd). Here, we identified two essential sites located on the Nt of Aurora-A (Lys 99 and Lys 119) and demonstrate that mutation of either residue to Gly could cause the Nt and C-terminal lobes of the catalytic domain in Aurora-A to form a closed conformation, resulting in a loss of kinase activity. This inactive conformation was reversed by adding C26 peptide (274-299) or Ajuba, which is a required activator of Aurora-A. Over-expression of either mutant induced G2/M arrest. These results provide a basis for future anti-cancer studies targeting Aurora-A.
Collapse
Affiliation(s)
- Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
14
|
Bai M, Ni J, Wu J, Wang B, Shen S, Yu L. A novel mechanism for activation of Aurora-A kinase by Ajuba. Gene 2014; 543:133-9. [PMID: 24680704 DOI: 10.1016/j.gene.2014.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 12/12/2022]
Abstract
Aurora-A is a centrosome-localized serine/threonine kinase, which plays a critical role in mitotic and meiotic cell division processes. However, the regulation of Aurora-A is still not fully understood. Previously, we have found an intramolecular inhibitory regulation mechanism of Aurora-A: the N-terminal regulatory domain (aa 1-128, Nt) can interact with the C-terminal catalytic domain (aa 129-403, Cd) and inhibit the kinase activity of Aurora-A. In this study, we found that the PreLIM domain of Ajuba, another important activator of Aurora-A, induces the autophosphorylation of the C-terminal kinase domain of Aurora-A, and is phosphorylated by the C-terminal. Moreover, the LIM domain of Ajuba can competitively bind to the N-terminal of Aurora-A, and inhibited the interaction between N-terminal and C-terminal of Aurora A. Taken together, these results suggest a novel mechanism for regulation of Aurora-A by Ajuba.
Collapse
Affiliation(s)
- Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Jun Ni
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Bin Wang
- School of Computer Science, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Bayliss R, Fry A, Haq T, Yeoh S. On the molecular mechanisms of mitotic kinase activation. Open Biol 2013; 2:120136. [PMID: 23226601 PMCID: PMC3513839 DOI: 10.1098/rsob.120136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
16
|
Lukasiewicz KB, Lingle WL. Aurora A, centrosome structure, and the centrosome cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:602-619. [PMID: 19774610 DOI: 10.1002/em.20533] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The centrosome, also known as the microtubule organizing center of the cell, is a membrane-less organelle composed of a pair of barrel-shaped centrioles surrounded by electron-dense pericentriolar material. The centrosome progresses through the centrosome cycle in step with the cell cycle such that centrosomes are duplicated in time to serve as the spindle poles during mitosis and that each resultant daughter cell contains a single centrosome. Regulation of the centrosome cycle with relation to the cell cycle is an essential process to maintain the ratio of one centrosome per new daughter cell. Numerous mitosis-specific kinases have been implicated in this regulation, and phosphorlyation plays an important role in coordinating the centrosome and cell cycles. Centrosome amplification can occur when the cycles are uncoupled, and this amplification is associated with cancer and with an increase in the levels of chromosomal instability. The aurora kinases A, B, and C are serine/threonine kinases that are active during mitosis. Aurora A is associated with centrosomes, being localized at the centrosome just prior to the onset of mitosis and for the duration of mitosis. Overexpression of aurora A leads to centrosome amplification and cellular transformation. The activity of aurora A is regulated by phosphorlyation and proteasomal degradation.
Collapse
Affiliation(s)
- Kara B Lukasiewicz
- Section on Cell Cycle Regulation, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
17
|
Fiskus W, Wang Y, Joshi R, Rao R, Yang Y, Chen J, Kolhe R, Balusu R, Eaton K, Lee P, Ustun C, Jillella A, Buser CA, Peiper S, Bhalla K. Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin Cancer Res 2008; 14:6106-15. [PMID: 18829489 PMCID: PMC2665710 DOI: 10.1158/1078-0432.ccr-08-0721] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE We determined the effects of vorinostat (suberoylanalide hydroxamic acid) and/or MK-0457 (VX-680), an Aurora kinase inhibitor on the cultured human (HL-60, OCI-AML3, and K562) and primary acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML), as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and mutant forms of Bcr-Abl. EXPERIMENTAL DESIGN Following exposure to MK-0457 and/or vorinostat, apoptosis, loss of viability, as well as activity and levels of Aurora kinase and Bcr-Abl proteins were determined. RESULTS Treatment with MK-0457 decreased the phosphorylation of Aurora kinase substrates including serine (S)10 on histone H3 and survivin, and led to aberrant mitosis, DNA endoreduplication as well as apoptosis of the cultured human acute leukemia HL-60, OCI-AML3, and K562 cells. Combined treatment with vorinostat and MK-0457 resulted in greater attenuation of Aurora and Bcr-Abl (in K562) kinase activity and levels as well as synergistically induced apoptosis of OCI-AML3, HL-60, and K562 cells. MK-0457 plus vorinostat also induced synergistic apoptosis of BaF3 cells with ectopic overexpression of wild-type or mutant Bcr-Abl. Finally, cotreatment with MK-0457 and vorinostat induced more loss of viability of primary AML and imatinib-refractory CML than treatment with either agent alone, but exhibited minimal toxicity to normal CD34+ progenitor cells. CONCLUSIONS Combined in vitro treatment with MK-0457 and vorinostat is highly active against cultured and primary leukemia cells. These findings merit in vivo testing of the combination against human AML and CML cells, especially against imatinib mesylate-resistant Bcr-AblT315I-expressing CML Cells.
Collapse
Affiliation(s)
- Warren Fiskus
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Yongchao Wang
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | | | - Rekha Rao
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Yonghua Yang
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Jianguang Chen
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Ravindra Kolhe
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Ramesh Balusu
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Kelly Eaton
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Pearl Lee
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | | | - Anand Jillella
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | | | - Stephen Peiper
- Medical College of Georgia Cancer Center, Augusta, Georgia
| | - Kapil Bhalla
- Medical College of Georgia Cancer Center, Augusta, Georgia
| |
Collapse
|
18
|
Tong Y, Ben-Shlomo A, Zhou C, Wawrowsky K, Melmed S. Pituitary tumor transforming gene 1 regulates Aurora kinase A activity. Oncogene 2008; 27:6385-95. [PMID: 18663361 DOI: 10.1038/onc.2008.234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pituitary tumor transforming gene 1 (PTTG1), a transforming gene highly expressed in several cancers, is a mammalian securin protein regulating both G1/S and G2/M phases. Using protein array screening, we showed PTTG1 interacting with Aurora kinase A (Aurora-A), and confirmed the interaction using co-immunoprecipitation, His-tagged pull-down assays and intracellular immunofluorescence colocalization. PTTG1 transfection into HCT116 cells prevented Aurora-A T288 autophosphorylation, inhibited phosphorylation of the histone H3 Aurora-A substrate and resulted in abnormally condensed chromatin. PTTG1-null cell proliferation was more sensitive to Aurora-A knock down and to Aurora kinase Inhibitor III treatment. The results indicate that PTTG1 and Aurora-A interact to regulate cellular responses to anti-neoplastic drugs. PTTG1 knockdown is therefore a potential approach to improve the efficacy of tumor Aurora kinase inhibitors.
Collapse
Affiliation(s)
- Y Tong
- Department of Medicine, Cedars-Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
19
|
Engh R. Protein Kinase Inhibitors Highlight the Complexities of Drug-Target Non-Covalent Interactions. BIOTECHNOL BIOTEC EQ 2008. [DOI: 10.1080/13102818.2008.10817551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|