1
|
Breslin JW, Motawe ZY. Imaging and Analysis of the Dynamics of Filamentous Actin Structures in Live Endothelial Cells. Methods Mol Biol 2024; 2711:129-146. [PMID: 37776454 PMCID: PMC11369499 DOI: 10.1007/978-1-0716-3429-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The ability to view and record the movements of subcellular structures is a powerful tool that has accelerated the discovery and understanding of signaling mechanisms that control microvascular functions such as the control of endothelial permeability. Advances in molecular biology over the past few decades have facilitated the generation of fusion proteins in which fluorescent reporters based upon the structure of green fluorescent protein can be linked to proteins found in human endothelial cells, such as VE-cadherin or β-actin. These fusion proteins have been found to incorporate into structures alongside their native protein counterparts, allowing the dynamic visualization of how these subcellular structures are modified when cells are challenged with stimuli such as inflammatory mediators. The result of such studies has been a much more advanced view of the complex mechanisms by which endothelial cells maintain barrier properties than previously obtained by only viewing fixed cells labeled by immunofluorescence. Here, we describe our protocols that we have used to view the dynamics of actin filaments using time-lapse microscopy to record endothelial cells expressing GFP-actin and the analysis tools available to quantify dynamics of subcellular structures.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
3
|
Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022; 8:40. [PMID: 35332167 PMCID: PMC8948359 DOI: 10.1038/s41523-022-00402-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer metastasis is the main cause of cancer death in women, so far, no effective treatment has inhibited breast cancer metastasis. Sulforaphane (SFN), a natural compound derived from broccoli, has shown potential health benefits in many cancers. However, research on breast cancer metastasis is still insufficient. Here, we showed that SFN, including its two isomers of R-SFN and S-SFN, significantly inhibited TGF-β1-induced migration and invasion in breast cancer cells. Proteomic and phosphoproteomic analysis showed that SFN affected the formation of the cytoskeleton. Subsequent experiments confirmed that SFN significantly inhibited TGF-β1-induced actin stress fiber formation and the expression of actin stress fiber formation-associated proteins, including paxillin, IQGAP1, FAK, PAK2, and ROCK. Additionally, SFN is directly bound to RAF family proteins (including ARAF, BRAF, and CRAF) and inhibited MEK and ERK phosphorylation. These in vitro results indicate that SFN targets the RAF/MEK/ERK signaling pathway to inhibit the formation of actin stress fibers, thereby inhibiting breast cancer cell metastasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Qian Lu
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nan Li
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
4
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
5
|
Lee ST, Kuboki T, Kidoaki S, Aida Y, Ryuzaki S, Okamoto K, Arima Y, Tamada K. Transient Nascent Adhesion at the Initial Stage of Cell Adhesion Visualized on a Plasmonic Metasurface. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shi Ting Lee
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Thasaneeya Kuboki
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Satoru Kidoaki
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Yukiko Aida
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Sou Ryuzaki
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Koichi Okamoto
- Department of Physics and Electronics Osaka Prefecture University Osaka 599-8531 Japan
| | - Yusuke Arima
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
- Advanced Institute for Materials Research (AIMR) Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
6
|
XIAO PAN, MA TIANJIA, ZHOU CHUNWEN, XU YANG, LIU YUQIANG, ZHANG HUAIQIANG. Anticancer effect of docetaxel induces apoptosis of prostate cancer via the cofilin-1 and paxillin signaling pathway. Mol Med Rep 2016; 13:4079-84. [DOI: 10.3892/mmr.2016.5000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/23/2016] [Indexed: 11/06/2022] Open
|
7
|
Zhu X, Zhang L, Kao YT, Xu F, Min W. A tunable fluorescent timer method for imaging spatial-temporal protein dynamics using light-driven photoconvertible protein. JOURNAL OF BIOPHOTONICS 2015; 8:226-232. [PMID: 24488612 DOI: 10.1002/jbio.201300174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial-temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light-driven timer concept that could report relative protein ages at specific sub-cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light-driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible "ruler" for studying temporal hierarchy of spatially ordered processes with exquisite spatial-temporal resolution.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
8
|
Werdich XQ, Jakobiec FA, Curtin HD, Fay A. A clinical, radiologic, and immunopathologic study of five periorbital intraosseous cavernous vascular malformations. Am J Ophthalmol 2014; 158:816-826.e1. [PMID: 25034115 DOI: 10.1016/j.ajo.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE To correlate the clinical, radiographic, histopathologic, and immunohistochemical features of 5 primary periorbital intraosseous cavernous vascular malformations. DESIGN Retrospective interventional case series. METHODS Clinical and operative records and radiographic images were reviewed. Histopathologic slides were evaluated with hematoxylin-eosin, trichrome, and elastin stains. Immunohistochemical studies were performed with a spectrum of monoclonal antibodies directed at antigens of vascular cells. RESULTS Three men and 2 women ranged in age from 36 to 64 years. Vision was unaffected and there was no proptosis or globe displacement. The slow-growing lesions measured 13-25 mm in greatest diameter (mean 16.4 mm). Computed tomographic studies revealed that 2 lesions were situated in the maxillary bone, 2 in the frontal, and 1 in the zygoma, all anteriorly and with circumscribed, lucent, honeycombed, or sunburst characteristics. Histopathologically the lesions were composed of cavernous or telangiectatic channels; 1 showed advanced fibrotic vascular involution. Immunohistochemistry demonstrated CD31/34 positivity for vascular endothelium and D2-40 negativity for lymphatic endothelium. A typically thin mural myofibroblastic cuff was smooth muscle actin positive, weakly calponin positive, and desmin negative. Glucose transporter-1 and Ki-67 were negative in the endothelium. CONCLUSIONS Intraosseous vascular lesions resemble orbital cavernous venous malformations (not true hemangiomas), except that their vascular walls are thinner owing to the constraints imposed by neighboring bone spicules, which limit the amount of interstitium from which mural myofibroblasts can be recruited. The bony trabeculae conferred the honeycomb or sunburst appearances observed radiographically. En bloc excision of these lesions was successful and avoided complications (mean follow-up, 46 months).
Collapse
Affiliation(s)
- Xiang Q Werdich
- David G. Cogan Laboratory of Ophthalmic Pathology, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Frederick A Jakobiec
- David G. Cogan Laboratory of Ophthalmic Pathology, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Hugh D Curtin
- Department of Radiology, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Aaron Fay
- Ophthalmic Plastic Surgery, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Hu YL, Lu S, Szeto KW, Sun J, Wang Y, Lasheras JC, Chien S. FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep 2014; 4:6024. [PMID: 25113375 PMCID: PMC4129417 DOI: 10.1038/srep06024] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 07/02/2014] [Indexed: 12/23/2022] Open
Abstract
Cell migration requires the fine spatiotemporal integration of many proteins that regulate the fundamental processes that drive cell movement. Focal adhesion (FA) dynamics is a continuous process involving coordination between FA and actin cytoskeleton, which is essential for cell migration. We studied the spatiotemporal relationship between the dynamics of focal adhesion kinase (FAK) and paxillin at FAs in the protrusion of living endothelial cells. Concurrent dual-color imaging showed that FAK was assembled at FA first, which was followed by paxillin recruitment to the FA. By tracking and quantifying FAK and paxillin in migrating cells, the normalized FAK/Paxillin fluorescence intensity (FI) ratio is > 1 (≈ 4 fold) at cell front, ≈ 1 at cell center, and < 1 at cell rear. The significantly higher FAK FI than paxillin FI at cell front indicates that the assembly of FAK-FAs occurs ahead of paxillin at cell front. To determine the time difference between the assemblies of FAK and paxillin at nascent FAs, FAs containing both FAK and paxillin were quantified by image analysis and time correlation. The results show that FAK assembles at the nascent FAs earlier than paxillin in the protrusions at cell front.
Collapse
Affiliation(s)
- Ying-Li Hu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kai W. Szeto
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jie Sun
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL 61801 USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Salipalli S, Singh PK, Borlak J. Recent advances in live cell imaging of hepatoma cells. BMC Cell Biol 2014; 15:26. [PMID: 25005127 PMCID: PMC4108253 DOI: 10.1186/1471-2121-15-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example.
Collapse
Affiliation(s)
| | | | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| |
Collapse
|
11
|
Parhamifar L, Wu L, Andersen H, Moghimi SM. Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex–cell interaction: Basic guidelines. Methods 2014; 68:300-7. [DOI: 10.1016/j.ymeth.2014.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 02/06/2014] [Indexed: 02/08/2023] Open
|
12
|
Sakano M, Otsu K, Fujiwara N, Fukumoto S, Yamada A, Harada H. Cell dynamics in cervical loop epithelium during transition from crown to root: implications for Hertwig's epithelial root sheath formation. J Periodontal Res 2012; 48:262-7. [PMID: 22973989 DOI: 10.1111/jre.12003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Some clinical cases of hypoplastic tooth root are congenital. Because the formation of Hertwig's epithelial root sheath (HERS) is an important event for root development and growth, we have considered that understanding the HERS developmental mechanism contributes to elucidate the causal factors of the disease. To find integrant factors and phenomenon for HERS development and growth, we studied the proliferation and mobility of the cervical loop (CL). MATERIAL AND METHODS We observed the cell movement of CL by the DiI labeling and organ culture system. To examine cell proliferation, we carried out immunostaining of CL and HERS using anti-Ki67 antibody. Cell motility in CL was observed by tooth germ slice organ culture using green fluorescent protein mouse. We also examined the expression of paxillin associated with cell movement. RESULTS Imaging using DiI labeling showed that, at the apex of CL, the epithelium elongated in tandem with the growth of outer enamel epithelium (OEE). Cell proliferation assay using Ki67 immunostaining showed that OEE divided more actively than inner enamel epithelium (IEE) at the onset of HERS formation. Live imaging suggested that mobility of the OEE and cells in the apex of CL were more active than in IEE. The expression of paxillin was observed strongly in OEE and the apex of CL. CONCLUSION The more active growth and movement of OEE cells contributed to HERS formation after reduction of the growth of IEE. The expression pattern of paxillin was involved in the active movement of OEE and HERS. The results will contribute to understand the HERS formation mechanism and elucidate the cause of anomaly root.
Collapse
Affiliation(s)
- M Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Doggett TM, Breslin JW. Study of the actin cytoskeleton in live endothelial cells expressing GFP-actin. J Vis Exp 2011:3187. [PMID: 22126853 DOI: 10.3791/3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The microvascular endothelium plays an important role as a selectively permeable barrier to fluids and solutes. The adhesive junctions between endothelial cells regulate permeability of the endothelium, and many studies have indicated the important contribution of the actin cytoskeleton to determining junctional integrity(1-5). A cortical actin belt is thought to be important for the maintenance of stable junctions(1, 2, 4, 5). In contrast, actin stress fibers are thought to generate centripetal tension within endothelial cells that weakens junctions(2-5). Much of this theory has been based on studies in which endothelial cells are treated with inflammatory mediators known to increase endothelial permeability, and then fixing the cells and labeling F-actin for microscopic observation. However, these studies provide a very limited understanding of the role of the actin cytoskeleton because images of fixed cells provide only snapshots in time with no information about the dynamics of actin structures(5). Live-cell imaging allows incorporation of the dynamic nature of the actin cytoskeleton into the studies of the mechanisms determining endothelial barrier integrity. A major advantage of this method is that the impact of various inflammatory stimuli on actin structures in endothelial cells can be assessed in the same set of living cells before and after treatment, removing potential bias that may occur when observing fixed specimens. Human umbilical vein endothelial cells (HUVEC) are transfected with a GFP-β-actin plasmid and grown to confluence on glass coverslips. Time-lapse images of GFP-actin in confluent HUVEC are captured before and after the addition of inflammatory mediators that elicit time-dependent changes in endothelial barrier integrity. These studies enable visual observation of the fluid sequence of changes in the actin cytoskeleton that contribute to endothelial barrier disruption and restoration. Our results consistently show local, actin-rich lamellipodia formation and turnover in endothelial cells. The formation and movement of actin stress fibers can also be observed. An analysis of the frequency of formation and turnover of the local lamellipodia, before and after treatment with inflammatory stimuli can be documented by kymograph analyses. These studies provide important information on the dynamic nature of the actin cytoskeleton in endothelial cells that can used to discover previously unidentified molecular mechanisms important for the maintenance of endothelial barrier integrity.
Collapse
Affiliation(s)
- Travis M Doggett
- Department of Physiology, Louisiana State University Health Sciences Center, USA
| | | |
Collapse
|
14
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, United States.
| | | |
Collapse
|
15
|
Costa P, Parsons M. New insights into the dynamics of cell adhesions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:57-91. [PMID: 20801418 DOI: 10.1016/s1937-6448(10)83002-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adhesion to the extracellular matrix (ECM) and to adjacent cells is a fundamental requirement for survival, differentiation, and migration of numerous cell types during both embryonic development and adult homeostasis. Different types of adhesion structures have been classified within different cell types or tissue environments. Much is now known regarding the complexity of protein composition of these critical points of cell contact with the extracellular environment. It has become clear that adhesions are highly ordered, dynamic structures under tight spatial control at the subcellular level to enable localized responses to extracellular cues. However, it is only in the last decade that the relative dynamics of these adhesion proteins have been closely studied. Here, we provide an overview of the recent data arising from such studies of cell-matrix and cell-cell contact and an overview of the imaging strategies that have been developed and implemented to study the intricacies and hierarchy of protein turnover within adhesions.
Collapse
Affiliation(s)
- Patricia Costa
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, United Kingdom
| | | |
Collapse
|
16
|
Regulation of cellular morphology using temperature-responsive hydrogel for integrin-mediated mechanical force stimulation. Biomaterials 2009; 30:1421-7. [DOI: 10.1016/j.biomaterials.2008.11.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/18/2008] [Indexed: 11/15/2022]
|
17
|
Wang Y, Shyy JYJ, Chien S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 2008; 10:1-38. [PMID: 18647110 DOI: 10.1146/annurev.bioeng.010308.161731] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence proteins (FPs) have been widely used for live-cell imaging in the past decade. This review summarizes the recent advances in FP development and imaging technologies using FPs to monitor molecular localization and activities and gene expressions in live cells. We also discuss the utilization of FPs to develop molecular biosensors and the principles and application of advanced technologies such as fluorescence resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging microscopy (FLIM), and chromophore-assisted light inactivation (CALI). We present examples of the application of FPs and biosensors to visualize mechanotransduction events with high spatiotemporal resolutions in live cells. These live-cell imaging technologies, which represent a frontier area in biomedical engineering, can shed new light on the mechanisms regulating mechanobiology at cellular and molecular levels in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
18
|
Yokoyama U, Minamisawa S, Quan H, Akaike T, Suzuki S, Jin M, Jiao Q, Watanabe M, Otsu K, Iwasaki S, Nishimaki S, Sato M, Ishikawa Y. Prostaglandin E2-activated Epac promotes neointimal formation of the rat ductus arteriosus by a process distinct from that of cAMP-dependent protein kinase A. J Biol Chem 2008; 283:28702-9. [PMID: 18697745 DOI: 10.1074/jbc.m804223200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated that chronic stimulation of the prostaglandin E2-cAMP-dependent protein kinase A (PKA) signal pathway plays a critical role in intimal cushion formation in perinatal ductus arteriosus (DA) through promoting synthesis of hyaluronan. We hypothesized that Epac, a newly identified effector of cAMP, may play a role in intimal cushion formation (ICF) in the DA distinct from that of PKA. In the present study, we found that the levels of Epac1 and Epac2 mRNAs were significantly up-regulated in the rat DA during the perinatal period. A specific EP4 agonist, ONO-AE1-329, increased Rap1 activity in the presence of a PKA inhibitor, PKI-(14-22)-amide, in DA smooth muscle cells. 8-pCPT-2'-O-Me-cAMP (O-Me-cAMP), a cAMP analog selective to Epac activator, promoted migration of DA smooth muscle cells (SMC) in a dose-dependent manner. Adenovirus-mediated Epac1 or Epac2 gene transfer further enhanced O-Me-cAMP-induced cell migration, although the effect of Epac1 overexpression on cell migration was stronger than that of Epac2. In addition, transfection of small interfering RNAs for Epac1, but not Epac2, significantly inhibited serum-mediated migration of DA SMCs. In the presence of O-Me-cAMP, actin stress fibers were well organized with enhanced focal adhesion, and cell shape was widely expanded. Adenovirus-mediated Epac1, but not Epac2 gene transfer, induced prominent ICF in the rat DA explants when compared with those with green fluorescent protein gene transfer. The thickness of intimal cushion became significantly greater (1.98-fold) in Epac1-overexpressed DA. O-Me-cAMP did not change hyaluronan production, although it decreased proliferation of DA SMCs. The present study demonstrated that Epac, especially Epac1, plays an important role in promoting SMC migration and thereby ICF in the rat DA.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|