1
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
2
|
Mucin 1 as a Molecular Target of a Novel Diisoquinoline Derivative Combined with Anti-MUC1 Antibody in AGS Gastric Cancer Cells. Molecules 2021; 26:molecules26216504. [PMID: 34770912 PMCID: PMC8588261 DOI: 10.3390/molecules26216504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The aim of the study was to examine the molecular mechanism of the anticancer action of a monoclonal antibody against MUC1 and a diisoquinoline derivative (OM-86II) in human gastric cancer cells. METHODS The cell viability was measured by the MTT assay. The disruption of mitochondrial membrane potential and activity of caspase-8 and caspase-9 was performed by flow cytometry. Fluorescent microscopy was used to confirm the proapoptotic effect of compounds. LC3A, LC3B and Beclin-1 concentrations were analyzed to check the influence of the compounds on induction of autophagy. ELISA assessments were performed to measure the concentration of mTOR, sICAM1, MMP-2, MMP-9 and pro-apoptotic Bax. RESULTS The anti-MUC1 antibody with the diisoquinoline derivative (OM-86II) significantly reduced gastric cancer cells' viability. This was accompanied by an increase in caspase-8 and caspase-9 activity as well as high concentrations of pro-apoptotic Bax. We also proved that the anti-MUC1 antibody with OM-86II decreased the concentrations of MMP-9, sICAM1 and mTOR in gastric cancer cells. After 48 h of incubation with such a combination, we observed higher levels of the crucial component of autophagosomes (LC3) and Beclin-1. CONCLUSIONS Our study proved that the anti-MUC1 antibody sensitizes human gastric cancer cells to the novel diisoquinoline derivative (OM-86II) via induction of apoptosis and autophagy, and inhibition of selected proteins such as mTOR, sICAM1 and MMP-9.
Collapse
|
3
|
Khodavirdipour A, Piri M, Jabbari S, Keshavarzi S, Safaralizadeh R, Alikhani MY. Apoptosis Detection Methods in Diagnosis of Cancer and Their Potential Role in Treatment: Advantages and Disadvantages: a Review. J Gastrointest Cancer 2021; 52:422-430. [PMID: 33392962 DOI: 10.1007/s12029-020-00576-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Interruption of regulation of apoptosis can play a leading role in cancers where elevated apoptosis causes neurodegeneration, autoimmunity, AIDS, and ischemia. One famous example can be p53's downregulation, which is a tumor suppressor gene, which consequently can cause a decrease in apoptosis rate and intense tumor growth and progression and development and inactivation of 53; it can be extended to many cancers in human. Anyhow, apoptosis is a double-edge sword. There are many trials and studies are going on observation and understanding of different steps involved in apoptosis. Apoptosis has a very major role in carcinogenesis and the treatment of cancer. AIM In this updated-cum-comprehensive review, we would like to cover what is apoptosis and cancer and also, will discuss all known methods of apoptosisdetection, their applicability in the treatment of cancer, and their advantages, disadvantages, and limitations. MATERIAL AND METHODS Published articles on indexing sources such as PubMed, Scopus from 2000 to date. RESULT By considering all above information including each methods pros and cons, these routine methods could be great tool with distinctive qualities in treatmentwhich can be great help from patient perspective and as well from government ad health care system point of view. CONCLUSION Accurate diagnosis of cell apoptotic biopathways at different stages assists in evaluating near to exact apoptotic index, which is the perfect sign andindicator for metastasis and also prognosis, thus foreseeing treatment outcome.
Collapse
Affiliation(s)
- Amir Khodavirdipour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Division of Human Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Motahareh Piri
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Sarvin Jabbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shiva Keshavarzi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
4
|
Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P. Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020259. [PMID: 31973201 PMCID: PMC7072214 DOI: 10.3390/cancers12020259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Eleanor A. Woodward
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Nathan J. Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
5
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
6
|
Jiang QG, Li TY, Liu DN, Zhang HT. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo. Mol Biol Rep 2014; 41:3359-67. [PMID: 24496855 DOI: 10.1007/s11033-014-3198-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/24/2014] [Indexed: 12/13/2022]
Abstract
In this study we determined the effects of Curcumin on human colon cancer cells line LoVo. We found that Curcumin significantly inhibited the proliferation, migration and invasion, and clone formation of LoVo cells in a dose-dependent manner. Curcumin also dose-dependently reduced the phosphorylation of proteins Akt and increased expression levels of the genes caspase-3, cytochrome-c, Bax mRNA in LoVo cells. In addition, Curcumin dose-dependently decreased gene Bcl-2 mRNA expression. Similar results were observed in LoVo cells treated with LY294002. These in vitro studies suggest that Curcumin may play its anti-cancer actions partly via suppressing PI3K/Akt signal pathway in LoVo cells.
Collapse
Affiliation(s)
- Qun Guang Jiang
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:87. [PMID: 21943236 PMCID: PMC3197541 DOI: 10.1186/1756-9966-30-87] [Citation(s) in RCA: 1907] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/26/2011] [Indexed: 01/10/2023]
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.
Collapse
Affiliation(s)
- Rebecca S Y Wong
- Division of Human Biology, School of Medical and Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Hypocrellin B-encapsulated nanoparticle-mediated rev-caspase-3 gene transfection and photodynamic therapy on tumor cells. Eur J Pharmacol 2011; 650:496-500. [DOI: 10.1016/j.ejphar.2010.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022]
|
9
|
Lindholm L, Henning P, Magnusson MK. Novel strategies in tailoring human adenoviruses into therapeutic cancer gene therapy vectors. Future Virol 2008. [DOI: 10.2217/17460794.3.1.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene therapy is a novel approach for the treatment of cancer that has so far not been realized. The scope of this review is to try to define the remaining barriers to the successful use of adenovirus vectors for gene and viral therapy of human tumors and to suggest solutions whereby these barriers can be bypassed. It is the conviction of the authors that too many studies have been performed in animal models that are not sufficiently comprehensive to allow conclusions to be drawn for application in humans. For example, in the case of the murine experimental model, in which most studies have been performed, mice are devoid of circulating antibodies to adenovirus type 5 and adenovirus cannot replicate in mouse cells. While the problems are real enough, as witnessed by the quite limited success in human trials, some of the solutions that will be suggested here are hypothetical and have not as yet been tried, even in animals. The review has no ambition to be exhaustive but is intended as a contribution in order to forward the field of gene therapy vectors for systemic clinical application.
Collapse
Affiliation(s)
- Leif Lindholm
- University of Goteborg, Institute for Biomedicine, Department of Microbiology & Immunology, PO Box 435, SE 40530 Goteborg, Sweden, and, Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Petra Henning
- University of Goteborg, Institute for Biomedicine, Department of Microbiology & Immunology, PO Box 435, SE 40530 Goteborg, Sweden, and, Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Maria K Magnusson
- University of Goteborg, Institute for Biomedicine, Department of Microbiology & Immunology, PO Box 435, SE 40530 Goteborg, Sweden, and, Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| |
Collapse
|