1
|
Salmon M, Schaheen B, Spinosa M, Montgomery W, Pope NH, Davis JP, Johnston WF, Sharma AK, Owens GK, Merchant JL, Zehner ZE, Upchurch GR, Ailawadi G. ZFP148 (Zinc-Finger Protein 148) Binds Cooperatively With NF-1 (Neurofibromin 1) to Inhibit Smooth Muscle Marker Gene Expression During Abdominal Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2019; 39:73-88. [PMID: 30580567 PMCID: PMC6422047 DOI: 10.1161/atvbaha.118.311136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Objective- The goal of this study was to determine the role of ZFP148 (zinc-finger protein 148) in aneurysm formation. Approach and Results- ZFP148 mRNA expression increased at day 3, 7, 14, 21, and 28 after during abdominal aortic aneurysm formation in C57BL/6 mice. Loss of ZFP148 conferred abdominal aortic aneurysm protection using ERTCre+ ZFP148 flx/flx mice. In a third set of experiments, smooth muscle-specific loss of ZFP148 alleles resulted in progressively greater protection using novel transgenic mice (MYH [myosin heavy chain 11] Cre+ flx/flx, flx/wt, and wt/wt). Elastin degradation, LGAL3, and neutrophil staining were significantly attenuated, while α-actin staining was increased in ZFP148 knockout mice. Results were verified in total cell ZFP148 and smooth muscle-specific knockout mice using an angiotensin II model. ZFP148 smooth muscle-specific conditional mice demonstrated increased proliferation and ZFP148 was shown to bind to the p21 promoter during abdominal aortic aneurysm formation. ZFP148 smooth muscle-specific conditional knockout mice also demonstrated decreased apoptosis as measured by decreased cleaved caspase-3 staining. ZFP148 bound smooth muscle marker genes via chromatin immunoprecipitation analysis mediated by NF-1 (neurofibromin 1) promote histone H3K4 deacetylation via histone deacetylase 5. Transient transfections and chromatin immunoprecipitation analyses demonstrated that NF-1 was required for ZFP148 protein binding to smooth muscle marker genes promoters during aneurysm formation. Elimination of NF-1 using shRNA approaches demonstrated that NF-1 is required for binding and elimination of NF-1 increased BRG1 recruitment, the ATPase subunit of the SWI/SWF complex, and increased histone acetylation. Conclusions- ZFP148 plays a critical role in multiple murine models of aneurysm formation. These results suggest that ZFP148 is important in the regulation of proliferation, smooth muscle gene downregulation, and apoptosis in aneurysm development.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Basil Schaheen
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Spinosa
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William Montgomery
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nicolas H. Pope
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John P. Davis
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William F. Johnston
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ashish K. Sharma
- Department of Surgery, College of Medicine of the University of Florida, Gainesville, Florida, USA
| | - Gary K. Owens
- The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Zendra E. Zehner
- Department of Biochemistry, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Gilbert R. Upchurch
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Surgery, College of Medicine of the University of Florida, Gainesville, Florida, USA
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Wang N, Wang S, Yang SL, Liu LP, Li MY, Lai PBS, Chen GG. Targeting ZBP-89 for the treatment of hepatocellular carcinoma. Expert Opin Ther Targets 2018; 22:817-822. [PMID: 30142986 DOI: 10.1080/14728222.2018.1516753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Wang
- Department of Otorhinolaryngology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong Province, China
| | - Ming-yue Li
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Guangdong, China
| | - Paul B. S. Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - George G. Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Guangdong, China
| |
Collapse
|
3
|
Fang J, Jia J, Makowski M, Xu M, Wang Z, Zhang T, Hoskins JW, Choi J, Han Y, Zhang M, Thomas J, Kovacs M, Collins I, Dzyadyk M, Thompson A, O'Neill M, Das S, Lan Q, Koster R, Stolzenberg-Solomon RS, Kraft P, Wolpin BM, Jansen PWTC, Olson S, McGlynn KA, Kanetsky PA, Chatterjee N, Barrett JH, Dunning AM, Taylor JC, Newton-Bishop JA, Bishop DT, Andresson T, Petersen GM, Amos CI, Iles MM, Nathanson KL, Landi MT, Vermeulen M, Brown KM, Amundadottir LT. Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat Commun 2017; 8:15034. [PMID: 28447668 PMCID: PMC5414179 DOI: 10.1038/ncomms15034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.
Collapse
Affiliation(s)
- Jun Fang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew Makowski
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Younghun Han
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Janelle Thomas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Kovacs
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marta Dzyadyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Abbey Thompson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Maura O'Neill
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Qi Lan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Roelof Koster
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rachael S. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Sara Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York City, New York 10065, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer H. Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - John C. Taylor
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Julia A. Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Katherine L. Nathanson
- Translational Medicine and Human Genetics, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA. PLoS One 2015; 10:e0126088. [PMID: 25950714 PMCID: PMC4423948 DOI: 10.1371/journal.pone.0126088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/29/2015] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.
Collapse
|
5
|
Ye CG, Liu L, Chen GG, Tang XL, He Z, He ML, Lai PBS. ZBP-89 reduces histone deacetylase 3 by degrading IkappaB in the presence of Pin1. J Transl Med 2015; 13:23. [PMID: 25623232 PMCID: PMC4311446 DOI: 10.1186/s12967-015-0382-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Histone deacetylase 3 (HDAC3) is overexpressed in cancers and its inhibition enhances anti-tumor chemotherapy. ZBP-89, a transcription factor, can induce pro-apoptotic Bak and reduce HDAC3 but the mechanism is unknown. Pin1, a molecular switch that determines the fate of phosphoproteins, is known to interact with HDAC3. The aim of this study was to investigate the mechanism how ZBP-89 downregulated HDAC3. METHODS In this study, liver cells, Pin1-knockout Pin1(-/-) and Pin1 wild-typed Pin(+/+) cells were used to explore how ZBP-89 reduced HDAC3. The overexpression of ZBP-89 was achieved by infecting cells with Ad-ZBP-89, an adenoviral construct containing ZBP-89 gene. The role of NF-κB was determined using CAY10576, MG132 and SN50, the former two being inhibitors of IκB degradation and SN50 being an inhibitor of p65/p50 translocation. A xenograft tumor model was used to confirm the in vitro data. RESULTS ZBP-89 reduced HDAC3, and it could form a complex with IκB and induce IκB phosphorylation to inhibit IκB. Furthermore, ZBP-89-mediated HDAC3 reduction was suppressed by IκB degradation inhibitors CAY10576 and MG132 but not by p65/p50 translocation inhibitor SN50, indicating that IκB decrease rather than the elevated activity of NF-κB contributed to HDAC3 reduction. ZBP-89-mediated HDAC3 or IκB reduction was significantly less obvious in Pin1(-/-) cells compared with Pin1(+/+) cells. In Ad-ZBP-89-infected Pin1(+/+) cancer cells, Pin1 siRNA increased HDAC3 but decreased Bak, compared with cells without ZBP-89 infection. These findings indicate that Pin1 participates in ZBP-89-mediated HDAC3 downregulation and Bak upregulation. The cell culture result was confirmed by in vivo mouse tumor model experiments. CONCLUSIONS ZBP-89 attenuates HDAC3 by increasing IκB degradation. Such attenuation is independent of NF-κB activity but partially depends on Pin1. The novel pathway identified may help generate new anti-cancer strategy by targeting HDAC3 and its related molecules.
Collapse
Affiliation(s)
- Cai Guo Ye
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, NT, P. R. China. .,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China. .,Sino-America Cancer Research Institute, The Guangdong Medical College, Dongguan, Guangdong province, P R China.
| | - Liping Liu
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China. .,Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong Province, China.
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, NT, P. R. China. .,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China.
| | - Xiao Lin Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China.
| | - Zhiwei He
- Sino-America Cancer Research Institute, The Guangdong Medical College, Dongguan, Guangdong province, P R China.
| | - Ming-Liang He
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China.
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, NT, P. R. China.
| |
Collapse
|
6
|
Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AKS, Huen MSY, Tsao SW. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 2015; 89:652-68. [PMID: 25355892 PMCID: PMC4301132 DOI: 10.1128/jvi.01437-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), a type of oncogenic herpesvirus, is associated with human malignancies. Previous studies have shown that lytic reactivation of EBV in latently infected cells induces an ATM-dependent DNA damage response (DDR). The involvement of ATM activation has been implicated in inducing viral lytic gene transcription to promote lytic reactivation. Its contribution to the formation of a replication compartment during lytic reactivation of EBV remains poorly defined. In this study, the role of ATM in viral DNA replication was investigated in EBV-infected nasopharyngeal epithelial cells. We observed that induction of lytic infection of EBV triggers ATM activation and localization of DDR proteins at the viral replication compartments. Suppression of ATM activity using a small interfering RNA (siRNA) approach or a specific chemical inhibitor profoundly suppressed replication of EBV DNA and production of infectious virions in EBV-infected cells induced to undergo lytic reactivation. We further showed that phosphorylation of Sp1 at the serine-101 residue is essential in promoting the accretion of EBV replication proteins at the replication compartment, which is crucial for replication of viral DNA. Knockdown of Sp1 expression by siRNA effectively suppressed the replication of viral DNA and localization of EBV replication proteins to the replication compartments. Our study supports an important role of ATM activation in lytic reactivation of EBV in epithelial cells, and phosphorylation of Sp1 is an essential process downstream of ATM activation involved in the formation of viral replication compartments. Our study revealed an essential role of the ATM-dependent DDR pathway in lytic reactivation of EBV, suggesting a potential antiviral replication strategy using specific DDR inhibitors. IMPORTANCE Epstein-Barr virus (EBV) is closely associated with human malignancies, including undifferentiated nasopharyngeal carcinoma (NPC), which has a high prevalence in southern China. EBV can establish either latent or lytic infection depending on the cellular context of infected host cells. Recent studies have highlighted the importance of the DNA damage response (DDR), a surveillance mechanism that evolves to maintain genome integrity, in regulating lytic EBV replication. However, the underlying molecular events are largely undefined. ATM is consistently activated in EBV-infected epithelial cells when they are induced to undergo lytic reactivation. Suppression of ATM inhibits replication of viral DNA. Furthermore, we observed that phosphorylation of Sp1 at the serine-101 residue, a downstream event of ATM activation, plays an essential role in the formation of viral replication compartments for replication of virus DNA. Our study provides new insights into the mechanism through which EBV utilizes the host cell machinery to promote replication of viral DNA upon lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wen Deng
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Lin Jia
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jie Yang
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Michael Shing-Yan Huen
- Genome Stability Research Laboratory, Department of Anatomy and Centre for Cancer Research, The University of Hong Kong, Hong Kong SAR
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
7
|
Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med (Berl) 2014; 92:571-81. [PMID: 24838609 DOI: 10.1007/s00109-014-1160-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/04/2014] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) represents an important mechanism during development and wound healing, and its deregulation has been implicated in metastasis. Recently, the Krüppel-type zinc-finger transcription factor ZNF281 has been characterized as an EMT-inducing transcription factor (EMT-TF). Expression of ZNF281 is induced by the EMT-TF SNAIL and inhibited by the tumor suppressive microRNA miR-34a, which mediates repression of ZNF281 by the p53 tumor suppressor. Therefore, SNAIL, miR-34a and ZNF281 form a feed-forward regulatory loop, which controls EMT. Deregulation of this circuitry by mutational and epigenetic alterations in the p53/miR-34a axis promotes colorectal cancer (CRC) progression and metastasis formation. As ZNF281 physically interacts with the transcription factors NANOG, OCT4, SOX2, and c-MYC, it has been implicated in the regulation of pluripotency, stemness, and cancer. Accordingly, ectopic ZNF281 expression in CRC lines induces the stemness markers LGR5 and CD133 and promotes sphere formation, suggesting that the elevated expression of ZNF281 detected in cancer may enhance tumor stem cell formation and/or function. Here, we review the functional and organismal studies of ZNF281/ZBP-99 and its close relative ZBP-89/ZFP148 reported so far. Taken together, ZNF281 related biology has the potential to be translated into cancer diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Stefanie Hahn
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, 80337, Munich, Germany
| | | |
Collapse
|
8
|
Ye CG, Chen GG, Ho RLK, Merchant JL, He ML, Lai PBS. Epigenetic upregulation of Bak by ZBP-89 inhibits the growth of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2970-2979. [PMID: 23954442 DOI: 10.1016/j.bbamcr.2013.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Zinc-binding protein-89 regulates Bak to facilitate apoptosis in cancer cells. This study examined if zinc-binding protein-89 regulates Bak through an epigenetic mechanism in hepatocellular carcinoma. We first demonstrated that the expression of Bak was reduced but the levels of deoxyribonucleic acid methyltransferase 1 and histone deacetylase 3 were increased in hepatocellular carcinoma cancer tissues compared to the corresponding non-cancer tissues. Moreover, there was a negative correlation between Bak expression and deoxyribonucleic acid methyltransferase 1 levels in hepatocellular carcinoma. Administration of zinc-binding protein-89 downregulated histone deacetylase 3 expression and suppressed the activities of histone deacetylase and deoxyribonucleic acid methyltransferase, which led to maintenance of histone acetylation status, inhibited the binding of methyl-CpG-binding protein 2 to genomic deoxyribonucleic acid and demethylated CpG islands in the Bak promoter in hepatocellular carcinoma cells. Using the xenograft mouse tumor model, we demonstrated that zinc-binding protein-89 or inhibitors of either epigenetic enzymes could stimulate Bak expression, induce apoptosis, and arrest tumor growth and that the maximal effort was achieved when zinc-binding protein-89 and the enzyme inhibitors were used in combination. Conclusively, zinc-binding protein-89 upregulates the expression of Bak by targeting multiple components of the epigenetic pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Cai Guo Ye
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; China-America Cancer Research Institute, Guangdong Medical College, Dongguan 523808, PR China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Rocky L K Ho
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Juanita L Merchant
- Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming-Liang He
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
9
|
Essien B, Grasberger H, Romain RD, Law DJ, Veniaminova NA, Saqui-Salces M, El-Zaatari M, Tessier A, Hayes MM, Yang AC, Merchant JL. ZBP-89 regulates expression of tryptophan hydroxylase I and mucosal defense against Salmonella typhimurium in mice. Gastroenterology 2013; 144:1466-77, 1477.e1-9. [PMID: 23395646 PMCID: PMC3665710 DOI: 10.1053/j.gastro.2013.01.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS ZBP-89 (also ZNF148 or Zfp148) is a butyrate-inducible zinc finger transcription factor that binds to GC-rich DNA elements. Deletion of the N-terminal domain is sufficient to increase mucosal susceptibility to chemical injury and inflammation. We investigated whether conditional deletion of ZBP-89 from the intestinal and colonic epithelium of mice increases their susceptibility to pathogens such as Salmonella typhimurium. METHODS We generated mice with a conditional null allele of Zfp148 (ZBP-89(FL/FL)) using homologous recombination to flank Zfp148 with LoxP sites (ZBP-89(FL/FL)), and then bred the resulting mice with those that express VillinCre. We used microarray analysis to compare gene expression patterns in colonic mucosa between ZBP-89(ΔInt) and C57BL/6 wild-type mice (controls). Mice were gavaged with 2 isogenic strains of S. typhimurium after administration of streptomycin. RESULTS Microarray analysis revealed that the colonic mucosa of ZBP-89(ΔInt) mice had reduced levels of tryptophan hydroxylase 1 (Tph1) messenger RNA, encoding the rate-limiting enzyme in enterochromaffin cell serotonin (5-hydroxytryptamine [5HT]) biosynthesis. DNA affinity precipitation demonstrated direct binding of ZBP-89 to the mouse Tph1 promoter, which was required for its basal and butyrate-inducible expression. ZBP-89(ΔInt) mice did not increase mucosal levels of 5HT in response to S. typhimurium infection, and succumbed to the infection 2 days before control mice. The ΔhilA isogenic mutant of S. typhimurium lacks this butyrate-regulated locus and stimulated, rather than suppressed, expression of Tph1 approximately 50-fold in control, but not ZBP-89(ΔInt), mice, correlating with fecal levels of butyrate. CONCLUSIONS ZBP-89 is required for butyrate-induced expression of the Tph1 gene and subsequent production of 5HT in response to bacterial infection in mice. Reductions in epithelial ZBP-89 increase susceptibility to colitis and sepsis after infection with S. typhimurium, partly because of reduced induction of 5HT production in response to butyrate and decreased secretion of antimicrobial peptides.
Collapse
Affiliation(s)
- Bryan Essien
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Rachael D. Romain
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - David J. Law
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Natalia A. Veniaminova
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Milena Saqui-Salces
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Mohamad El-Zaatari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Arthur Tessier
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Michael M. Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Alexander C. Yang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Juanita L. Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Gao XH, Liu QZ, Chang W, Xu XD, Du Y, Han Y, Liu Y, Yu ZQ, Zuo ZG, Xing JJ, Cao G, Fu CG. Expression of ZNF148 in different developing stages of colorectal cancer and its prognostic value: a large Chinese study based on tissue microarray. Cancer 2013; 119:2212-22. [PMID: 23576061 DOI: 10.1002/cncr.28052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/24/2012] [Accepted: 02/25/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND It has been speculated that zinc finger protein 148 (ZNF148) is a tumor suppressor. However, to the authors' knowledge, little is known about the clinical significance of ZNF148 expression in patients with colorectal cancer (CRC). The objective of the current study was to clarify the association between ZNF148 expression and the postoperative prognosis of patients with CRC. METHODS Tissue microarrays containing 56 normal mucosa, 51 adenoma, 742 CRC (TNM stage I-IV), 16 familial adenomatous polyposis, and 21 metastatic CRC specimens were examined immunohistochemically for ZNF148 expression. RESULTS Expression of ZNF148 was found to increase consecutively from normal mucosa to stage I CRC, and then decreased consecutively from stage I to stage IV CRC. Lower expression of ZNF148 in tumors was found to be significantly associated with lymph node metastases, advanced TNM disease stage, poor differentiation, higher rate of disease recurrence, worse overall survival (OS), and shorter disease-free survival. High expression of ZNF148 was also associated with improved OS (P = .025) and disease-free survival (P = .042) in patients with stages II to III CRC. On multivariate Cox analysis, lower ZNF148 expression in tumors, advanced TNM stage, colon cancer, and elevated serum carbohydrate antigen 19-9 (CA19-9) were found to be significant factors for a worse OS. In 16 patients with familial adenomatous polyposis, ZNF148 expression was upregulated at steps toward carcinogenesis. In 21 patients with metastatic CRC, although ZNF148 expression was higher in primary tumors compared with adjacent mucosa, its expression in metastatic tumors was significantly lower than that in primary tumors. CONCLUSIONS Although ZNF148 expression is related to colorectal carcinogenesis, high ZNF148 expression in patients with CRC appears to be inversely associated with malignant phenotypes and may serve as a significant prognostic factor after surgery for patients with CRC.
Collapse
Affiliation(s)
- Xian-Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sayin VI, Nilton A, Ibrahim MX, Ågren P, Larsson E, Petit MM, Hultén LM, Ståhlman M, Johansson BR, Bergo MO, Lindahl P. Zfp148 deficiency causes lung maturation defects and lethality in newborn mice that are rescued by deletion of p53 or antioxidant treatment. PLoS One 2013; 8:e55720. [PMID: 23405202 PMCID: PMC3566028 DOI: 10.1371/journal.pone.0055720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Zfp148 (Zbp-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53 and is implicated in cell cycle control, but the physiological role of Zfp148 remains unknown. Here we show that Zfp148 deficiency leads to respiratory distress and lethality in newborn mice. Zfp148 deficiency prevented structural maturation of the prenatal lung without affecting type II cell differentiation or surfactant production. BrdU analyses revealed that Zfp148 deficiency caused proliferation arrest of pulmonary cells at E18.5–19.5. Similarly, Zfp148-deficient fibroblasts exhibited proliferative arrest that was dependent on p53, raising the possibility that cell stress is part of the underlying mechanism. Indeed, Zfp148 deficiency lowered the threshold for activation of p53 under oxidative conditions. Moreover, both in vivo and cellular phenotypes were rescued on Trp53+/− or Trp53−/− backgrounds and by antioxidant treatment. Thus, Zfp148 prevents respiratory distress and lethality in newborn mice by attenuating oxidative stress–dependent p53-activity during the saccular stage of lung development. Our results establish Zfp148 as a novel player in mammalian lung maturation and demonstrate that Zfp148 is critical for cell cycle progression in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Apoptosis
- Blotting, Southern
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Lethal
- Immunoenzyme Techniques
- Lung/drug effects
- Lung/embryology
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oxidative Stress/drug effects
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Respiratory Tract Diseases/genetics
- Respiratory Tract Diseases/pathology
- Respiratory Tract Diseases/prevention & control
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/physiology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Volkan I. Sayin
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Nilton
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mohamed X. Ibrahim
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pia Ågren
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marleen M. Petit
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bengt R. Johansson
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergo
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
12
|
Zhang CZY, Cao Y, Yun JP, Chen GG, Lai PBS. Increased expression of ZBP-89 and its prognostic significance in hepatocellular carcinoma. Histopathology 2012; 60:1114-24. [PMID: 22372401 DOI: 10.1111/j.1365-2559.2011.04136.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS ZBP-89 plays a role in cell growth and death. Its expression in hepatocellular carcinoma (HCC) is not well documented. This study aimed to analyse ZBP-89 expression in HCC. METHODS AND RESULTS We examined ZBP-89 expression in five HCC cell lines and 182 HCC tissue samples by reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunofluorescence staining. Our results showed that the expression of ZBP-89 was higher in HCC than adjacent non-tumour liver, at both mRNA and protein levels. ZBP-89 was localized in the nucleus in most HCC tissue samples, but was found in the cytoplasm in 11.5% of cases. Patient survival in those tumours showing high ZBP-89 expression was better than in those with low expression. High ZBP-89 expression tended to be more common in World Health Organization (WHO) grade I than grades II-IV HCC. There was a significant association between HBV positivity and high ZBP-89 expression. Colony formation was reduced dramatically in those HCC cell lines in which ZBP-89 overexpression was demonstrated; this appeared to correlate with increased apoptosis, inferred by finding elevated levels of cleaved poly(ADP-ribose)polymerases (PARP), the probable mechanisms for which may involve increased p53 or p21 expression. CONCLUSIONS ZBP-89 has anti-tumour properties and is a potential biomarker for prognosis of HCC.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
13
|
Promoter cloning and characterization of the human programmed cell death protein 4 (pdcd4) gene: evidence for ZBP-89 and Sp-binding motifs as essential Pdcd4 regulators. Biosci Rep 2012; 32:281-97. [DOI: 10.1042/bsr20110045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pdcd4 (programmed cell death protein 4) is an important novel tumour suppressor inhibiting transformation, translation, invasion and intravasation, and its expression is down-regulated in several cancers. However, little is known about the transcriptional regulation and the promoter of this important tumour suppressor. So far the following is the first comprehensive study to describe the regulation of Pdcd4 transcription by ZBP-89 (zinc-finger-binding protein 89), besides characterizing the gene promoter. We identified the transcriptional start sites of the human pdcd4 promoter, a functional CCAAT-box, and the basal promoter region. Within this basal region, computer-based analysis revealed several potential binding sites for ZBPs, especially for Sp (specificity protein) family members and ZBP-89. We identified four Sp1/Sp3/Sp4-binding elements to be indispensable for basal promoter activity. However, overexpression of Sp1 and Sp3 was not sufficient to enhance Pdcd4 protein expression. Analysis in different solid cancer cell lines showed a significant correlation between pdcd4 and zbp-89 mRNA amounts. In contrast with Sp transcription factors, overexpression of ZBP-89 led to an enhanced expression of Pdcd4 mRNA and protein. Additionally, specific knockdown of ZBP-89 resulted in a decreased pdcd4 gene expression. Reporter gene analysis showed a significant up-regulation of basal promoter activity by co-transfection with ZBP-89, which could be abolished by mithramycin treatment. Predicted binding of ZBP-89 to the basal promoter was confirmed by EMSA (electrophoretic mobility-shift assay) data and supershift analysis for ZBP-89. Taken together, data for the first time implicate ZBP-89 as a regulator of Pdcd4 by binding to the basal promoter either alone or by interacting with Sp family members.
Collapse
|
14
|
Zhang CZY, Chen GG, Merchant JL, Lai PBS. Interaction between ZBP-89 and p53 mutants and its contribution to effects of HDACi on hepatocellular carcinoma. Cell Cycle 2012; 11:322-34. [PMID: 22214764 DOI: 10.4161/cc.11.2.18758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ZBP-89, a zinc finger transcription factor, participates in histone deacetylases inhibitors (HDACi)-mediated growth arrest and apoptosis in cancer cells. p53 mutants may interact with ZBP-89 that transcriptionally regulates p21(Waf1) (p21). However, this interaction and its consequence in cancer treatments are poorly understood. In this study, we demonstrate that ZBP‑89 is essentially required in HDACi-mediated p21 upregulation in hepetocellular carcinoma (HCC). Overexpression of ZBP-89 protein enhanced the lethal effectiveness of Trichostatin A (TSA). p53 mutant p53(G245D), but not p53(R249S), directly bound to ZBP-89 and prevented its translocation from cytoplasm to nucleus. Furthermore, p53(G245D) was shown to have a similar pattern of subcellular localization to ZBP-89 in tissues of HCC patients in Hong Kong. Functionally, the cytoplasmic accumulation of ZBP-89 by p53(G245D) significantly abrogated the induction of p21 caused by sodium butyrate (NaB) treatment and protected cells from TSA-induced death. The activations of several apoptotic proteins, such as Bid and PARP, were involved in p53(G245D)-mediated protection. Moreover, the resistance to HDACi in p53(G245D)-expressing cells was reversed by overexpression of ZBP-89. Taken together, these data suggest a potential mechanism via which mutant p53 enables tumor cells to resist chemotherapy and, therefore, establish a plausible link between mutant p53 binding to ZBP-89 and a decreased chemosensitivity of HCC cells.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT Hong Kong
| | | | | | | |
Collapse
|
15
|
A gestational low-protein diet represses p21(WAF1/Cip1) expression in the mammary gland of offspring rats through promoter histone modifications. Br J Nutr 2011; 108:998-1007. [PMID: 22152918 DOI: 10.1017/s0007114511006222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maternal exposure to environmental agents throughout pregnancy may change certain metabolic processes during the offspring's mammary gland development and alter the epigenome. This may predispose the offspring to breast cancer later in life. The purpose of the present study was to examine the effect of maternal protein restriction on the regulation of cyclin-dependent kinase inhibitor 1 (p21) gene expression in the mammary gland of rat offspring. Timed-mated Sprague-Dawley rats were fed one of the two isoenergetic diets, control (C, 18 % casein) or low protein (LP, 9 % casein), during gestation. Compared with the C group, LP offspring showed a decrease of p21 in the mammary gland at both the mRNA and protein levels. Chromatin immunoprecipitation assay demonstrated that the down-regulation of p21 transcription in LP offspring was associated with reduced acetylation of histone H3 and dimethylation of H3K4 within the p21 promoter region, but was not associated with acetylation of histone H4 or histone methylation. DNA methylation analysis using bisulphite sequencing did not detect differences in methylation at the p21 promoter between the offspring of the C and LP groups. We conclude that maternal protein restriction inhibits p21 gene expression in the mammary gland of offspring through histone modifications at the promoter region of the p21 gene.
Collapse
|
16
|
To AKY, Chen GG, Chan UPF, Ye C, Yun JP, Ho RLK, Tessier A, Merchant JL, Lai PBS. ZBP-89 enhances Bak expression and causes apoptosis in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:222-30. [PMID: 20850481 DOI: 10.1016/j.bbamcr.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/30/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
ZBP-89 can enhance tumor cells to death stimuli. However, the molecular mechanism leading to the inhibitory effect of ZBP-89 is unknown. In this study, 4 liver cell lines were used to screen for the target of ZBP-89 on cell death pathway. The identified Bak was further analyzed for its role in ZBP-89-mediated apoptosis. The result showed that ZBP-89 significantly and time-dependently induced apoptosis. It significantly upregulated the level of pro-apoptotic Bak. ZBP-89 targeted a region between -457 and -407 of human Bak promoter to stimulate Bak expression based on the findings of Bak promoter luciferase report gene assay and electrophoretic mobility shift assay. ZBP-89-induced Bak increase and ZBP-89-mediated apoptosis were markedly suppressed by Bak siRNA, confirming that Bak was specifically targeted by ZBP-89 to facilitate apoptosis. In conclusion, this study demonstrated that ZBP-89 significantly induced apoptosis of HCC cells via promoting Bak level.
Collapse
Affiliation(s)
- Ann K Y To
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buira SP, Dentesano G, Albasanz JL, Moreno J, Martín M, Ferrer I, Barrachina M. DNA methylation and Yin Yang-1 repress adenosine A2A receptor levels in human brain. J Neurochem 2010; 115:283-95. [DOI: 10.1111/j.1471-4159.2010.06928.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zhang CZY, Chen GG, Lai PBS. Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta Rev Cancer 2010; 1806:36-41. [PMID: 20230874 DOI: 10.1016/j.bbcan.2010.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
ZBP-89, a Krüppel-type zinc-finger transcription factor that binds to GC-rich sequences, is involved in the regulation of cell growth and cell death. It maps to chromosome 3q21 and is composed of 794 residues. Having bifunctional regulatory domains, ZBP-89 may function as a transcriptional activator or repressor of variety of genes such as p16 and vimentin. ZBP-89 arrests cell proliferation through its interactions with p53 and p21(waf1). It is able to stabilize p53 through directly binding and enhance p53 transcriptional activity by retaining it in the nucleus. In addition, ZBP-89 potentiates in butyrate-induced endogenous p21(waf1) up-regulation. ZBP-89 is usually over-expressed in human cancer cells, where it can efficiently induce apoptosis through p53-dependent and -independent mechanisms. Moreover, ZBP-89 is capable of enhancing killing effects of several anti-cancer drugs. Therefore, ZBP-89 may be served as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|