1
|
Giovannone AJ, Winterstein C, Bhattaram P, Reales E, Low SH, Baggs JE, Xu M, Lalli MA, Hogenesch JB, Weimbs T. Soluble syntaxin 3 functions as a transcriptional regulator. J Biol Chem 2018; 293:5478-5491. [PMID: 29475951 DOI: 10.1074/jbc.ra117.000874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/20/2018] [Indexed: 01/06/2023] Open
Abstract
Syntaxins are a conserved family of SNARE proteins and contain C-terminal transmembrane anchors required for their membrane fusion activity. Here we show that Stx3 (syntaxin 3) unexpectedly also functions as a nuclear regulator of gene expression. We found that alternative splicing creates a soluble isoform that we termed Stx3S, lacking the transmembrane anchor. Soluble Stx3S binds to the nuclear import factor RanBP5 (RAN-binding protein 5), targets to the nucleus, and interacts physically and functionally with several transcription factors, including ETV4 (ETS variant 4) and ATF2 (activating transcription factor 2). Stx3S is differentially expressed in normal human tissues, during epithelial cell polarization, and in breast cancer versus normal breast tissue. Inhibition of endogenous Stx3S expression alters the expression of cancer-associated genes and promotes cell proliferation. Similar nuclear-targeted, soluble forms of other syntaxins were identified, suggesting that nuclear signaling is a conserved, novel function common among these membrane-trafficking proteins.
Collapse
Affiliation(s)
- Adrian J Giovannone
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Christine Winterstein
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Pallavi Bhattaram
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Elena Reales
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Seng Hui Low
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Julie E Baggs
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Mimi Xu
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - Matthew A Lalli
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625
| | - John B Hogenesch
- the Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Thomas Weimbs
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9625,
| |
Collapse
|
2
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
Affiliation(s)
- Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Baoqiang Guo
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
3
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
|
4
|
Torikoshi K, Abe H, Matsubara T, Hirano T, Ohshima T, Murakami T, Araki M, Mima A, Iehara N, Fukatsu A, Kita T, Arai H, Doi T. Protein inhibitor of activated STAT, PIASy regulates α-smooth muscle actin expression by interacting with E12 in mesangial cells. PLoS One 2012; 7:e41186. [PMID: 22829926 PMCID: PMC3400623 DOI: 10.1371/journal.pone.0041186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
Phenotypic transformation of mesangial cells (MCs) is implicated in the development of glomerular disease; however, the mechanisms underlying their altered genetic program is still unclear. α-smooth muscle actin (α-SMA) is known to be a crucial marker for phenotypic transformation of MCs. Recently, E-boxes and the class I basic helix-loop-helix proteins, such as E12 have been shown to regulateα-SMA expression. Therefore, we tried to identify a novel E12 binding protein in MCs and to examine its role in glomerulonephritis. We found that PIASy, one of the protein inhibitors of activated STAT family protein, interacted with E12 by yeast two-hybrid screens and coimmunopreciptation assays. Overexpression of E12 significantly enhanced theα-SMA promoter activity, and the increase was blocked by co-transfection of PIASy, but not by a PIASy RING mutant. In vivo sumoylation assays revealed that PIASy was a SUMO E3 ligase for E12. Furthermore, transforming growth factor-β (TGF-β) treatment induced expression of both PIASy and E12, consistent with α-SMA expression. Moreover, reduced expression of PIASy protein by siRNA specific for PIASy resulted in increased TGF-β-mediated α-SMA expression. In vivo, PIASy and E12 were dramatically upregulated along with α-SMA and TGF-β in the proliferative phase of Thy1 glomerulonephritis. Furthermore, an association between PIASy and E12 proteins was observed at day 6 by IP-western blotting, but not at day 0. These results suggest that TGF-β up-regulates PIASy expression in MCs to down-regulateα-SMA gene transcription by the interaction with E12.
Collapse
Affiliation(s)
- Kazuo Torikoshi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideharu Abe
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| | - Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Takahiro Hirano
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Kagawa, Japan
| | - Taichi Murakami
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| | - Makoto Araki
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Mima
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriyuki Iehara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Fukatsu
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kita
- Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hidenori Arai
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshio Doi
- Department of Nephrology, Health-Bioscience Institute, University of Tokushima Graduate School of Medicine, Tokushima, Japan
| |
Collapse
|
5
|
Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta Rev Cancer 2012; 1826:1-12. [PMID: 22425584 DOI: 10.1016/j.bbcan.2012.02.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 12/30/2022]
Abstract
The homologous ETV1, ETV4 and ETV5 proteins form the PEA3 subfamily of ETS transcription factors. In Ewing tumors, chromosomal translocations affecting ETV1 or ETV4 are an underlying cause of carcinogenesis. Likewise, chromosomal rearrangements of the ETV1, ETV4 or ETV5 gene occur in prostate tumors and are thought to be one of the major driving forces in the genesis of prostate cancer. In addition, these three ETS proteins are implicated in melanomas, breast and other types of cancer. Complex posttranslational modifications govern the activity of PEA3 factors, which can promote cell proliferation, motility and invasion. Here, we review evidence for a role of ETV1, 4 and 5 as oncoproteins and describe modes of their action. Modulation of their activation or interaction with cofactors as well as inhibiting crucial target gene products may ultimately be exploited to treat various cancers that are dependent on the PEA3 group of ETS transcription factors.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
6
|
Guo B, Panagiotaki N, Warwood S, Sharrocks AD. Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res 2011; 39:6403-13. [PMID: 21543453 PMCID: PMC3159455 DOI: 10.1093/nar/gkr267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcription factor activity is often controlled through the dynamic use of post-translational modifications. Two such modifications are acetylation and sumoylation, which both occur on lysine residues, providing the opportunity for cross-talk at the molecular level. Here, we focussed on the ETS-domain transcription factor PEA3 and studied the potential interplay between these two modifications. We demonstrate that PEA3 is acetylated in a p300-dependent manner. ERK MAPK pathway signalling potentiates acetylation of PEA3, and enhances its trans-activation capacity. However, the major acetylation and sumoylation events take place on the same sites in PEA3 making simultaneous modification impossible. Indeed, manipulation of either the sumoylation or acetylation pathways causes reciprocal changes in PEA3 acetylation and sumoylation respectively. However, despite the mutually exclusive nature of these modifications, both contribute to the trans-activation capacity of PEA3, implying that a dynamic series of modification events occurs during the activation process.
Collapse
Affiliation(s)
- Baoqiang Guo
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
7
|
Baker R, Kent CV, Silbermann RA, Hassell JA, Young LJT, Howe LR. Pea3 transcription factors and wnt1-induced mouse mammary neoplasia. PLoS One 2010; 5:e8854. [PMID: 20107508 PMCID: PMC2809747 DOI: 10.1371/journal.pone.0008854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/05/2010] [Indexed: 12/21/2022] Open
Abstract
The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4), and of the related factors ERM (ETV5) and ER81 (ETV1), have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is highly expressed in MMTV/Wnt1 mammary tumors. Pea3 expression in mouse mammary tissues was visualized using a Pea3NLSlacZ reporter strain. In normal mammary glands, Pea3 expression is predominantly confined to myoepithelial cells. Wnt1 transgene expression induced marked amplification of this cell compartment in nontumorous mammary glands, accompanied by an apparent increase in Pea3 expression. The pattern of Pea3 expression in MMTV/Wnt1 mammary glands recapitulated the cellular profile of activated β-catenin/TCF signaling, which was visualized using both β-catenin immunohistochemistry and the β-catenin/TCF-responsive reporter Axin2NLSlacZ. To test the requirement for PEA3 factors in Wnt1-induced tumorigenesis, we employed a mammary-targeted dominant negative PEA3 transgene, ΔNPEA3En. Expression of ΔNPEA3En delayed early-onset tumor formation in MMTV/Wnt1 virgin females (P = 0.03), suggesting a requirement for PEA3 factor function for Wnt1-driven tumor formation. Consistent with this observation, expression of the ΔNPEA3En transgene was profoundly reduced in mammary tumors compared to nontumorous mammary glands from bigenic MMTV/Wnt1, MMTV/ΔNPEA3En mice (P = 0.01). Our data provide the first description of Wnt1-mediated expansion of the Pea3-expressing myoepithelial compartment in nontumorous mammary glands. Consistent with this observation, mammary myoepithelium was selectively responsive to Wnt1. Together these data suggest the MMTV/Wnt1 strain as a potential model of basal breast cancer. Furthermore, this study provides evidence for a protumorigenic role of PEA3 factors in breast neoplasia, and supports targeting the PEA3 transcription factor family in breast cancer.
Collapse
Affiliation(s)
- Rebecca Baker
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Strang Cancer Research Laboratory, Rockefeller University, New York, New York, United States of America
| | - Claire V. Kent
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Rachel A. Silbermann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Strang Cancer Research Laboratory, Rockefeller University, New York, New York, United States of America
| | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence J. T. Young
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Louise R. Howe
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Strang Cancer Research Laboratory, Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Mol Cell Biol 2009; 29:3204-18. [PMID: 19307308 DOI: 10.1128/mcb.01128-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many transcription factors are controlled through SUMO modification, and in the majority of cases this modification results in enhancements in their repressive properties. In some instances, SUMO modification and its associated repressive activities can be reversed by the action of intracellular signaling pathways, leading to enhanced transcriptional capacities of transcription factors. Here we have investigated sumoylation of the ETS domain transcription factor PEA3 and its interplay with the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway. PEA3 is modified by SUMO in vitro and in vivo on multiple sites in its N-terminal region. Activation of the ERK MAP kinase pathway promotes sumoylation of PEA3. Importantly, sumoylation of PEA3 is required for maximal activation of target gene promoters, including MMP-1 and COX-2. Molecularly, sumoylation is selectively required for synergistic activation of target gene expression with the coactivator CBP. Moreover, sumoylation of PEA3 is required for ubiquitination of PEA3 and promotes its degradation, suggesting that SUMO-mediated recycling of PEA3 plays a role in PEA3-mediated promoter activation. Thus, in contrast to the majority of other transcription factors studied, sumoylation of PEA3 plays a positive role in PEA3-mediated transcriptional activation and the ERK MAP kinase pathway cooperates with rather than antagonizes this process.
Collapse
|
9
|
SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol Cell Biol 2008; 29:613-25. [PMID: 19015234 DOI: 10.1128/mcb.00295-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor selectively expressed in the adrenal cortex and gonads, where it mediates the hormonal stimulation of multiple genes involved in steroid hormone biosynthesis. SF-1 is the target of both phosphorylation and SUMOylation, but how these modifications interact or contribute to SF-1 regulation of endogenous genes remains poorly defined. We found that SF-1 is selectively SUMOylated at K194 in Y1 adrenocarcinoma cells and that although SUMOylation does not alter the subcellular localization of SF-1, the modification inhibits the ability of SF-1 to activate target genes. Notably, whereas SF-1 SUMOylation is independent of S203 phosphorylation and is unaffected by adrenocorticotropin (ACTH) treatment, loss of SUMOylation leads to enhanced SF-1 phosphorylation at serine 203. Furthermore, preventing SF-1 SUMOylation increases the mRNA and protein levels of multiple steroidogenic enzyme genes. Analysis of the StAR promoter indicates that blockade of SF-1 SUMOylation leads to an increase in overall promoter occupancy but does not alter the oscillatory recruitment dynamics in response to ACTH. Notably, we find that CDK7 binds preferentially to the SUMOylation-deficient form of SF-1 and that CDK7 inhibition reduces phosphorylation of SF-1. Based on these observations, we propose a coordinated modification model in which inhibition of SF-1-mediated transcription by SUMOylation in adrenocortical cancer cells is mediated through reduced CDK7-induced phosphorylation of SF-1.
Collapse
|
10
|
Bojović BB, Hassell JA. The Transactivation Function of the Pea3 Subfamily Ets Transcription Factors Is Regulated by Sumoylation. DNA Cell Biol 2008; 27:289-305. [DOI: 10.1089/dna.2007.0680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- B. Bonnie Bojović
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada
| | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|