1
|
Zang X, Wang Z, Li Y, Gao H, Guo J, Jin W, Chang C, Lin J, Zhu K, Xu C. Regulation of Hepatocytes in G0 and G1 Phases by NOTCH3 mRNA, miR-369-3p, and rno-Rmdn2_0006 during the Initial Stage of Rat Liver Regeneration. Genet Res (Camb) 2023; 2023:8779758. [PMID: 37153858 PMCID: PMC10159746 DOI: 10.1155/2023/8779758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
The key event of liver regeneration initiation (LRI) is the switch of hepatocytes from the G0 phase to the G1 phase. This study aimed to use the data from large-scale quantitatively detecting and analyzing (LQDA) to reveal the regulation of hepatocytes in the G0 or G1 phase by competing endogenous RNAs (ceRNAs) during LRI. The hepatocytes of the rat liver right lobe were isolated 0, 6, and 24 h after partial hepatectomy. Their ceRNA expression level was measured using LQDA, and the correlation among their expression, interaction, and role was revealed by ceRNA comprehensive analysis. The expression of neurogenic loci notch homologous protein 3 (NOTCH3) mRNA was upregulated in 0 h, but the expression of miR-369-3p and rno-Rmdn2_0006 of hepatocytes did not change significantly. Meanwhile, the expression of the G0 phase-related gene CDKN1c was promoted by NOTCH3 upregulation, and the expression of the G1 phase-related gene PSEN2 was inhibited by NOTCH3 downregulation. On the contrary, the expression of NOTCH3 mRNA and rno-Rmdn2_0006 was upregulated at 6 h, but the expression of miR-136-3p was downregulated. The expression of the G1 phase-related genes CHUK, DDX24, HES1, NET1, and STAT3 was promoted by NOTCH3 upregulation, and the expression of the G0 phase-related gene CDKN1a was inhibited by NOTCH3 downregulation. These results suggested that the ceRNAs and the NOTCH3-regulated G0 phase- and G1 phase-related genes showed a correlation in expression, interaction, and role. They together regulated the hepatocytes in the G0 phase at 0 h and in the G1 phase at 6 h. These findings might help understand the mechanism by which ceRNA together regulated the hepatocytes in the G0 or G1 phase.
Collapse
Affiliation(s)
- Xiayan Zang
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Zihui Wang
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Yafei Li
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Han Gao
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Kuicheng Zhu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, China
| |
Collapse
|
2
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Rychtrmoc D, Hubálková L, Víšková A, Libra A, Bunček M, Červinková Z. Transcriptome temporal and functional analysis of liver regeneration termination. Physiol Res 2013; 61:S77-92. [PMID: 23130906 DOI: 10.33549/physiolres.932393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Decades of liver regeneration studies still left the termination phase least elucidated. However regeneration ending mechanisms are clinicaly relevant. We aimed to analyse the timing and transcriptional control of the latest phase of liver regeneration, both controversial. Male Wistar rats were subjected to 2/3 partial hepatectomy with recovery lasting from 1 to 14 days. Time-series microarray data were assessed by innovative combination of hierarchical clustering and principal component analysis and validated by real-time RT-PCR. Hierarchical clustering and principal component analysis in agreement distinguished three temporal phases of liver regeneration. We found 359 genes specifically altered during late phase regeneration. Gene enrichment analysis and manual review of microarray data suggested five pathways worth further study: PPAR signalling pathway; lipid metabolism; complement, coagulation and fibrinolytic cascades; ECM remodelling and xenobiotic biotransformation. Microarray findings pertinent for termination phase were substantiated by real-time RT-PCR. In conclusion, transcriptional profiling mapped late phase of liver regeneration beyond 5(th) day of recovery and revealed 5 pathways specifically acting at this time. Inclusion of longer post-surgery intervals brought improved coverage of regeneration time dynamics and is advisable for further works. Investigation into the workings of suggested pathways might prove helpful in preventing and managing liver tumours.
Collapse
Affiliation(s)
- D Rychtrmoc
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
4
|
Delgado-Coello B, Briones-Orta MA, Macías-Silva M, Mas-Oliva J. Cholesterol: recapitulation of its active role during liver regeneration. Liver Int 2011; 31:1271-84. [PMID: 21745289 DOI: 10.1111/j.1478-3231.2011.02542.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver regeneration is a compensatory hyperplasia produced by several stimuli that promotes proliferation in order to provide recovery of the liver mass and architecture. This process involves complex signalling cascades that receive feedback from autocrine and paracrine pathways, recognized by parenchymal as well as non-parenchymal cells. Nowadays the dynamic role of lipids in biological processes is widely recognized; however, a systematic analysis of their importance during liver regeneration is still missing. Therefore, in this review we address the role of lipids including the bioactive ones such as sphingolipids, but with special emphasis on cholesterol. Cholesterol is not only considered as a structural component but also as a relevant lipid involved in the control of the intermediate metabolism of different liver cell types such as hepatocytes, hepatic stellate cells and Kupffer cells. Cholesterol plays a significant role at the level of specific membrane domains, as well as modulating the expression of sterol-dependent proteins. Moreover, several enzymes related to the catabolism of cholesterol and whose activity is down regulated are related to the protection of liver tissue from toxicity during the process of regeneration. This review puts in perspective the necessity to study and understand the basic mechanisms involving lipids during the process of liver regeneration. On the other hand, the knowledge acquired in this area in the past years, can be considered invaluable in order to provide further insights into processes such as general organogenesis and several liver-related pathologies, including steatosis and fibrosis.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF Mexico
| | | | | | | |
Collapse
|
5
|
Haafiz A, Farrington C, Andres J, Islam S. Relationship between hepatic CTGF expression and routine blood tests at the time of liver transplantation for biliary atresia: hope or hype for a biomarker of hepatic fibrosis. Clin Exp Gastroenterol 2011; 4:49-54. [PMID: 21694872 PMCID: PMC3108679 DOI: 10.2147/ceg.s17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background: Progressive hepatic fibrosis (HF) is a prominent feature of biliary atresia (BA), the most common indication for liver transplantation (LT) in children. Despite its importance in BA, HF is not evaluated in routine patient care because the invasiveness of liver biopsy makes histologic monitoring of fibrosis unfeasible. Therefore, the identification of noninvasive markers to assess HF is desirable especially in children. Purpose: The main goal of this pilot project was to establish an investigational framework correlating hepatic expression of fibrogenic markers with routine blood tests in BA. Methods: Using liver explants from patients with BA (n = 26), immune-expression of connective tissue growth factor (CTGF), a key fibrogenic cytokine was determined using horseradish-labeled antibodies. Expression intensities of lobular (L-CTGF) and portal (P-CTGF) CTGF were determined by using ImageJ software. These CTGF intensities were correlated with blood tests performed at the time of LT. Correlation coefficients were determined for each blood test variable versus mean L-CTGF and P-CTGF expression intensities. A P-value of less than 0.05 was considered statistically significant. Results: All patients had end-stage liver disease and persistent cholestasis at the time of LT. Kendall tau (τ) rank correlation coefficient for L-CTGF and white blood cell (WBC) was inversed (−0.52; P ≤ 0.02). Similar but statistically nonsignificant inverse relationships were noted between L-CTGF and prothrombin time (PT) (−0.15; P ≤ 0.4), international normalized ratio (INR) (−0.14; P ≤ 0.5), and platelet count (−0.36; P ≤ 0.09). Inversed (τ) rank correlation coefficients were also evident between P-CTGF expression and gamma-glutamyl transpeptidase (GGT), PT, INR, and platelet count. Pearson correlation coefficients for combinational analysis of standardized total bilirubin (TB), alkaline phosphatase, GGT, and platelet count with L-CTGF (0.33; P = 0.3) and P-CTGF (0.06; P = 0.8), were not significant. Similar analysis for alanine aminotransferase, TB, and GGT combination (L-CTGF, 0.16; P = 0.5; P-CTGF −0.3; P = 0.2) as well as WBC, platelet count, and TB (L-CTGF: −0.36; P = 0.09; P-CTGF −0.33; P = 0.13) also revealed nonsignificant results. Conclusion: Hepatic expression of fibrogenic markers can be correlated with routinely performed blood tests in patients with BA. We document that although a trend of inverse relationship is noted, hepatic CTGF expression does not correlate well with routinely performed blood tests in advanced BA. Further work is required to determine more reliable ways of noninvasive diagnosis of HF.
Collapse
Affiliation(s)
- Allah Haafiz
- Hepatology and Liver Transplantation, Division of Pediatric Gastroenterology, Hepatology and Nutrition
| | | | | | | |
Collapse
|
6
|
Xu C, Zhang X, Wang G, Chang C, Zhang L, Cheng Q, Lu A. Role of the autonomic nervous system in rat liver regeneration. Cell Mol Neurobiol 2011; 31:527-40. [PMID: 21264506 PMCID: PMC11498377 DOI: 10.1007/s10571-011-9646-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/04/2011] [Indexed: 01/12/2023]
Abstract
To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Rychtrmoc D, Libra A, Buncek M, Garnol T, Cervinková Z. Studying liver regeneration by means of molecular biology: how far we are in interpreting the findings? ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:91-9. [PMID: 20073420 DOI: 10.14712/18059694.2016.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Liver regeneration in mammals is a unique phenomenon attracting scientific interest for decades. It is a valuable model for basic biology research of cell cycle control as well as for clinically oriented studies of wide and heterogeneous group of liver diseases. This article provides a concise review of current knowledge about the liver regeneration, focusing mainly on rat partial hepatectomy model. The three main recognized phases of the regenerative response are described. The article also summarizes history of molecular biology approaches to the topic and finally comments on obstacles in interpreting the data obtained from large scale microarray-based gene expression analyses.
Collapse
Affiliation(s)
- David Rychtrmoc
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Gressner OA, Lahme B, Siluschek M, Rehbein K, Weiskirchen R, Gressner AM. Intracrine signalling of activin A in hepatocytes upregulates connective tissue growth factor (CTGF/CCN2) expression. Liver Int 2008; 28:1207-16. [PMID: 18397232 DOI: 10.1111/j.1478-3231.2008.01729.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND/AIMS Up to now, the effect of activin A on the expression of the important transforming growth factor (TGF)-beta downstream modulator connective tissue growth factor (CTGF) is not known, but might be of relevance for the functional effects of this cytokine on several liver cell types. METHODS In this study, activin A-dependent CTGF expression in hepatocytes (PC) primed by exogenous activin A and in PC maintained under complete activin-free culture conditions was analysed by Western blots, metabolic labelling, gene silencing, reverse transcriptase-polymerase chain reaction (RT-PCR) and CTGF reporter gene assays. This study was supplemented by immunocytochemical staining of activin A and CTGF in PC of injured liver. RESULTS Using alkaline phosphatase alpha-alkaline phosphatase staining, it is demonstrated that activin A becomes increasingly detectable during the course of CCl(4)-liver damage. Addition of activin A to cultured PC induced CTGF protein expression via phosphorylation of Smad2 and Smad3. This induction can be inhibited by the antagonist follistatin and alpha-activin A antibody respectively. When PC were cultured under serum(i.e. activin A)-free culture conditions, a time-dependent increase of activin expression during the course of the culture was proven by RT-PCR. Silencing of inhibin beta(A) gene expression under serum-free conditions by small interfering RNAs greatly suppressed CTGF synthesis and the phosphorylations of Smad2 and Smad3. However, both the extracellularly acting follistatin and the alpha-activin A antibody could not inhibit spontaneous CTGF expression, which, however, was achieved by the cell-permeable TGF-beta Alk4/Alk5 receptor-kinase-inhibitor SB431542. CONCLUSIONS In conclusion, the results point to activin A as an inducer of CTGF synthesis in PC. Intracellular activin A contributes to spontaneous CTGF expression in PC independent of exogenous activin A, which is proposed to occur via Alk4/Alk5-receptors. The findings might be important for many actions of activin A on the liver.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Connective tissue growth factor (CTGF=CCN2), one of six members of cysteine-rich, secreted, heparin-binding proteins with a modular structure, is recognized as an important player in fibrogenic pathways as deduced from findings in non-hepatic tissues and emerging results from liver fibrosis. Collectively, the data show strongly increased expression in fibrosing tissues and transforming growth factor (TGF-beta)-stimulated expression in hepatocytes, biliary epithelial cells and stellate cells. Functional activity as a mediator of fibre-fibre, fibre-matrix and matrix-matrix interactions, as an enhancer of profibrogenic TGF-beta and several secondary effects owing to TGF-beta enhancement, and as a down-modulator of the bioactivity of bone morphogenetic protein-7 has been proposed. By changing the activity ratio of TGF-beta to its antagonist bone-morphogenetic protein-7, CTGF is proposed as a fibrogenic master switch for epithelial-mesenchymal transition. Consequently, knockdown of CTGF considerably attenuates experimental liver fibrosis. The spill-over of CTGF from the liver into the blood stream proposes this protein as a non-invasive reporter of TGF-beta bioactivity in this organ. Indeed, CTGF-levels in sera correlate significantly with fibrogenic activity. The data suggest CTGF as a multifaceted regulatory protein in fibrosis, which offers important translational aspects for diagnosis and follow-up of hepatic fibrogenesis and as a target for therapeutic interventions. In addition, CTGF-promoter polymorphism might be of importance as a prognostic genetic marker to predict the progression of fibrosis.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| | | |
Collapse
|