1
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
2
|
Huang J, Wang Y, Liu J, Chu M, Wang Y. TFDP3 as E2F Unique Partner, Has Crucial Roles in Cancer Cells and Testis. Front Oncol 2021; 11:742462. [PMID: 34745961 PMCID: PMC8564135 DOI: 10.3389/fonc.2021.742462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Transcription factor DP family member 3 (TFDP3) is a cancer-testis antigen, mainly expressed in normal testis and multiple cancers. TFDP3 gene (Gene ID: 51270) is located on the chromosome X and shares a high degree of sequence homology with TFDP1 and TFDP2, which can form heterodimers with E2F family members and enhance DNA-binding activity of E2Fs. In contrast to TFDP1 and TFDP2, TFDP3 downregulates E2F-mediated transcriptional activation. During DNA damage response in cancer cells, TFDP3 is induced and can inhibit E2F1-mediated apoptosis. Moreover, TFDP3 is involved in cell autophagy and epithelial-mesenchymal transition. Regarding cancer therapy opportunity, the transduction of dendritic cells with recombinant adenovirus-encoding TFDP3 can activate autologous cytotoxic T lymphocytes to target hepatoma cells. Here, we review the characterization of TFDP3, with an emphasis on the biological function and molecular mechanism. A better understanding of TFDP3 will provide new insights into the pathological mechanisms and therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yini Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jinlong Liu
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
3
|
Identification and Validation of an Individualized EMT-Related Prognostic Risk Score Formula in Gastric Adenocarcinoma Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7082408. [PMID: 32309437 PMCID: PMC7142392 DOI: 10.1155/2020/7082408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Background The epithelial-mesenchymal transition (EMT) is a pivotal process for fibrotic disease, embryonic development, and wound healing. Moreover, some evidence has proven that the disorder of EMT also plays an important role in carcinogenesis, especially invasion and metastasis of various tumors (Ritchie et al., 2015). Additionally, gastric adenocarcinoma (GAC) is a common gastrointestinal malignancy which is the fourth most commonly diagnosed tumor. Our study is aimed at identifying the prognostic value of EMT-related genes in gastric adenocarcinoma. Methods Firstly, high-throughput and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. 99 differentially expressed EMT-related genes (ERGs) were obtained in these gastric adenocarcinoma data. Secondly, GO and KEGG enrichment analyses show that EMT may promote gastric carcinogenesis. Next, 10 ERGs associated with prognosis of gastric adenocarcinoma patients are screened out by univariate Cox regression, and 6 pivotal prognostic ERGs (MMP8, MMP11, TFDP3, MYB, F2, and CNTN1) are identified through multivariate Cox regression. These 6 genes are confirmed with significant prognostic value in gastric adenocarcinoma through overall survival (OS) analysis. Finally, a risk score formula is constructed and tested in another gastric adenocarcinoma cohort from GEO. Results 99 differentially expressed EMT-related genes (ERGs) and their enriched pathways are identified. 10 ERGs are strongly related to the prognosis of GAC patients. A risk score formula of 6 prognosis-related ERGs used to predict the prognosis of gastric adenocarcinoma patients is identified and tested (risk score = 0.448115∗expression value of MMP8 + 0.378892∗expression value of MMP11 − 0.3226∗expression value of MYB + 1.322812∗expression value of TFDP3 + 0.325063∗expression value of F2 + 0.334197∗expression value of CNTN1). Conclusion This study provides a potential prognostic signature for predicting prognosis of gastric adenocarcinoma patients and molecular insights of EMT in gastric adenocarcinoma, and the formula focusing on the prognosis of gastric adenocarcinoma can be effective.
Collapse
|
4
|
Chun JN, Cho M, Park S, So I, Jeon JH. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochim Biophys Acta Rev Cancer 2019; 1873:188336. [PMID: 31870703 DOI: 10.1016/j.bbcan.2019.188336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The transcription factor E2F1 plays a crucial role in mediating multiple cancer hallmark capabilities that regulate cell cycle, survival, apoptosis, metabolism, and metastasis. Aberrant activation of E2F1 is closely associated with a poor clinical outcome in various human cancers. However, E2F1 has conflictingly been reported to exert tumor suppressive activity, raising a question as to the nature of its substantive role in the control of cell fate. In this review, we summarize deregulated E2F1 activity and its role in prostate cancer. We highlight the recent advances in understanding the molecular mechanism by which E2F1 regulates the development and progression of prostate cancer, providing insight into how cell context or data interpretation shapes the role of E2F1 in prostate cancer. This review will aid in translating biomedical knowledge into therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
5
|
Ding LY, Chu M, Jiao YS, Hao Q, Xiao P, Li HH, Guo Q, Wang YD. TFDP3 regulates the apoptosis and autophagy in breast cancer cell line MDA-MB-231. PLoS One 2018; 13:e0203833. [PMID: 30235236 PMCID: PMC6147432 DOI: 10.1371/journal.pone.0203833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023] Open
Abstract
Cancer/testis antigen TFDP3 belongs to the transcription factor DP(TFDP) family. It can bind to E2F family molecules to form a heterodimeric transcription factor E2F/TFDP complex. The complex is an important regulatory activator of cell cycle, involved in the regulation of cell proliferation, differentiation, apoptosis and other important physiological activities. In addition, TFDP3 has also been found to be a tumor-associated antigen that only expresses in malignant tumor tissue and normal testicular tissue; Thus, it is closely related to tumor occurrence and development. In this study, our group investigated the expression of TFDP3 in mononuclear cell samples from a variety of tissue-derived malignant tumors, breast cancer and benign breast lesions. The results show that TFDP3 is expressed in the malignant form of various tissues. Moreover, our recent research had focused on the ability of TFDP3 to influence the drug resistance and apoptosis of tumor cells. To further clarify the mechanisms involved in tumor resistance, this study also examined the expression of TFDP3 and tumor cell autophagy regulation; Autophagy helps cells cope with metabolic stress (such as in cases of malnutrition, growth factor depletion, hypoxia or hypoxia) removes erroneously folded proteins or defective organelles to prevent the accumulation of abnormal proteins; and removes intracellular pathogens. Our results showed that TFDP3 expression can induce autophagy by up-regulating the expression of autophagic key protein LC3(MAP1LC3) and increasing the number of autophagosomes during chemotherapy of malignant tumors. Then, DNA and organelles damage caused by the chemotherapy medicine are repaired. Thus, TFDP3 contributes toward tumor cell resistance. When siRNA inhibits TFDP3 expression, it can reduce cell autophagy, improving the sensitivity of tumor cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Ling-yu Ding
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
- * E-mail: (MC); (YDW)
| | - Yun-shen Jiao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Qi Hao
- Department of Medical Genetics, School of Basic Medical Science, Peking University, Beijing, China
| | - Peng Xiao
- State Key Laboratory of Genetic Engineering, School of Life Science, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| | - Huan-huan Li
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Qi Guo
- School of Basic Medical Science, Peking University, Beijing, China
| | - Yue-dan Wang
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
- * E-mail: (MC); (YDW)
| |
Collapse
|
6
|
TFDP3 confers chemoresistance in minimal residual disease within childhood T-cell acute lymphoblastic leukemia. Oncotarget 2018; 8:1405-1415. [PMID: 27902457 PMCID: PMC5352064 DOI: 10.18632/oncotarget.13630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023] Open
Abstract
Acquired drug resistance in childhood T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. In this study, a novel gene therapy target for childhood T-ALL to overcome chemoresistance was discovered: TFDP3 increased in the minimal residual disease (MRD) positive childhood T-ALL patients. Then, we established a preclinical model of resistance to induction therapy to examine the functional relevance of TFDP3 to chemoresistance in MRD derived from Jurkat/E6-1. Jurkat xenografts in NOD/SCID mice were exposed to a four drug combination (VXLD) of vincristine (VCR), dexamethasone (DEX), L-asparaginase (L-asp) and daunorubicin (DNR). During the 4-week VXLD treatment, the level of TFDP3 increased 4-fold. High expression of TFDP3 was identified in the re-emerging lines (Jurkat/MRD) with increased chemoresistance, which is correlated with partially promoter demethylation of TFDP3. Downregulation of TFDP3 by RNA interference reversed chemoresistance in Jurkat/MRD accompanied by reinstated E2F1 activity that coincided with increased levels of p53, p73, and associated proapoptotic target genes. Importantly, TFDP3 silencing in vivo induced apparent benefit to overcome chemoresistance in combination with VXLD treatment. Collectively, TFDP3 confers chemoresistance in MRD within childhood T-ALL, indicating that TFDP3 is a potential gene therapy target for residual cancer.
Collapse
|
7
|
Wang SN, Wang LT, Sun DP, Chai CY, Hsi E, Kuo HT, Yokoyama KK, Hsu SH. Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC. Oncotarget 2018; 7:36924-36939. [PMID: 27175585 PMCID: PMC5095049 DOI: 10.18632/oncotarget.9228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/16/2016] [Indexed: 01/29/2023] Open
Abstract
Intestine-specific homeobox (ISX), a newly identified proto-oncogene, is involved in cell proliferation and progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms linking gene expression and tumor formation remain unclear. In this study, we found that ISX transcriptionally activated E2F transcription factor 1 (E2F1) and associated oncogenic activity by directly binding to the E2 site of its promoter. Forced expression of ISX increased the expression of and phosphorylated the serine residue at position 332 of E2F1, which may be translocated into the nucleus to form the E2F1–DP-1 complex, suggesting that the promotion of oncogenic activities of the ISX–E2F1 axis plays a critical role in hepatoma cells. Coexpression of ISX and E2F1 significantly promoted p53 and RB-mediated cell proliferation and anti-apoptosis, and repressed apoptosis and autophagy. In contrast, short hairpin RNAi-mediated attenuation of ISX and E2F1 decreased cell proliferation and malignant transformation, respectively, in hepatoma cells in vitro and in vivo. The mRNA expression of E2F1 and ISX in 238 paired specimens from human HCC patients, and the adjacent, normal tissues exhibited a tumor-specific expression pattern which was highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. Therefore, our results indicate that E2F1 is an important downstream gene of ISX in hepatoma progression.
Collapse
Affiliation(s)
- Shen-Nien Wang
- Division of Hepatobiliary Surgery, Department of Surgery, Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ding-Ping Sun
- Division of General Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsing-Tao Kuo
- Department of Internal Medicine, Division of Hepatogastroenterology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Senior Citizen Service Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Faculty of Science and Engineering, Tokushima Bunri University, Sanuki, Japan.,Center of Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Jiao Y, Ding L, Chu M, Wang T, Kang J, Zhao X, Li H, Chen X, Gao Z, Gao L, Wang Y. Effects of cancer-testis antigen, TFDP3, on cell cycle regulation and its mechanism in L-02 and HepG2 cell lines in vitro. PLoS One 2017; 12:e0182781. [PMID: 28797103 PMCID: PMC5552311 DOI: 10.1371/journal.pone.0182781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
TFDP3, also be known as HCA661, was one of the cancer-testis antigens, which only expressed in human tissues. The recent researches about TFDP3 mostly focused on its ability to control the drug resistance and apoptosis of tumor cells. However, the role of TFDP3 in the progress of the cell cycle is rarely involved. In this study, we examined the expression of TFDP3 in human liver tissues firstly. After that, we detect the expression of TFDP3 at the RNA level and protein level in L-02 cell line and HepG2 cell line, and the location of TFDP3 was defined by immunofluorescence technique. Furthermore, we synchronized the cells to G1 phase, S phase and G2 phase, and arrested cell mitosis. The localization of TFDP3 and co-localization with E2F1 molecules in different phases of hepatocyte lines. Finally, TFDP3 gene knockout was performed on L-02 and HepG2 cell lines, and detected the new cell cycles by flow cytometry. The result showed that the expression of TFDP3 molecule is negative in normal liver tissue, but positive in immortalized human hepatocyte cell line, and the expression level is lower than in hepatocellular carcinoma cell line. The expression level of TFDP3 was in the dynamic change of L-02 and HepG2 cell lines, and was related to the phase transition. TFDP3 can bind to E2F1 molecule to form E2F/TFDP3 complex; and the localizations of TFDP3 and E2F1 molecules and the co-localization were different in different phases of cell cycle in the nucleus and cytoplasm, which indicated that the E2F/TFDP3 complex involved in the process of regulating the cell cycle. By knocking down the TFDP3 expression level in L-02 and HepG2 cell lines, the cell cycle would be arrested in S phase, which confirmed that TFDP3 can be a potential target for tumor therapy.
Collapse
Affiliation(s)
- Yunshen Jiao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Lingyu Ding
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
- * E-mail: (MC); (YDW)
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Kang
- Department of Pathology, the First Affiliated Hospital of General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xiaofan Zhao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Huanhuan Li
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Zirui Gao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Likai Gao
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
- * E-mail: (MC); (YDW)
| |
Collapse
|
9
|
Yin K, Liu Y, Chu M, Wang Y. TFDP3 Regulates Epithelial-Mesenchymal Transition in Breast Cancer. PLoS One 2017; 12:e0170573. [PMID: 28114432 PMCID: PMC5256886 DOI: 10.1371/journal.pone.0170573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Breast cancer remains a lethal disease to women due to lymph node metastasis, the tumor microenvironment, secondary resistance and other unknown factors. Several important transcription factors involved in this disease, such as PTEN, p53 and beta-catenin, have been identified and researched in-depth as candidates for targeted therapy in breast cancer. TFDP3 is a new, promising candidate for transcriptional regulation in breast cancer, although it was first identified in hepatocellular carcinoma. Here, we demonstrate that TFDP3 is expressed in a variety of malignancies, normal testis tissue and breast cancer cell lines and thus provide evidence that TFDP3 is a cancer-testis antigen. We illustrate that overexpression or silencing TFDP3 interferes with epithelial-mesenchymal transition but does not influence cell proliferation, indicating that the TFDP3 protein acts as a transcription factor during epithelial-mesenchymal transition. These data highlight that TFDP3 is expressed in breast cancer, that it is a member of the cancer-testis antigen family and that it functions as a regulator in epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Kailin Yin
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- * E-mail: (KLY); (YDW)
| | - Yanchen Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
- * E-mail: (KLY); (YDW)
| |
Collapse
|
10
|
Ertosun MG, Hapil FZ, Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 2016; 31:17-25. [PMID: 26947516 DOI: 10.1016/j.cytogfr.2016.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Fatma Zehra Hapil
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Ozes Osman Nidai
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey.
| |
Collapse
|
11
|
Transcriptional master regulator analysis in breast cancer genetic networks. Comput Biol Chem 2015; 59 Pt B:67-77. [PMID: 26362298 DOI: 10.1016/j.compbiolchem.2015.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023]
Abstract
Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology.
Collapse
|
12
|
Ma Y, Xin Y, Li R, Wang Z, Yue Q, Xiao F, Hao X. TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer. Gene 2014; 537:253-9. [PMID: 24406621 DOI: 10.1016/j.gene.2013.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/02/2013] [Accepted: 12/24/2013] [Indexed: 01/15/2023]
Abstract
TFDP3 has been previously identified as an inhibitor of E2F molecules. It has been shown to suppress E2F1-induced apoptosis dependent P53 and to play a potential role in carcinogenesis. However, whether it indeed helps cancer cells tolerate apoptosis stress in cancer tissues remains unknown. TFDP3 expression was assessed by RT-PCR, in situ hybridization and immunohistochemistry in normal human tissues, cancer tissues and prostate cancer tissues. The association between TFDP3 and E2F1 in prostate cancer development was analyzed in various stages. Apoptosis was evaluated with annexin-V and propidium iodide staining and flow-cytometry. The results show that, in 96 samples of normal human tissues, TFDP3 could be detected in the cerebrum, esophagus, stomach, small intestine, bronchus, breast, ovary, uterus, and skin, but seldom in the lung, muscles, prostate, and liver. In addition, TFDP3 was highly expressed in numerous cancer tissues, such as brain-keratinous, lung squamous cell carcinoma, testicular seminoma, cervical carcinoma, skin squamous cell carcinoma, gastric adenocarcinoma, liver cancer, and prostate cancer. Moreover, TFDP3 was positive in 23 (62.2%) of 37 prostate cancer samples regardless of stage. Furthermore, immunohistochemistry results show that TFDP3 was always expressed in coordination with E2F1 at equivalent expression levels in prostate cancer tissues, and was highly expressed particularly in samples of high stage. When E2F1 was extrogenously expressed in LNCap cells, TFDP3 could be induced, and the apoptosis induced by E2F1 was significantly decreased. It was demonstrated that TFDP3 was a broadly expressed protein corresponding to E2F1 in human tissues, and suggested that TFDP3 is involved in prostate cancer cell survival by suppressing apoptosis induced by E2F1.
Collapse
Affiliation(s)
- Yueyun Ma
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yijuan Xin
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Li
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiaohong Yue
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengjing Xiao
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoke Hao
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Sun HX, Xu Y, Yang XR, Wang WM, Bai H, Shi RY, Nayar SK, Devbhandari RP, He YZ, Zhu QF, Sun YF, Hu B, Khan M, Anders RA, Fan J. Hypoxia inducible factor 2 alpha inhibits hepatocellular carcinoma growth through the transcription factor dimerization partner 3/ E2F transcription factor 1-dependent apoptotic pathway. Hepatology 2013; 57:1088-1097. [PMID: 23212661 PMCID: PMC3594482 DOI: 10.1002/hep.26188] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hypoxia inducible factors (HIFs) are activated in many tumors and show either promoter or suppressor activity, depending on tumor cell biology and background. However, the role of HIF member HIF-2α remains unclear in hepatocellular carcinoma (HCC). Here, HIF-2α expression was measured in HCC and paired peritumoral tissues by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence assays, and the clinical significance was explored in 246 HCC patients. In cell culture, HIF-2α levels were up-regulated or down-regulated by use of expression or short hairpin RNA recombinant plasmid, respectively. Cells were analyzed by immunoblotting, chromatin immunoprecipitation coupled with microarray, coimmunoprecipitation, and immunohistochemical staining. In vivo tumor growth was analyzed in nude mice. We found that the average expression of HIF-2α was relatively low in HCC tissues, and the decreased level was associated with lower overall survival (P=0.006). High HIF-2α expression in HCC cells induced higher levels of apoptosis and expression of proapoptotic proteins and inhibited cell and tumor growth. Furthermore, HIF-2α inhibited expression of the novel target gene, transcription factor dimerization partner 3 (TFDP3). TFDP3 protein was found to bind with E2F transcription factor 1 (E2F1) and inhibit its transcriptional activity through both p53-dependent and -independent pathways. Reintroduction of TFDP3 expression reversed HIF-2α-induced apoptosis. CONCLUSIONS Data gathered from cell lines, tumorigenicity studies, and primary HCC samples demonstrate a negative role of HIF-2α in tumors, which is mediated by the TFDP3/E2F1 pathway. Our study provides evidence supporting a possible tumor-suppressor role for HIF-2α and has uncovered a mechanism that links HIF-2α to a fundamental biological regulator, E2F1.
Collapse
Affiliation(s)
- Hai-Xiang Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Yang Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Xin-Rong Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Wei-Min Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Haibo Bai
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Ruo-Yu Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Suresh K. Nayar
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Ranjan Prasad Devbhandari
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Yi-zhou He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Qin-Feng Zhu
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yun-Fan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Bo Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Mehtab Khan
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Robert A. Anders
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
E2F1 apoptosis counterattacked: evil strikes back. Trends Mol Med 2013; 19:89-98. [DOI: 10.1016/j.molmed.2012.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 12/15/2022]
|
15
|
Ingram L, Munro S, Coutts AS, La Thangue NB. E2F-1 regulation by an unusual DNA damage-responsive DP partner subunit. Cell Death Differ 2011; 18:122-32. [PMID: 20559320 PMCID: PMC3131880 DOI: 10.1038/cdd.2010.70] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/02/2010] [Accepted: 05/07/2010] [Indexed: 01/29/2023] Open
Abstract
E2F activity is negatively regulated by retinoblastoma protein (pRb) through binding to the E2F-1 subunit. Within the E2F heterodimer, DP proteins are E2F partner subunits that allow proper cell cycle progression. In contrast to the other DP proteins, the newest member of the family, DP-4, downregulates E2F activity. In this study we report an unexpected role for DP-4 in regulating E2F-1 activity during the DNA damage response. Specifically, DP-4 is induced in DNA-damaged cells, upon which it binds to E2F-1 as a non-DNA-binding E2F-1/DP-4 complex. Consequently, depleting DP-4 in cells re-instates E2F-1 activity that coincides with increased levels of chromatin-bound E2F-1, E2F-1 target gene expression and associated apoptosis. Mutational analysis of DP-4 highlighted a C-terminal region, outside the DNA-binding domain, required for the negative control of E2F-1 activity. Our results define a new pathway, which acts independently of pRb and through a biochemically distinct mechanism, involved in negative regulation of E2F-1 activity.
Collapse
Affiliation(s)
- L Ingram
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - S Munro
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - A S Coutts
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - N B La Thangue
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
16
|
Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:788-94. [PMID: 20637913 PMCID: PMC2997897 DOI: 10.1016/j.bbagrm.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 12/25/2022]
Abstract
The retinoblastoma tumor suppressor protein, Rb, plays a major role in the regulation of mammalian cell cycle progression. It has been shown that Rb function is essential for the proper modulation of G1/S transition and inactivation of Rb contributes to deregulated cell proliferation. Rb exerts its cell cycle regulatory functions mainly by targeting the E2F family of transcription factors and Rb has been shown to physically interact with E2Fs 1, 2 and 3, repressing their transcriptional activity. Multiple genes involved in DNA synthesis and cell cycle progression are regulated by E2Fs, and Rb prevents their expression by inhibiting E2F activity, inducing growth arrest. It has been established that inactivation of Rb by phosphorylation, mutation, or by the interaction of viral oncoproteins leads to a release of the repression of E2F activity, facilitating cell cycle progression. Rb-mediated repression of E2F activity involves the recruitment of a variety of transcriptional co-repressors and chromatin remodeling proteins, including histone deacetylases, DNA methyltransferases and Brg1/Brm chromatin remodeling proteins. Inactivation of Rb by sequential phosphorylation events during cell cycle progression leads to a dissociation of these co-repressors from Rb, facilitating transcription. It has been found that small molecules that prevent the phosphorylation of Rb prevent the dissociation of certain co-repressors from Rb, especially Brg1, leading to the maintenance of Rb-mediated transcriptional repression and cell cycle arrest. Such small molecules have anti-cancer activities and will also act as valuable probes to study chromatin remodeling and transcriptional regulation.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Jackie Johnson
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
17
|
High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood 2009; 114:1053-62. [PMID: 19406988 DOI: 10.1182/blood-2008-10-186536] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Precursor T-cell acute lymphoblastic leukemia (T-ALL) in children represents a clinical challenge, because relapses are usually fatal. It is thus necessary to identify high-risk patients as early as possible to effectively individualize treatment. We aimed to define novel molecular risk markers in T-ALL and performed array-based comparative genomic hybridization (array-CGH) and expression analyses in 73 patients. We show that DNA copy-number changes are common in T-ALL and affect 70 of 73 (96%) patients. Notably, genomic imbalances predicted to down-regulate the TGF-beta or up-regulate the PI3K-AKT pathways are identified in 25 of 73 (34%) and 21 of 73 (29%) patients, suggesting that these pathways play key roles in T-ALL leukemogenesis. Furthermore, we identified a deletion at 6q15-16.1 in 9 of 73 (12%) of the patients, which predicts poor early treatment response. This deletion includes the CASP8AP2 gene, whose expression is shown to be down-regulated. The interaction of CASP8AP2 with CASP8 plays a crucial role in apoptotic regulation, suggesting a functional link between the clinical effect of the deletion and the molecular mode of action. The data presented here implicate the TGF-beta and PI3K-AKT pathways in T-ALL leukemogenesis and identify a subgroup of patients with CASP8AP2 deletions and poor early treatment response.
Collapse
|
18
|
Wallace DM, Cotter TG. Histone deacetylase activity in conjunction with E2F-1 and p53 regulates Apaf-1 expression in 661W cells and the retina. J Neurosci Res 2009; 87:887-905. [PMID: 18951482 DOI: 10.1002/jnr.21910] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apaf-1 and the cysteine proteases known as caspases are genes central to the intrinsic apoptotic pathway in the retina. Previously, we have shown that histone deacetylase (HDAC) activity regulates Apaf-1 expression in the retina. In this study, we unravel the detailed molecular mechanism of HDAC-mediated regulation of Apaf-1 initially by use of a cell line (661W), which expresses some cone-specific genes and then by means of an ex vivo retinal explant system. Inhibition of HDAC activity by trichostatin A (TSA) up-regulates Apaf-1 expression, which precedes the induction of apoptosis. Furthermore, by a bioinformatics approach, we identify E2F-1 and p53 binding sites on the mouse Apaf-1 promoter and show by chromatin immunoprecipitation assays that these sites are occupied in vitro and that treatment with TSA results in increased binding of E2F-1 and p53 to the Apaf-1 promoter. By performing siRNA to these transcription factors, we illustrate that they govern Apaf-1 expression levels in vitro. Finally, in a retinal explant system, we show that similar to our 661W results, E2F-1 and p53 are up-regulated after inhibition of HDAC activity in the retina. This correlates with our previous observation in the explant system that Apaf-1 expression increases significantly and leads to an induction of apoptosis after inhibition of HDAC activity. Overall, we propose a role for HDAC activity, E2F-1, and p53 in the regulation of Apaf-1 expression in 661W cells; initial data also indicate a regulatory role in the retina.
Collapse
Affiliation(s)
- Deborah M Wallace
- Cell Development and Disease Laboratory, Department of Biochemistry, Biosciences Institute, University College, Cork, Ireland
| | | |
Collapse
|
19
|
Ma Y, Qi X, Du J, Song S, Feng D, Qi J, Zhu Z, Zhang X, Xiao H, Han Z, Hao X. Identification of candidate genes for human pituitary development by EST analysis. BMC Genomics 2009; 10:109. [PMID: 19284880 PMCID: PMC2664823 DOI: 10.1186/1471-2164-10-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 03/15/2009] [Indexed: 11/29/2022] Open
Abstract
Background The pituitary is a critical neuroendocrine gland that is comprised of five hormone-secreting cell types, which develops in tandem during the embryonic stage. Some essential genes have been identified in the early stage of adenohypophysial development, such as PITX1, FGF8, BMP4 and SF-1. However, it is likely that a large number of signaling molecules and transcription factors essential for determination and terminal differentiation of specific cell types remain unidentified. High-throughput methods such as microarray analysis may facilitate the measurement of gene transcriptional levels, while Expressed sequence tag (EST) sequencing, an efficient method for gene discovery and expression level analysis, may no-redundantly help to understand gene expression patterns during development. Results A total of 9,271 ESTs were generated from both fetal and adult pituitaries, and assigned into 961 gene/EST clusters in fetal and 2,747 in adult pituitary by homology analysis. The transcription maps derived from these data indicated that developmentally relevant genes, such as Sox4, ST13 and ZNF185, were dominant in the cDNA library of fetal pituitary, while hormones and hormone-associated genes, such as GH1, GH2, POMC, LHβ, CHGA and CHGB, were dominant in adult pituitary. Furthermore, by using RT-PCR and in situ hybridization, Sox4 was found to be one of the main transcription factors expressed in fetal pituitary for the first time. It was expressed at least at E12.5, but decreased after E17.5. In addition, 40 novel ESTs were identified specifically in this tissue. Conclusion The significant changes in gene expression in both tissues suggest a distinct and dynamic switch between embryonic and adult pituitaries. All these data along with Sox4 should be confirmed to further understand the community of multiple signaling pathways that act as a cooperative network that regulates maturation of the pituitary. It was also suggested that EST sequencing is an efficient means of gene discovery.
Collapse
Affiliation(s)
- Yueyun Ma
- Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|