1
|
Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. mSystems 2022; 7:e0073722. [PMID: 36190139 PMCID: PMC9600634 DOI: 10.1128/msystems.00737-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modulation of the intracellular cyclic di-GMP (c-di-GMP) pool is central to the formation of structured bacterial communities. Genome annotations predict the presence of dozens of conserved c-di-GMP catalytic enzymes in many bacterial species, but the functionality and regulatory control of the vast majority remain underexplored. Here, we begin to fill this gap by utilizing an experimental evolution system in Pseudomonas fluorescens Pf0-1, which repeatedly produces a unique social behavior through bidirectional transitions between two distinct phenotypes converging on c-di-GMP modulation. Parallel evolution of 33 lineages captured 147 unique mutations among 191 evolved isolates in genes that are empirically demonstrated, bioinformatically predicted, or previously unknown to impact the intracellular pool of c-di-GMP. Quantitative chemistry confirmed that each mutation causing the phenotypic shift either amplifies or reduces c-di-GMP production. We identify missense or in-frame deletion mutations in numerous diguanylate cyclase genes that largely fall outside the conserved catalytic domain. We also describe a novel relationship between a regulatory component of branched-chain amino acid biosynthesis and c-di-GMP production, and predict functions of several other unexpected proteins that clearly impact c-di-GMP production. Sequential mutations that continuously disrupt or recover c-di-GMP production across discrete functional elements suggest a complex and underappreciated interconnectivity within the c-di-GMP regulome of P. fluorescens. IMPORTANCE Microbial communities comprise densely packed cells where competition for space and resources is fierce. Aging colonies of Pseudomonas fluorescens are known to repeatedly produce mutants with two distinct phenotypes that physically work together to spread away from the overcrowded population. We demonstrate that the mutants with one phenotype produce high levels of cyclic di-GMP (c-di-GMP) and those with the second phenotype produce low levels. C-di-GMP is an intracellular signaling molecule which regulates many bacterial traits that cause tremendous clinical and environmental problems. Here, we analyze 147 experimentally selected mutations, which manifest either of the two phenotypes, to identify key residues in diverse proteins that force or shut down c-di-GMP production. Our data indicate that the intracellular pool of c-di-GMP is modulated through the catalytic activities of many independent c-di-GMP enzymes, which appear to be in tune with several proteins with no known links to c-di-GMP modulation.
Collapse
|
2
|
Piñas GE, DeSantis MD, Cassidy CK, Parkinson JS. Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in Escherichia coli chemoreceptor arrays. Sci Signal 2022; 15:eabj1737. [PMID: 35077199 DOI: 10.1126/scisignal.abj1737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Escherichia coli chemoreceptor array is a supramolecular assembly that enables cells to respond to extracellular cues dynamically and with great precision and sensitivity. In the array, transmembrane receptors organized as trimers of dimers are connected at their cytoplasmic tips by hexameric rings of alternating subunits of the kinase CheA and the scaffolding protein CheW (CheA-CheW rings). Interactions of CheW molecules with the members of receptor trimers not directly bound to CheA-CheW rings may lead to the formation of hexameric CheW rings in the chemoreceptor array. Here, we detected such CheW rings with a cellular cysteine-directed cross-linking assay and explored the requirements for their formation and their participation in array assembly. We found that CheW ring formation varied with cellular CheW abundance, depended on the presence of receptors capable of a trimer-of-dimers arrangement, and did not require CheA. Cross-linking studies of a CheA~CheW fusion protein incapable of forming homomeric CheW oligomers demonstrated that CheW rings were not essential for the assembly of CheA-containing arrays. Förster resonance energy transfer (FRET)-based kinase assays of arrays containing variable amounts of CheW rings revealed that CheW rings enhanced the cooperativity and the sensitivity of the responses to attractants. We propose that six-membered CheW rings provide the additional interconnectivity required for optimal signaling and gradient tracking performance by chemosensory arrays.
Collapse
Affiliation(s)
- Germán E Piñas
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D DeSantis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Pedetta A, Studdert CA. Truncated, Non-networking Versions of the Coupling Protein CheW Retain Chemoreceptor Control of Kinase CheA. J Mol Biol 2020; 432:576-584. [PMID: 31626809 DOI: 10.1016/j.jmb.2019.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
Bacterial chemoreceptors control the activity of the associated CheA kinase in response to chemical gradients and, consequently, regulate the swimming behavior of the cell. However, such control is not direct but requires the participation of the essential coupling protein CheW, which is structurally homologous to the carboxy-terminal domain of the kinase. The actual role of this small coupling protein is somehow intriguing. It has been demonstrated that it is absolutely essential for chemoreceptor control of the kinase, in spite of the occurrence of direct contacts between chemoreceptors and CheA. In addition, CheW plays an essential role in the assembly of the large macromolecular arrays that combine chemoreceptors of different specificities, and it is therefore responsible for molecular interactions that provide such arrays with remarkable signaling properties. In this work, we analyze truncated CheW derivatives that are still able to control the kinase but have lost the ability to connect signaling units. We demonstrate that these two activities can work separately and speculate about the significance of the roles of these two different activities in the context of the chemoreceptor cluster.
Collapse
Affiliation(s)
- Andrea Pedetta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar Del Plata - CONICET, Mar Del Plata, Buenos Aires, Argentina
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología Del Litoral, CONICET - Universidad Nacional Del Litoral, Santa Fe, Santa Fe, Argentina.
| |
Collapse
|
4
|
Bacterial chemotaxis coupling protein: Structure, function and diversity. Microbiol Res 2019; 219:40-48. [DOI: 10.1016/j.micres.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023]
|
5
|
Grishin DV, Zhdanov DD, Gladilina JA, Pokrovsky VS, Podobed OV, Pokrovskaya MV, Aleksandrova SS, Milyushkina AL, Vigovskiy MA, Sokolov NN. Construction and Characterization of a Recombinant Mutant Homolog of the CheW Protein from Thermotoga petrophila RKU-1. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Gasperotti AF, Revuelta MV, Studdert CA, Herrera Seitz MK. Identification of two different chemosensory pathways in representatives of the genus Halomonas. BMC Genomics 2018; 19:266. [PMID: 29669514 PMCID: PMC5907407 DOI: 10.1186/s12864-018-4655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
Background Species of the genus Halomonas are salt-tolerant organisms that have a versatile metabolism and can degrade a variety of xenobiotic compounds, utilizing them as their sole carbon source. In this study, we examined the genome of a Halomonas isolate from a hydrocarbon-contaminated site to search for chemosensory genes that might be responsible for the observed chemotactic behavior of this organism as well as for other responses to environmental cues. Results Using genome-wide comparative tools, our isolate was identified as a strain of Halomonas titanicae (strain KHS3), together with two other Halomonas strains with available genomes that had not been previously identified at a species level. The search for the main components of chemosensory pathways resulted in the identification of two clusters of chemosensory genes and a total of twenty-five chemoreceptor genes. One of the gene clusters is very similar to the che cluster from Escherichia coli and, presumably, it is responsible for the chemotactic behavior towards a variety of compounds. This gene cluster is present in 47 out of 56 analyzed Halomonas strains with available genomes. A second che-like cluster includes a gene coding for a diguanylate cyclase with a phosphotransfer and two receiver domains, as well as a gene coding for a chemoreceptor with a longer cytoplasmic domain than the other twenty-four. This seemingly independent pathway resembles the wsp pathway from Pseudomonas aeruginosa although it also presents several differences in gene order and domain composition. This second chemosensory gene cluster is only present in a sub-group within the genus Halomonas. Moreover, remarkably similar gene clusters are also found in some orders of Proteobacteria phylogenetically more distant from the Oceanospirillales, suggesting the occurrence of lateral transfer events. Conclusions Chemosensory pathways were investigated within the genus Halomonas. A canonical chemotaxis pathway, controlled by a variable number of chemoreceptors, is widespread among Halomonas species. A second chemosensory pathway of unique organization that involves some type of c-di-GMP signaling was found to be present only in one branch of the genus, as well as in other proteobacterial lineages. Electronic supplementary material The online version of this article (10.1186/s12864-018-4655-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Florencia Gasperotti
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Revuelta
- Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
7
|
Huang Z, Zhou Q, Sun P, Yang J, Guo M. Two Agrobacterium tumefaciens CheW Proteins Are Incorporated into One Chemosensory Pathway with Different Efficiencies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:460-470. [PMID: 29182466 DOI: 10.1094/mpmi-10-17-0255-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Agrobacterium tumefaciens is the agent that causes crown gall tumor disease on more than 140 species of dicotyledonous plants. Chemotaxis of A. tumefaciens toward the wound sites of the host plant is the first step to recognize the host. CheW is a coupling protein that bridges the histidine kinase CheA and the chemoreceptors to form the chemotaxis core signaling complex and plays a crucial role in the assembly and function of the large chemosensory array. Unlike all previously reported chemotaxis systems, A. tumefaciens has only one major che operon but two cheW homologs (atu2075 as cheW1 and atu2617 as cheW2) on unlinked loci. The in-frame deletion of either cheW gene significantly affects A. tumefaciens chemotaxis but does not abolish the chemotaxis, unless both cheW genes were deleted. The effect of cheW2 deletion on the chemotaxis is more severe than that of cheW1 deletion. Either CheW can interact with CheA and couple it to the cell poles. The promoter activity of cheW2 is always higher than that of cheW1 under all of the tested conditions. When two cheW genes were adjusted to the same expression level by using the identical promoter, the difference between the effects of two CheW proteins on the chemotaxis still existed. Therefore, we envision that both the different molecular ratio of two CheW proteins in cell and the different affinities of two CheW proteins with CheA and chemoreceptors result in the efficiency difference of two CheW proteins in functioning in the large chemosensory array.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Qingxuan Zhou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Pan Sun
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Jing Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| |
Collapse
|
8
|
Grishin DV, Zhdanov DD, Gladilina JA, Pokrovsky VS, Podobed OV, Pokrovskaya MV, Aleksandrova SS, Milyushkina AL, Vigovskiy MA, Sokolov NN. [Construction and characterization of a recombinant mutant homolog of the CheW protein from Thermotoga petrophila RKU-1]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:53-60. [PMID: 29460835 DOI: 10.18097/pbmc20186401053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the work a recombinant chemotaxis protein CheW from Thermotoga petrophila RKU-1 (TpeCheW) and its mutant homolog (TpeCheW-mut) were created. It was shown that, despite the low homology with CheW prototypes from intestinal bacteria, these proteins didn't cause metabolic overload and were well expressed by cells of E. coli laboratory strains. We have discovered a broad spectrum of industrial valuable properties of the TpeCheW-mut protein such as stability in a wide range of temperatures and pH, high expression level, solubility and possibility of the application of a simple low-stage purification methodology with the use of preliminary heat treatment. Possible directions of the scientific and industrial application of this protein were claimed.
Collapse
Affiliation(s)
- D V Grishin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O V Podobed
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Alvarado A, Kjær A, Yang W, Mann P, Briegel A, Waldor MK, Ringgaard S. Coupling chemosensory array formation and localization. eLife 2017; 6:31058. [PMID: 29058677 PMCID: PMC5706961 DOI: 10.7554/elife.31058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis proteins organize into large, highly ordered, chemotactic signaling arrays, which in Vibrio species are found at the cell pole. Proper localization of signaling arrays is mediated by ParP, which tethers arrays to a cell pole anchor, ParC. Here we show that ParP’s C-terminus integrates into the core-unit of signaling arrays through interactions with MCP-proteins and CheA. Its intercalation within core-units stimulates array formation, whereas its N-terminal interaction domain enables polar recruitment of arrays and facilitates its own polar localization. Linkage of these domains within ParP couples array formation and localization and results in controlled array positioning at the cell pole. Notably, ParP’s integration into arrays modifies its own and ParC’s subcellular localization dynamics, promoting their polar retention. ParP serves as a critical nexus that regulates the localization dynamics of its network constituents and drives the localized assembly and stability of the chemotactic machinery, resulting in proper cell pole development. Many bacteria live in a liquid environment and explore their surroundings by swimming. When in search of food, bacteria are able to swim toward the highest concentration of food molecules in the environment by a process called chemotaxis. Proteins important for chemotaxis group together in large networks called chemotaxis arrays. In the bacterium Vibrio cholerae chemotaxis arrays are placed at opposite ends (at the “cell poles”) of the bacterium by a protein called ParP. This makes sure that when the bacterium divides, each new cell receives a chemotaxis array and can immediately search for food. In cells that lack ParP, the chemotaxis arrays are no longer placed correctly at the cell poles and the bacteria search for food much less effectively. To understand how ParP is able to direct chemotaxis arrays to the cell poles in V. cholerae Alvarado et al. searched for partner proteins that could help ParP position the arrays. The search revealed that ParP interacts with other proteins in the chemotaxis arrays. This enables ParP to integrate into the arrays and stimulate new arrays to form. Alvarado et al. also discovered that ParP consists of two separate parts that have different roles. One part directs ParP to the cell pole while the other part integrates ParP into the arrays. By performing both of these roles, ParP links the positioning of the arrays at the cell pole to their formation at this site. The findings presented by Alvarado et al. open many further questions. For instance, it is not understood how ParP affects how other chemotaxis proteins within the arrays interact with each other. As well as enabling many species of bacteria to spread through their environment, chemotaxis is also important for the disease-causing properties of many human pathogens – like V. cholerae. As a result, learning how chemotaxis is regulated could potentially identify new ways to stop the spread of infectious bacteria and prevent human infections.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Kjær
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
10
|
Briegel A, Jensen G. Progress and Potential of Electron Cryotomography as Illustrated by Its Application to Bacterial Chemoreceptor Arrays. Annu Rev Biophys 2017; 46:1-21. [PMID: 28301773 DOI: 10.1146/annurev-biophys-070816-033555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron cryotomography (ECT) can produce three-dimensional images of biological samples such as intact cells in a near-native, frozen-hydrated state to macromolecular resolution (∼4 nm). Because one of its first and most common applications has been to bacterial chemoreceptor arrays, ECT's contributions to this field illustrate well its past, present, and future. While X-ray crystallography and nuclear magnetic resonance spectroscopy have revealed the structures of nearly all the individual components of chemoreceptor arrays, ECT has revealed the mesoscale information about how the components are arranged within cells. Receptors assemble into a universally conserved 12-nm hexagonal lattice linked by CheA/CheW rings. Membrane-bound arrays are single layered; cytoplasmic arrays are double layered. Images of in vitro reconstitutions have led to a model of how arrays assemble, and images of native arrays in different states have shown that the conformational changes associated with signal transduction are subtle, constraining models of activation and system cooperativity. Phase plates, better detectors, and more stable stages promise even higher resolution and broader application in the near future.
Collapse
Affiliation(s)
- Ariane Briegel
- Department of Biology, Leiden University, 2333 Leiden, Netherlands
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
11
|
Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Cassidy CK, Schulten K. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. Annu Rev Biophys 2016; 45:253-78. [PMID: 27145875 DOI: 10.1146/annurev-biophys-062215-011113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A Hadden
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rafael C Bernardi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Abhishek Singharoy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ryan McGreevy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Till Rudack
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C Keith Cassidy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| |
Collapse
|
12
|
Ortega DR, Zhulin IB. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex. PLoS Comput Biol 2016; 12:e1004723. [PMID: 26844549 PMCID: PMC4742279 DOI: 10.1371/journal.pcbi.1004723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. Due to the overwhelming complexity and diversity of biological systems, the functional roles of the majority of proteins encoded in sequenced genomes remain unknown or poorly understood. The multi-protein pathway controlling chemotaxis in bacteria and archaea is an example of such complexity and diversity. Chemotaxis pathway in E. coli is one of the best understood signal transduction networks in nature; however, this model organism lacks some of the system components, such as CheV, that are found in many other species. The biological role of CheV is still under avid debate. CheV is an auxiliary component of many chemotaxis systems and is present in important human pathogens, such as Salmonella and Helicobacter, where chemotaxis is being studied as an important virulence trait. Here we established the evolutionary history of the chemotaxis pathway in enterobacteria and combined a computational genomics approach with available structural information to propose a role for CheV. Our results show that CheV in enterics evolved as an adaptor for a specific type of chemoreceptors. Furthermore, we propose that some CheV-associated chemoreceptors might increase the kinase activity above the base level, and in these cases CheV acts as an attenuator.
Collapse
Affiliation(s)
- Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
13
|
Cassidy CK, Himes BA, Alvarez FJ, Ma J, Zhao G, Perilla JR, Schulten K, Zhang P. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. eLife 2015; 4. [PMID: 26583751 PMCID: PMC6746300 DOI: 10.7554/elife.08419] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/18/2015] [Indexed: 11/13/2022] Open
Abstract
Chemotactic responses in bacteria require large, highly ordered arrays of sensory proteins to mediate the signal transduction that ultimately controls cell motility. A mechanistic understanding of the molecular events underlying signaling, however, has been hampered by the lack of a high-resolution structural description of the extended array. Here, we report a novel reconstitution of the array, involving the receptor signaling domain, histidine kinase CheA, and adaptor protein CheW, as well as a density map of the core-signaling unit at 11.3 Å resolution, obtained by cryo-electron tomography and sub-tomogram averaging. Extracting key structural constraints from our density map, we computationally construct and refine an atomic model of the core array structure, exposing novel interfaces between the component proteins. Using all-atom molecular dynamics simulations, we further reveal a distinctive conformational change in CheA. Mutagenesis and chemical cross-linking experiments confirm the importance of the conformational dynamics of CheA for chemotactic function.
Collapse
Affiliation(s)
- C Keith Cassidy
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Frances J Alvarez
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Jun Ma
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
14
|
Pedetta A, Parkinson JS, Studdert CA. Signalling-dependent interactions between the kinase-coupling protein CheW and chemoreceptors in living cells. Mol Microbiol 2014; 93:1144-55. [PMID: 25060668 DOI: 10.1111/mmi.12727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 12/19/2022]
Abstract
Chemical signals sensed on the periplasmic side of bacterial cells by transmembrane chemoreceptors are transmitted to the flagellar motors via the histidine kinase CheA, which controls the phosphorylation level of the effector protein CheY. Chemoreceptor arrays comprise remarkably stable supramolecular structures in which thousands of chemoreceptors are networked through interactions between their cytoplasmic tips, CheA, and the small coupling protein CheW. To explore the conformational changes that occur within this protein assembly during signalling, we used in vivo cross-linking methods to detect close interactions between the coupling protein CheW and the serine receptor Tsr in intact Escherichia coli cells. We identified two signal-sensitive contacts between CheW and the cytoplasmic tip of Tsr. Our results suggest that ligand binding triggers changes in the receptor that alter its signalling contacts with CheW (and/or CheA).
Collapse
Affiliation(s)
- Andrea Pedetta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | | | | |
Collapse
|
15
|
Ortega DR, Mo G, Lee K, Zhou H, Baudry J, Dahlquist FW, Zhulin IB. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein. PLoS Comput Biol 2013; 9:e1003337. [PMID: 24244143 PMCID: PMC3828127 DOI: 10.1371/journal.pcbi.1003337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022] Open
Abstract
Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD), NMR spectroscopy, and circular dichroism (CD), we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold. Signal transduction is a universal biological process and a common target of drug design. The chemotaxis machinery in Escherichia coli is a model signal transduction system, and the CheW protein is one of its core components. CheW is thought to work as a scaffold protein that mediates the formation of the signaling complex with the CheA histidine kinase and the chemoreceptors. A mutation targeting a highly conserved residue, Arg62, impairs chemotaxis while maintaining normal binding affinity for both partners, suggesting that CheW might play a more complex role than previously proposed. Using a series of molecular dynamics simulations, we found that the residue Arg62 can form a stable salt bridge with another highly conserved residue, Glu38. We determined that this bridge does not contribute to the overall stability of the protein. However, the bridge stabilizes the local backbone structure of CheW and stabilizes the relative position of the binding sites for the chemoreceptor and kinase. The geometry of these interactions appears to be vital for the function of the signaling complex. We validated and complemented our computational findings using NMR spectroscopy and circular dichroism analysis.
Collapse
Affiliation(s)
- Davi R. Ortega
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Kwangwoon Lee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Center for Molecular Biophysics, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Frederick W. Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cashman DJ, Ortega DR, Zhulin IB, Baudry J. Homology modeling of the CheW coupling protein of the chemotaxis signaling complex. PLoS One 2013; 8:e70705. [PMID: 23950985 PMCID: PMC3737408 DOI: 10.1371/journal.pone.0070705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022] Open
Abstract
Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T. maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology models of CheW may be partially structurally different from their corresponding experimentally determined structures, the conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be seen as snapshots of an otherwise larger ensemble of accessible conformational space.
Collapse
Affiliation(s)
- Derek J. Cashman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT/ORNL Center for Molecular Biophysics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Davi R. Ortega
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
- Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT/ORNL Center for Molecular Biophysics, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zhang K, Liu J, Tu Y, Xu H, Charon NW, Li C. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol Microbiol 2012; 85:782-94. [PMID: 22780444 DOI: 10.1111/j.1365-2958.2012.08139.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW(1) , cheW(2) and cheW(3) ). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW(1) and cheW(3) genes are essential for chemotaxis, as the mutants had altered swimming behaviours and were non-chemotactic. Second, immunofluorescence and cryo-electron tomography studies suggested that both CheW(1) and CheW(3) are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW(1) and cheW(3) , cheW(2) is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW(1) and CheW(3) interact with CheA(2) whereas CheW(2) binds to CheA(1) . Collectively, our results indicate that CheW(1) and CheW(3) are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins coexist in one chemosensory pathway and that both are essential for chemotaxis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oral Biology, the State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
18
|
Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 2012; 109:E1481-8. [PMID: 22556268 DOI: 10.1073/pnas.1200781109] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemoreceptors of Escherichia coli localize to the cell poles and form a highly ordered array in concert with the CheA kinase and the CheW coupling factor. However, a high-resolution structure of the array has been lacking, and the molecular basis of array assembly has thus remained elusive. Here, we use cryoelectron tomography of flagellated E. coli minicells to derive a 3D map of the intact array. Docking of high-resolution structures into the 3D map provides a model of the core signaling complex, in which a CheA/CheW dimer bridges two adjacent receptor trimers via multiple hydrophobic interactions. A further, hitherto unknown, hydrophobic interaction between CheW and the homologous P5 domain of CheA in an adjacent core complex connects the complexes into an extended array. This architecture provides a structural basis for array formation and could explain the high sensitivity and cooperativity of chemotaxis signaling in E. coli.
Collapse
|
19
|
Vu A, Wang X, Zhou H, Dahlquist FW. The receptor-CheW binding interface in bacterial chemotaxis. J Mol Biol 2011; 415:759-67. [PMID: 22155081 DOI: 10.1016/j.jmb.2011.11.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/19/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
Abstract
The basic structural unit of the signaling complex in bacterial chemotaxis consists of the chemotaxis kinase CheA, the coupling protein CheW, and chemoreceptors. These complexes play an important role in regulating the kinase activity of CheA and in turn controlling the rotational bias of the flagellar motor. Although individual three-dimensional structures of CheA, CheW, and chemoreceptors have been determined, the interaction between chemoreceptor and CheW is still unclear. We used nuclear magnetic resonance to characterize the interaction modes of chemoreceptor and CheW from Thermotoga maritima. We find that chemoreceptor binding surface is located near the highly conserved tip region of the N-terminal helix of the receptor, whereas the binding interface of CheW is placed between the β-strand 8 of domain 1 and the β-strands 1 and 3 of domain 2. The receptor-CheW complex shares a similar binding interface to that found in the "trimer-of-dimers" oligomer interface seen in the crystal structure of cytoplasmic domains of chemoreceptors from Escherichia coli. Based on the association constants inferred from fast exchange chemical shifts associated with receptor-CheW titrations, we estimate that CheW binds about four times tighter to its first binding site of the receptor dimer than to its second binding site. This apparent anticooperativity in binding may reflect the close proximity of the two CheW binding surfaces near the receptor tip or further, complicating the events at this highly conserved region of the receptor. This work describes the first direct observation of the interaction between chemoreceptor and CheW.
Collapse
Affiliation(s)
- Anh Vu
- Department of Chemistry and Biochemistry, University ofCalifornia Santa Barbara, Santa Barbara, CA93106-9510, USA
| | | | | | | |
Collapse
|
20
|
Underbakke ES, Zhu Y, Kiessling LL. Protein footprinting in a complex milieu: identifying the interaction surfaces of the chemotaxis adaptor protein CheW. J Mol Biol 2011; 409:483-95. [PMID: 21463637 PMCID: PMC3179904 DOI: 10.1016/j.jmb.2011.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization--circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application--they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.
Collapse
Affiliation(s)
- Eric S Underbakke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
21
|
Kreutel S, Kuhn A, Kiefer D. The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway. BMC Microbiol 2010; 10:281. [PMID: 21062468 PMCID: PMC2993699 DOI: 10.1186/1471-2180-10-281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 11/09/2010] [Indexed: 12/20/2022] Open
Abstract
Background Rhodocista centenaria is a phototrophic α-proteobacterium exhibiting a phototactic behaviour visible as colony movement on agar plates directed to red light. As many phototrophic purple bacteria R. centenaria possesses a soluble photoactive yellow protein (Pyp). It exists as a long fusion protein, designated Ppr, consisting of three domains, the Pyp domain, a putative bilin binding domain (Bbd) and a histidine kinase domain (Pph). The Ppr protein is involved in the regulation of polyketide synthesis but it is still unclear, how this is connected to phototaxis and chemotaxis. Results To elucidate the possible role of Ppr and Pph in the chemotactic network we studied the interaction with chemotactic proteins in vitro as well as in vivo. Matrix-assisted coelution experiments were performed to study the possible communication of the different putative binding partners. The kinase domain of the Ppr protein was found to interact with the chemotactic linker protein CheW. The formation of this complex was clearly ATP-dependent. Further results indicated that the Pph histidine kinase domain and CheW may form a complex with the chemotactic kinase CheAY suggesting a role of Ppr in the chemotaxis signalling pathway. In addition, when Ppr or Pph were expressed in Escherichia coli, the chemotactic response of the cells was dramatically affected. Conclusions The Ppr protein of Rhodocista centenaria directly interacts with the chemotactic protein CheW. This suggests a role of the Ppr protein in the regulation of the chemotactic response in addition to its role in chalcone synthesis.
Collapse
Affiliation(s)
- Sven Kreutel
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Garbenstrasse 30 D-70593 Stuttgart, Germany
| | | | | |
Collapse
|
22
|
Alexander RP, Lowenthal AC, Harshey RM, Ottemann KM. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol 2010; 18:494-503. [PMID: 20832320 DOI: 10.1016/j.tim.2010.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/13/2010] [Accepted: 07/26/2010] [Indexed: 11/26/2022]
Abstract
Microbes have chemotactic signaling systems that enable them to detect and follow chemical gradients in their environments. The core of these sensory systems consists of chemoreceptor proteins coupled to the CheA kinase via the scaffold or coupler protein CheW. Some bacterial chemotaxis systems replace or augment CheW with a related protein, CheV, which is less well understood. CheV consists of a CheW domain fused to a receiver domain that is capable of being phosphorylated. Our review of the literature, as well as comparisons of the CheV and CheW sequence and structure, suggest that CheV proteins conserve CheW residues that are crucial for coupling. Phosphorylation of the CheV receiver domain might adjust the efficiency of its coupling and thus allow the system to modulate the response to chemical stimuli in an adaptation process.
Collapse
Affiliation(s)
- Roger P Alexander
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
23
|
Erbse AH, Falke JJ. The core signaling proteins of bacterial chemotaxis assemble to form an ultrastable complex. Biochemistry 2009; 48:6975-87. [PMID: 19456111 PMCID: PMC2766635 DOI: 10.1021/bi900641c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemosensory pathway of bacterial chemotaxis forms a polar signaling cluster in which the fundamental signaling units, the ternary complexes, are arrayed in a highly cooperative, repeating lattice. The repeating ternary units are composed of transmembrane receptors, histidine-kinase CheA, and coupling protein CheW, but it is unknown how these three core proteins are interwoven in the assembled ultrasensitive lattice. Here, to further probe the nature of the lattice, we investigate its stability. The findings reveal that once the signaling cluster is assembled, CheA remains associated and active for days in vitro. All three core components are required for this ultrastable CheA binding and for receptor-controlled kinase activity. The stability is disrupted by low ionic strength or high pH, providing strong evidence that electrostatic repulsion between the highly acidic core components can lead to disassembly. We propose that ultrastability arises from the assembled lattice structure that establishes multiple linkages between the core components, thereby conferring thermodynamic or kinetic ultrastability to the bound state. An important, known function of the lattice structure is to facilitate receptor cooperativity, which in turn enhances pathway sensitivity. In the cell, however, the ultrastability of the lattice could lead to uncontrolled growth of the signaling complex until it fills the inner membrane. We hypothesize that such uncontrolled growth is prevented by an unidentified intracellular disassembly system that is lost when complexes are isolated from cells, thereby unmasking the intrinsic complex ultrastability. Possible biological functions of ultrastability are discussed.
Collapse
Affiliation(s)
- Annette H Erbse
- Department of Chemistry, and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
24
|
Underbakke E, Zhu Y, Kiessling L. Isotope-Coded Affinity Tags with Tunable Reactivities for Protein Footprinting. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Underbakke ES, Zhu Y, Kiessling LL. Isotope-coded affinity tags with tunable reactivities for protein footprinting. Angew Chem Int Ed Engl 2008; 47:9677-80. [PMID: 18979478 PMCID: PMC2790078 DOI: 10.1002/anie.200803378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Laura L. Kiessling
- E.S. Underbakke, Dr. Y. Zhu, Prof. L.L. Kiessling, Departments of Chemistry and Biochemistry, University of Wisconsin, Madison, Madison, WI 53706, Fax: (608) 265-0764,
| |
Collapse
|