1
|
Pariary R, Shome G, Dutta T, Roy A, Misra AK, Jana K, Rastogi S, Senapati D, Mandal AK, Bhunia A. Enhancing amyloid beta inhibition and disintegration by natural compounds: A study utilizing spectroscopy, microscopy and cell biology. Biophys Chem 2024; 313:107291. [PMID: 39029163 DOI: 10.1016/j.bpc.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Amyloid proteins and peptides play a pivotal role in the etiology of various neurodegenerative diseases, including Alzheimer's disease (AD). Synthetically designed small molecules/ peptides/ peptidomimetics show promise towards inhibition of various kinds of amyloidosis. However, exploration of compounds isolated from natural extracts having such potential is lacking. Herein, we have investigated the repurposing of a traditional Indian medicine Lasunadya Ghrita (LG) in AD. LG is traditionally used to treat gut dysregulation and mental illnesses. Various extracts of LG were obtained, characterized, and analyzed for inhibition of Aβ aggregation. Biophysical studies show that the water extract of LG (LGWE) is more potent in inhibiting Aβ peptide aggregation and defibrillation of Aβ40/Aβ42 aggregates. NMR studies showed that LGWE binds to the central hydrophobic area and C-terminal residues of Aβ40/Aβ42, thereby modulating the aggregation, and reducing cell membrane damage. Additionally, LGWE rescues Aβ toxicity in neuronal SH-SY5Y cells evident from decreases in ROS generation, membrane leakage, cellular apoptosis, and calcium dyshomeostasis. Notably, LGWE is non-toxic to neuronal cells and mouse models. Our study thus delves into the mechanistic insights of a repurposed drug LGWE with the potential to ameliorate Aβ induced neuroinflammation.
Collapse
Affiliation(s)
- Ranit Pariary
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Tista Dutta
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Anup Kumar Misra
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Sanjeev Rastogi
- State Ayurvedic College and Hospital, Lucknow University, Lucknow, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Atin Kumar Mandal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India.
| |
Collapse
|
2
|
Tolstova AP, Makarov AA, Adzhubei AA. Structure Comparison of Beta Amyloid Peptide Aβ 1-42 Isoforms. Molecular Dynamics Modeling. J Chem Inf Model 2024; 64:918-932. [PMID: 38241093 DOI: 10.1021/acs.jcim.3c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Beta amyloid peptide Aβ 1-42 (Aβ42) has a unique dual role in the human organism, as both the peptide with an important physiological function and one of the most toxic biological compounds provoking Alzheimer's disease (AD). There are several known Aβ42 isoforms that we discuss here that are highly neurotoxic and lead to the early onset of AD. Aβ42 is an intrinsically disordered protein with no experimentally solved structure under physiological conditions. The objective of this research was to establish the appropriate molecular dynamics (MD) methodology and model a uniform set of structures for the Aβ42 isoforms that form the core of this study. For that purpose, force field selection and verification including convergence testing for MD simulations was made. Replica exchange MD and conventional MD modeling of several Aβ42 and Aβ16 isoforms that have neurotoxic and amyloidogenic effects impacting the severity of Alzheimer's disease were carried out with the optimal force field and solvent parameters. A standardized ensemble of structures for the Aβ42 and Aβ16 isoforms covering 30-50% of the conformational ensembles extracted from the free energy minima was calculated from MD trajectories. The resulting data set of modeled structures includes Aβ42 wild type, isoD7, pS8, D7H, and H6R-Aβ42 and Aβ16 wild type, isoD7, pS8, D7H, and H6R-Aβ16. The representative structures are given in the Supporting Information; they are open for public access. In the study, we also evaluated the differences between the structures of Aβ42 isoforms and speculate on their possible relevance to the known functions. Utilizing several representative structures for a single disordered protein for docking, with their subsequent averaging by conformations, would markedly increase the reliability of docking results.
Collapse
Affiliation(s)
- Anna P Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexei A Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Washington University School of Medicine and Health Sciences, Washington 20052, D.C., United States
| |
Collapse
|
3
|
Mamone S, Glöggler S, Becker S, Rezaei-Ghaleh N. Early Divergence in Misfolding Pathways of Amyloid-Beta Peptides. Chemphyschem 2021; 22:2158-2163. [PMID: 34355840 PMCID: PMC8596873 DOI: 10.1002/cphc.202100542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Indexed: 01/01/2023]
Abstract
The amyloid cascade hypothesis proposes that amyloid‐beta (Aβ) aggregation is the initial triggering event in Alzheimer's disease. Here, we utilize NMR spectroscopy and monitor the structural dynamics of two variants of Aβ, Aβ40 and Aβ42, as a function of temperature. Despite having identical amino acid sequence except for the two additional C‐terminal residues, Aβ42 has higher aggregation propensity than Aβ40. As revealed by the NMR data on dynamics, including backbone chemical shifts, intra‐methyl cross‐correlated relaxation rates and glycine‐based singlet‐states, the C‐terminal region of Aβ, especially the G33‐L34‐M35 segment, plays a particular role in the early steps of temperature‐induced Aβ aggregation. In Aβ42, the distinct dynamical behaviour of C‐terminal residues at higher temperatures is accompanied with marked changes in the backbone dynamics of residues V24‐K28. The distinctive role of the C‐terminal region of Aβ42 in the initiation of aggregation defines a target for the rational design of Aβ42 aggregation inhibitors.
Collapse
Affiliation(s)
- Salvatore Mamone
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttingen, Germany
| | - Stefan Glöggler
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Aggarwal L, Biswas P. Hydration Thermodynamics of the N-Terminal FAD Mutants of Amyloid-β. J Chem Inf Model 2021; 61:298-310. [PMID: 33440932 DOI: 10.1021/acs.jcim.0c01286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydration thermodynamics of amyloid-β (Aβ) and its pathogenic familial Alzheimer's disease (FAD) mutants such as A2V, Taiwan (D7H), Tottori (D7N), and English (H6R) and the protective A2T mutant is investigated by a combination of all-atom, explicit water molecular dynamics (MD) simulations and the three-dimensional reference interaction site model (3D-RISM) theory. The change in the hydration free energy on mutation is decomposed into the energetic and entropic components, which comprise electrostatic and nonelectrostatic contributions. An increase in the hydration free energy is observed for A2V, D7H, D7N, and H6R mutations that increase the aggregation propensity of Aβ and lead to an early onset of Alzheimer's disease, while a reverse trend is noted for the protective A2T mutation. An antiphase correlation is found between the change in the hydration energy and the internal energy of Aβ upon mutation. A residue-wise decomposition analysis shows that the change in the hydration free energy of Aβ on mutation is primarily due to the hydration/dehydration of the side-chain atoms of the negatively charged residues. The decrease in the hydration of the negatively charged residues on mutation may decrease the solubility of the mutant, which increases the observed aggregation propensity of the FAD mutants. Results obtained from the theory show an excellent match with the experimentally reported data.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
5
|
Liu Z, Jiang F, Wu YD. Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the N-terminal region. Chem Biol Drug Des 2018; 94:1615-1625. [PMID: 30381893 DOI: 10.1111/cbdd.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023]
Abstract
Aβ42 peptide, with two additional residues at C-terminus, aggregates much faster than Aβ40. We performed equilibrium replica-exchange molecular dynamics simulations of their monomers using our residue-specific force field. Simulated 3 JHNH α -coupling constants agree excellently with experimental data. Aβ40 and Aβ42 have very similar local conformational features, with considerable β-strand structures in the segments: A2-H6 (A), L17-A21 (B), A30-V36 (C) of both peptides and V39-I41 (D) of Aβ42. Both peptides have abundant A-B and B-C contacts, but Aβ40 has much more contacts between A and C than Aβ42, which may retard its aggregation. Only Aβ42 has considerable A-B-C-D topology. Decreased probability of A-C contact in Aβ42 relates to the competition from C-D contact. Increased A-C contact probability may also explain the slower aggregation of A2T and A2V mutants of Aβ42.
Collapse
Affiliation(s)
- Ziye Liu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Impact of membrane curvature on amyloid aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1741-1764. [PMID: 29709613 DOI: 10.1016/j.bbamem.2018.04.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.
Collapse
|
7
|
Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23974-23987. [PMID: 30214656 PMCID: PMC6130836 DOI: 10.1021/acs.jpcc.7b06164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Tatu Rojalin
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Artturi Koivuniemi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Sebastian Wachsmann Hogiu
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Intellectual Ventures/Global Good, Bellevue, WA, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Roy A, Chandra K, Dolui S, Maiti NC. Envisaging the Structural Elevation in the Early Event of Oligomerization of Disordered Amyloid β Peptide. ACS OMEGA 2017; 2:4316-4327. [PMID: 31457723 PMCID: PMC6641910 DOI: 10.1021/acsomega.7b00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 05/27/2023]
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ) protein plays a detrimental role in neuronal injury and death. Recent in vitro and in vivo studies suggest that soluble oligomers of the Aβ peptide are neurotoxic. Structural properties of the oligomeric assembly, however, are largely unknown. Our present investigation established that the 40-residue-long Aβ peptide (Aβ40) became more helical, ordered, and compact in the oligomeric state, and both the helical and β-sheet components were found to increase significantly in the early event of oligomerization. The band-selective two-dimensional NMR analysis suggested that majority of the residues from sequence 12 to 22 gained a higher-ordered secondary structure in the oligomeric condition. The presence of a significant amount of helical conformation was confirmed by Raman bands at 1650 and 1336 cm-1. Other residues remained mostly in the extended polyproline II (PPII) and less compact β-conformation space. In the event of maturation of the oligomers into an amyloid fiber, both the helical content and the PPII-like structural components declined and ∼72% residues attained a compact β-sheet structure. Interestingly, however, some residues remained in the collagen triple helix/extended 2.51-helix conformation as evidenced by the amide III Raman signature band at 1272 cm-1. Molecular dynamics analysis using an optimized potential for liquid simulation force field with the peptide monomer indicated that some of the residues may have preferences for helical conformation and this possibly contributed in the event of oligomer formation, which eventually became a β-sheet-rich amyloid fiber.
Collapse
Affiliation(s)
- Anupam Roy
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Kousik Chandra
- NMR
Research Centre, Indian Institute of Science, CV Raman Road, Devasandra Layout, Bengaluru, Karnataka 560012, India
| | - Sandip Dolui
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
9
|
Fu L, Sun Y, Guo Y, Chen Y, Yu B, Zhang H, Wu J, Yu X, Kong W, Wu H. Comparison of neurotoxicity of different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures. J Pept Sci 2017; 23:245-251. [DOI: 10.1002/psc.2975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Yao Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Yongqing Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| |
Collapse
|
10
|
Kinoshita M, Kakimoto E, Terakawa MS, Lin Y, Ikenoue T, So M, Sugiki T, Ramamoorthy A, Goto Y, Lee YH. Model membrane size-dependent amyloidogenesis of Alzheimer's amyloid-β peptides. Phys Chem Chem Phys 2017; 19:16257-16266. [DOI: 10.1039/c6cp07774a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We herein report the mechanism of amyloid formation of amyloid-β (Aβ) peptides on small (SUV) and large unilamellar vesicles (LUVs), which consist of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids.
Collapse
Affiliation(s)
| | - Erina Kakimoto
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Mayu S. Terakawa
- Institute for Protein Research
- Osaka University
- Suita
- Japan
- Department of Biochemistry
| | - Yuxi Lin
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Tatsuya Ikenoue
- Institute for Protein Research
- Osaka University
- Suita
- Japan
- Department of Chemistry
| | - Masatomo So
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | | | | | - Yuji Goto
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| | - Young-Ho Lee
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| |
Collapse
|
11
|
Ahmad A, Stratton CM, Scemama JL, Muzaffar M. Effect of Ca(2+) on Aß40 fibrillation is characteristically different. Int J Biol Macromol 2016; 89:297-304. [PMID: 27138860 DOI: 10.1016/j.ijbiomac.2016.04.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the only one among top ten diseases in USA that cannot be cured, prevented or slowed down. At molecular level the mechanism of onset has been closely associated with mis-folding of Aβ40 and Aβ42 and is well supported by the genetic data for AD. Extensive research efforts have led to identification of factors and metal ions that could manipulate Aβ equilibrium, especially Ca(2+). Previously, we reported selectively acceleration of Aβ42 fibril formation by Ca(2+)in vitro within physiological concentrations (BBA (2009) 1794:1536). Aβ40 on the other hand did not appear to be significantly affected by Ca(2+) addition. In an effort to understand the distinctive behavior of Aβ40, we monitored changes of Aβ40 aggregation by intrinsic tyrosine fluorescence and CD and took different approaches for data processing. Our analysis of CD data indicates a complex effect induced by the addition of 2mM Ca(2+) resulting in an increase in the rate of transformation from monomer to β-sheet rich fibrilar or intermediate species formation in Aβ40. Surprisingly, the kinetics observed by intrinsic fluorescence studies in this article and ThT, SEC or EM studies in our previous report were not able to unravel the existence of this effect in Aβ40.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Biology, East Carolina University, Greenville, NC 27858, United States.
| | - Caleb M Stratton
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Jean-Luc Scemama
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Mahvish Muzaffar
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
12
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
13
|
Conicella AE, Fawzi NL. The C-terminal threonine of Aβ43 nucleates toxic aggregation via structural and dynamical changes in monomers and protofibrils. Biochemistry 2014; 53:3095-105. [PMID: 24773532 PMCID: PMC4030787 DOI: 10.1021/bi500131a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Recent
studies suggest that deposition of amyloid β (Aβ)
into oligomeric aggregates and fibrils, hallmarks of Alzheimer’s
disease, may be initiated by the aggregation of Aβ species other
than the well-studied 40- and 42-residue forms, Aβ40 and Aβ42,
respectively. Here we report on key structural, dynamic, and aggregation
kinetic parameters of Aβ43, extended by a single threonine at
the C-terminus relative to Aβ42. Using aggregation time course
experiments, electron microscopy, and a combination of nuclear magnetic
resonance measurements including backbone relaxation, dark-state exchange
saturation transfer, and quantification of chemical shift differences
and scalar coupling constants, we demonstrate that the C-terminal
threonine in Aβ43 increases the rate and extent of protofibril
aggregation and confers slow C-terminal motions in the monomeric and
protofibril-bound forms of Aβ43. Relative to the neighboring
residues, the hydrophilic Thr43 of Aβ43 favors direct contact
with the protofibril surface more so than the C-terminus of Aβ40
or Aβ42. Taken together, these results demonstrate the potential
of a small chemical modification to affect the properties of Aβ
structure and aggregation, providing a mechanism for the potential
role of Aβ43 as a primary nucleator of Aβ aggregates in
Alzheimer’s disease.
Collapse
Affiliation(s)
- Alexander E Conicella
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry and ‡Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University , Providence, Rhode Island 02912, United States
| | | |
Collapse
|
14
|
Ball KA, Wemmer DE, Head-Gordon T. Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J Phys Chem B 2014; 118:6405-16. [PMID: 24410358 PMCID: PMC4066902 DOI: 10.1021/jp410275y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) represent a new frontier in structural biology since the primary characteristic of IDPs is that structures need to be characterized as diverse ensembles of conformational substates. We compare two general but very different ways of combining NMR spectroscopy with theoretical methods to derive structural ensembles for the disease IDPs amyloid-β 1-40 and amyloid-β 1-42, which are associated with Alzheimer's Disease. We analyze the performance of de novo molecular dynamics and knowledge-based approaches for generating structural ensembles by assessing their ability to reproduce a range of NMR experimental observables. In addition to the comparison of computational methods, we also evaluate the relative value of different types of NMR data for refining or validating the IDP structural ensembles for these important disease peptides.
Collapse
Affiliation(s)
- K Aurelia Ball
- Graduate Group in Biophysics , Berkeley, California 94720, United States
| | | | | |
Collapse
|
15
|
Differences in β-strand populations of monomeric Aβ40 and Aβ42. Biophys J 2014; 104:2714-24. [PMID: 23790380 DOI: 10.1016/j.bpj.2013.04.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022] Open
Abstract
Using homonuclear (1)H NOESY spectra, with chemical shifts, (3)JH(N)H(α) scalar couplings, residual dipolar couplings, and (1)H-(15)N NOEs, we have optimized and validated the conformational ensembles of the amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42) peptides generated by molecular dynamics simulations. We find that both peptides have a diverse set of secondary structure elements including turns, helices, and antiparallel and parallel β-strands. The most significant difference in the structural ensembles of the two peptides is the type of β-hairpins and β-strands they populate. We find that Aβ42 forms a major antiparallel β-hairpin involving the central hydrophobic cluster residues (16-21) with residues 29-36, compatible with known amyloid fibril forming regions, whereas Aβ40 forms an alternative but less populated antiparallel β-hairpin between the central hydrophobic cluster and residues 9-13, that sometimes forms a β-sheet by association with residues 35-37. Furthermore, we show that the two additional C-terminal residues of Aβ42, in particular Ile-41, directly control the differences in the β-strand content found between the Aβ40 and Aβ42 structural ensembles. Integrating the experimental and theoretical evidence accumulated over the last decade, it is now possible to present monomeric structural ensembles of Aβ40 and Aβ42 consistent with available information that produce a plausible molecular basis for why Aβ42 exhibits greater fibrillization rates than Aβ40.
Collapse
|
16
|
Rosenman DJ, Connors CR, Chen W, Wang C, García AE. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J Mol Biol 2013; 425:3338-59. [PMID: 23811057 DOI: 10.1016/j.jmb.2013.06.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/15/2013] [Accepted: 06/12/2013] [Indexed: 12/24/2022]
Abstract
Amyloid β (Aβ) peptides are a primary component of fibrils and oligomers implicated in the etiology of Alzheimer's disease (AD). However, the intrinsic flexibility of these peptides has frustrated efforts to investigate the secondary and tertiary structure of Aβ monomers, whose conformational landscapes directly contribute to the kinetics and thermodynamics of Aβ aggregation. In this work, de novo replica exchange molecular dynamics (REMD) simulations on the microseconds-per-replica timescale are used to characterize the structural ensembles of Aβ42, Aβ40, and M35-oxidized Aβ42, three physiologically relevant isoforms with substantially different aggregation properties. J-coupling data calculated from the REMD trajectories were compared to corresponding NMR-derived values acquired through two different pulse sequences, revealing that all simulations converge on the order of hundreds of nanoseconds-per-replica toward ensembles that yield good agreement with experiment. Though all three Aβ species adopt highly heterogeneous ensembles, these are considerably more structured compared to simulations on shorter timescales. Prominent in the C-terminus are antiparallel β-hairpins between L17-A21, A30-L36, and V39-I41, similar to oligomer and fibril intrapeptide models that expose these hydrophobic side chains to solvent and may serve as hotspots for self-association. Compared to reduced Aβ42, the absence of a second β-hairpin in Aβ40 and the sampling of alternate β topologies by M35-oxidized Aβ42 may explain the reduced aggregation rates of these forms. A persistent V24-K28 bend motif, observed in all three species, is stabilized by buried backbone to side-chain hydrogen bonds with D23 and a cross-region salt bridge between E22 and K28, highlighting the role of the familial AD-linked E22 and D23 residues in Aβ monomer folding. These characterizations help illustrate the conformational landscapes of Aβ monomers at atomic resolution and provide insight into the early stages of Aβ aggregation pathways.
Collapse
Affiliation(s)
- David J Rosenman
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
17
|
Luo Y, Vali S, Sun S, Chen X, Liang X, Drozhzhina T, Popugaeva E, Bezprozvanny I. Aβ42-binding peptoids as amyloid aggregation inhibitors and detection ligands. ACS Chem Neurosci 2013; 4:952-62. [PMID: 23427915 DOI: 10.1021/cn400011f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and currently affects 5.4 million Americans. A number of anti-Aβ (beta amyloid) therapeutic agents have been developed for AD, but so far all of them failed in clinic. Here we used peptoid chemistry to develop ligands selective for Aβ42. Peptoids are N-substituted glycine oligomers, a class of peptidomimics. We synthesized an on-bead peptoid library consisting of 38,416 unique peptoids. The generated peptoid library was screened and arrays of Aβ42-selective peptoid ligands were identified. One of those peptoid ligands, IAM1 (inhibitor of amyloid), and the dimeric form (IAM1)2 were synthesized and evaluated in a variety of biochemical assays. We discovered that IAM1 selectively binds to Aβ42, while the dimeric derivative (IAM1)2 has a higher affinity for Aβ42. Furthermore, we demonstrated that IAM1 and (IAM1)2 were able to inhibit the aggregation of Aβ42 in a concentration-dependent manner, and that (IAM1)2 protected primary hippocampal neurons from the Aβ-induced toxicity in vitro. These results suggest that IAM1 and (IAM1)2 are specific Aβ42 ligands with antiaggregation and neuroprotective properties. IAM1, (IAM1)2, and their derivatives hold promise as Aβ42 detection agents and as lead compounds for the development of AD therapeutic agents.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Sheetal Vali
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Suya Sun
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Xuesong Chen
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Xia Liang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Tatiana Drozhzhina
- Laboratory of Molecular Neurodegeneration, State Technical University, St. Petersburg 195251,
Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, State Technical University, St. Petersburg 195251,
Russia
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
- Laboratory of Molecular Neurodegeneration, State Technical University, St. Petersburg 195251,
Russia
| |
Collapse
|
18
|
Krishnamoorthy J, Brender JR, Vivekanandan S, Jahr N, Ramamoorthy A. Side-chain dynamics reveals transient association of Aβ(1-40) monomers with amyloid fibers. J Phys Chem B 2012; 116:13618-23. [PMID: 23116141 DOI: 10.1021/jp305279w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low-lying excited states that correspond to rare conformations or transiently bound species have been hypothesized to play an important role for amyloid nucleation. Despite their hypothesized importance in amyloid formation, transiently occupied states have proved difficult to detect directly. To experimentally characterize these invisible states, we performed a series of Carr-Purcell-Meiboom-Gill (CPMG)-based relaxation dispersion NMR experiments for the amyloidogenic Aβ(1-40) peptide implicated in Alzheimer's disease. Significant relaxation dispersion of the resonances corresponding to the side-chain amides of Q15 and N27 was detected before the onset of aggregation. The resonances corresponding to the peptide backbone did not show detectable relaxation dispersion, suggesting an exchange rate that is not within the practical limit of detection. This finding is consistent with the proposed "dock and lock" mechanism based on molecular dynamics simulations in which the Aβ(1-40) monomer transiently binds to the Aβ(1-40) oligomer by non-native contacts with the side chains before being incorporated into the fiber through native contacts with the peptide backbone.
Collapse
|
19
|
Gu L, Ngo S, Guo Z. Solid-support electron paramagnetic resonance (EPR) studies of Aβ40 monomers reveal a structured state with three ordered segments. J Biol Chem 2012; 287:9081-9. [PMID: 22277652 DOI: 10.1074/jbc.m111.292086] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14-18, 29-30, and 38-40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation.
Collapse
Affiliation(s)
- Lei Gu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
20
|
Vivekanandan S, Brender JR, Lee SY, Ramamoorthy A. A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochem Biophys Res Commun 2011; 411:312-6. [PMID: 21726530 PMCID: PMC3148408 DOI: 10.1016/j.bbrc.2011.06.133] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
Aggregation of the Aβ(1-40) peptide is linked to the development of extracellular plaques characteristic of Alzheimer's disease. While previous studies commonly show the Aβ(1-40) is largely unstructured in solution, we show that Aβ(1-40) can adopt a compact, partially folded structure. In this structure (PDB ID: 2LFM), the central hydrophobic region of the peptide forms a 3(10) helix from H13 to D23 and the N- and C-termini collapse against the helix due to the clustering of hydrophobic residues. Helical intermediates have been predicted to be crucial on-pathway intermediates in amyloid fibrillogenesis, and the structure presented here presents a new target for investigation of early events in Aβ(1-40) fibrillogenesis.
Collapse
Affiliation(s)
- Subramanian Vivekanandan
- Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jeffrey R. Brender
- Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Shirley Y. Lee
- Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
21
|
Velez-Vega C, Escobedo FA. Characterizing the structural behavior of selected Aβ-42 monomers with different solubilities. J Phys Chem B 2011; 115:4900-10. [PMID: 21486050 DOI: 10.1021/jp1086575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conformational behavior of the wild-type amyloid β-42 (Aβ-42) monomer and two of its mutants was explored via all-atom replica exchange molecular dynamics simulations in explicit solvent, to identify structural features that may promote or deter early-stage oligomerization. The markers used for this purpose indicate that while the three peptides are relatively flexible they have distinct preferential structures and degree of rigidity. In particular, we found that one mutant that remains in the monomeric state in experiments displays a characteristic N-terminal structure that significantly enhances its rigidity. This finding is consistent with various studies that have detected a reduction in oligomerization frequency and Aβ-related toxicity upon sequence-specific antibody or ligand binding to the N-terminal tail of wild-type monomers, likely leading to the stabilization of this region. In general, our results highlight a potential role of the N-terminal segment on Aβ oligomerization and give insights into specific interactions that may be responsible for promoting the pronounced structural changes observed upon introducing point mutations on the wild-type Aβ-42 peptide.
Collapse
Affiliation(s)
- Camilo Velez-Vega
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
22
|
Ahmad A, Muzaffar M, Ingram VM. Ca(2+), within the physiological concentrations, selectively accelerates Abeta42 fibril formation and not Abeta40 in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1537-48. [PMID: 19595795 DOI: 10.1016/j.bbapap.2009.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/06/2009] [Accepted: 06/29/2009] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) in humans is a common progressive neurodegenerative disease, associated with cognitive dysfunction, memory loss and neuronal loss. Alzheimer peptides Abeta40 and Abeta42 are precursors of the amyloid fibers that accumulate in the brain of patients. These peptides misfold and the monomers aggregate to neurotoxic oligomers and fibrils. Thus, the aggregation kinetics of these peptides is central to understanding the etiology of AD. Using size exclusion chromatography as well as filtration methods, we report here that Ca(2+) ions at physiological concentrations greatly accelerate the rate of aggregation of Abeta42 to form intermediate soluble associated species and fibrils. In the presence of 1 or 2 mM Ca(2+), CD spectra indicated that the secondary structure of Abeta42 changed from an unfolded to a predominantly beta-sheet conformation. These concentrations of Ca(2+) greatly decreased the lag time for Abeta42 fibril formation, measured with thioflavin T. However, the elongation rate was apparently unaffected. Ca(2+) appears to predominantly accelerate the nucleation stage of Abeta42 on pathway to the Alzheimer's fibril formation. Unlike Abeta42, Ca(2+) was not observed to trigger similar effect at any stage during the study of fibrillation kinetics of Abeta40 by any techniques. Abeta40 and Abeta42 seem to have distinct aggregation pathways.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
23
|
Meadowcroft MD, Connor JR, Smith MB, Yang QX. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. J Magn Reson Imaging 2009; 29:997-1007. [PMID: 19388095 PMCID: PMC2723054 DOI: 10.1002/jmri.21731] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the relationship between MR image contrast associated with beta-amyloid (Abeta) plaques and their histology and compare the histopathological basis of image contrast and the relaxation mechanism associated with Abeta plaques in human Alzheimer's disease (AD) and transgenic APP/PS1 mouse tissues. MATERIALS AND METHODS With the aid of the previously developed histological coil, T(2) (*)-weighted images and R(2) (*) parametric maps were directly compared with histology stains acquired from the same set of Alzheimer's and APP/PS1 tissue slices. RESULTS The electron microscopy and histology images revealed significant differences in plaque morphology and associated iron concentration between AD and transgenic APP/PS1 mice tissue samples. For AD tissues, T(2) (*) contrast of Abeta-plaques was directly associated with the gradation of iron concentration. Plaques with significantly less iron load in the APP/PS1 animal tissues are equally conspicuous as the human plaques in the MR images. CONCLUSION These data suggest a duality in the relaxation mechanism where both high focal iron concentration and highly compact fibrillar beta-amyloid masses cause rapid proton transverse magnetization decay. For human tissues, the former mechanism is likely the dominant source of R(2) (*) relaxation; for APP/PS1 animals, the latter is likely the major cause of increased transverse proton relaxation rate in Abeta plaques. The data presented are essential for understanding the histopathological underpinning of MRI measurement associated with Abeta plaques in humans and animals.
Collapse
Affiliation(s)
- Mark D. Meadowcroft
- Department of Radiology (Center for NMR Research), Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - James R. Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Michael B. Smith
- Department of Radiology (Center for NMR Research), Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Qing X. Yang
- Department of Radiology (Center for NMR Research), Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
24
|
Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T. Structure and dynamics of the Abeta(21-30) peptide from the interplay of NMR experiments and molecular simulations. J Am Chem Soc 2008; 130:6145-58. [PMID: 18412346 PMCID: PMC3474854 DOI: 10.1021/ja710366c] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We combine molecular dynamics simulations and new high-field NMR experiments to describe the solution structure of the Abeta(21-30) peptide fragment that may be relevant for understanding structural mechanisms related to Alzheimer's disease. By using two different empirical force-field combinations, we provide predictions of the three-bond scalar coupling constants ((3)J(H(N)H(alpha))), chemical-shift values, (13)C relaxation parameters, and rotating-frame nuclear Overhauser effect spectroscopy (ROESY) crosspeaks that can then be compared directly to the same observables measured in the corresponding NMR experiment of Abeta(21-30). We find robust prediction of the (13)C relaxation parameters and medium-range ROESY crosspeaks by using new generation TIP4P-Ew water and Amber ff99SB protein force fields, in which the NMR validates that the simulation yields both a structurally and dynamically correct ensemble over the entire Abeta(21-30) peptide. Analysis of the simulated ensemble shows that all medium-range ROE restraints are not satisfied simultaneously and demonstrates the structural diversity of the Abeta(21-30) conformations more completely than when determined from the experimental medium-range ROE restraints alone. We find that the structural ensemble of the Abeta(21-30) peptide involves a majority population (approximately 60%) of unstructured conformers, lacking any secondary structure or persistent hydrogen-bonding networks. However, the remaining minority population contains a substantial percentage of conformers with a beta-turn centered at Val24 and Gly25, as well as evidence of the Asp23 to Lys28 salt bridge important to the fibril structure. This study sets the stage for robust theoretical work on Abeta(1-40) and Abeta(1-42), for which collection of detailed NMR data on the monomer will be more challenging because of aggregation and fibril formation on experimental timescales at physiological conditions. In addition, we believe that the interplay of modern molecular simulation and high-quality NMR experiments has reached a fruitful stage for characterizing structural ensembles of disordered peptides and proteins in general.
Collapse
Affiliation(s)
- Nicolas L. Fawzi
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, Berkeley, California 94720
| | - Aaron H. Phillips
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Jory Z. Ruscio
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Michaeleen Doucleff
- Department of Chemistry, University of California, Berkeley, California 94720
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, California 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Teresa Head-Gordon
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
25
|
Yan Y, McCallum SA, Wang C. M35 Oxidation Induces Aβ40-like Structural and Dynamical Changes in Aβ42. J Am Chem Soc 2008; 130:5394-5. [DOI: 10.1021/ja711189c] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yilin Yan
- Biology Department, Center for Biotechnology and Interdisciplinary Studies, Rensselear Polytechnic Institute, Troy, New York 12180
| | - Scott A. McCallum
- Biology Department, Center for Biotechnology and Interdisciplinary Studies, Rensselear Polytechnic Institute, Troy, New York 12180
| | - Chunyu Wang
- Biology Department, Center for Biotechnology and Interdisciplinary Studies, Rensselear Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
26
|
Condron MM, Monien BH, Bitan G. Synthesis and Purification of Highly Hydrophobic Peptides Derived from the C-Terminus of Amyloid β-Protein. ACTA ACUST UNITED AC 2008; 2:87-93. [PMID: 19898686 DOI: 10.2174/1874070700802010087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some biotechnological inventions involve expensive, sophisticated machines. Others are relatively simple innovations that nevertheless address, and solve difficult problems. Synthesis and purification of highly hydrophobic peptides can be a difficult and challenging task, particularly when these peptides have low solubility in both aqueous and organic solvents. Here we describe the synthesis and purification of a series of peptides derived from the hydrophobic C-terminus of the 42-residue form of amyloid β-protein (Aβ42), a peptide believed to be the primary cause for Alzheimer's disease (AD). The series of C-terminal fragments (CTFs) had the general formula Aβ(x-42), x=28-39, which potentially can be used as inhibitors of Aβ42 assembly and neurotoxicity. Synthesis and purification of peptides containing 8-residues or less were straightforward. However, HPLC purification of longer peptides was problematic and provided <1% yield in particularly difficult cases due to very poor solubility in the solvent systems used both in reverse- and in normal phase chromatography. Modification of the purification protocol using water precipitation followed by removal of scavengers by washing with diethyl ether circumvented the need for HPLC purification and provided these peptides with purity as high as HPLC-purified peptides and substantially increased yield.
Collapse
Affiliation(s)
- M M Condron
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | | | | |
Collapse
|