1
|
Martinusen SG, Slaton EW, Ajayebi S, Pulgar MA, Simas CF, Nelson SE, Dutta A, Besu JT, Bruner S, Denard CA. High-throughput Activity Reprogramming of Proteases (HARP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.640893. [PMID: 40196664 PMCID: PMC11974858 DOI: 10.1101/2025.03.27.640893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Developing potent and selective protease inhibitors remains a grueling, iterative, and often unsuccessful endeavor. Although macromolecular inhibitors can achieve single-enzyme specificity, platforms used for macromolecular inhibitor discovery are optimized for high-affinity binders, requiring extensive downstream biochemical characterization to isolate rare inhibitors. Here, we developed the High-throughput Activity Reprogramming of Proteases (HARP) platform, HARP is a yeast-based functional screen that isolates protease-inhibitory macromolecules from large libraries by coupling their inhibition of endoplasmic reticulum-resident proteases to a selectable phenotype on the cell surface. Endowed with high dynamic range and resolution, HARP enabled the isolation of low-nanomolar-range inhibitory nanobodies against tobacco etch virus protease and human kallikrein 6, including a rare 7.6 nM K I TEVp uncompetitive inhibitor. Structural modeling and deep sequencing all provide insights into the molecular determinants of inhibitors and reinforce HARP's foundational findings. Overall, HARP is a premier platform for discovering modulatory macromolecules from various synthetic scaffolds against enzyme targets.
Collapse
|
2
|
Chen X, Dreskin SC. Application of phage peptide display technology for the study of food allergen epitopes. Mol Nutr Food Res 2017; 61. [PMID: 27995755 DOI: 10.1002/mnfr.201600568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy.
Collapse
Affiliation(s)
- Xueni Chen
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
3
|
Hodyra K, Dąbrowska K. Molecular and chemical engineering of bacteriophages for potential medical applications. Arch Immunol Ther Exp (Warsz) 2014; 63:117-27. [PMID: 25048831 PMCID: PMC4359349 DOI: 10.1007/s00005-014-0305-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
Abstract
Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.
Collapse
Affiliation(s)
- Katarzyna Hodyra
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | | |
Collapse
|
4
|
Hawinkels LJAC, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JHN, Mesker W, ten Dijke P, Sier CFM. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene 2012. [PMID: 23208491 DOI: 10.1038/onc.2012.536] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interaction between epithelial cancer cells and cancer-associated fibroblasts (CAFs) has a major role in cancer progression and eventually in metastasis. In colorectal cancer (CRC), CAFs are present in high abundance, but their origin and functional interaction with epithelial tumor cells has not been elucidated. In this study we observed strong activation of the transforming growth factor-β (TGF-β)/Smad signaling pathway in CRC CAFs, accompanied by decreased signaling in epithelial tumor cells. We evaluated the TGF-β1 response and the expression of target genes including matrix metalloproteinases (MMPs) and plasminogen activator inhibitor (PAI)-1 of various epithelial CRC cell lines and primary CAFs in vitro. TGF-β1 stimulation caused high upregulation of MMPs, PAI-1 and TGF-β1 itself. Next we showed that incubation of CAFs with conditioned medium (CM) from epithelial cancer cells led to hyperactivation of the TGF-β signaling pathway, enhanced expression of target genes like PAI-1, and the expression of α-smooth muscle actin (α-SMA). We propose that the interaction of tumor cells with resident fibroblasts results in hyperactivated TGF-β1 signaling and subsequent transdifferentiation of the fibroblasts into α-SMA-positive CAFs. In turn this leads to cumulative production of TGF-β and proteinases within the tumor microenvironment, creating a cancer-promoting feedback loop.
Collapse
Affiliation(s)
- L J A C Hawinkels
- 1] Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands [2] Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Paauwe
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - H W Verspaget
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - E Wiercinska
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - J M van der Zon
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - K van der Ploeg
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - P J Koelink
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - J H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Mesker
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - P ten Dijke
- 1] Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands [2] Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - C F M Sier
- 1] Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands [2] Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
5
|
Hawinkels LJAC, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CFM, ten Dijke P. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 2010; 70:4141-50. [PMID: 20424116 DOI: 10.1158/0008-5472.can-09-4466] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endoglin is a transforming growth factor-beta coreceptor with a crucial role in angiogenesis. A soluble form of endoglin is present in the circulation, but the role of soluble endoglin (sEndoglin) is poorly understood. In addition, the endoglin shedding mechanism is not known. Therefore, we examined the role of sEndoglin in tumor angiogenesis and the mechanism by which the extracellular domain of endoglin is released from the membrane.In colorectal cancer specimens, we observed high endothelial endoglin protein expression, accompanied with slightly lower sEndoglin levels in the circulation, compared with healthy controls. In vitro analysis using endothelial sprouting assays revealed that sEndoglin reduced spontaneous and vascular endothelial growth factor-induced endothelial sprouting. Human umbilical vascular endothelial cells were found to secrete high levels of sEndoglin. Endoglin shedding was inhibited by matrix metalloproteinase (MMP) inhibitors and MMP-14 short hairpin RNA, indicating MMP-14 as the major endoglin shedding protease. Coexpression of endoglin and membrane-bound MMP-14 led to a strong increase in sEndoglin levels. Endoglin shedding required a direct interaction between endoglin and membrane-localized MMP-14. Using cleavage site mutants, we determined that MMP-14 cleaved endoglin at a site in close proximity to the transmembrane domain. Taken together, this study shows that MMP-14 mediates endoglin shedding, which may regulate the angiogenic potential of endothelial cells in the (colorectal) tumor microenvironment.
Collapse
Affiliation(s)
- Lukas J A C Hawinkels
- Departmentsof Molecular Cell Biology, Centre for Biomedical Genetics, Gastroenterology-Hepatology, and Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bratkovic T. Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 2010; 67:749-67. [PMID: 20196239 PMCID: PMC11115567 DOI: 10.1007/s00018-009-0192-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/18/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
Phage display, the presentation of (poly)peptides as fusions to capsid proteins on the surface of bacterial viruses, celebrates its 25th birthday in 2010. The technique, coupled with in vitro selection, enables rapid identification and optimization of proteins based on their structural or functional properties. In the last two decades, it has advanced tremendously and has become widely accepted by the scientific community. This by no means exhaustive review aims to inform the reader of the key modifications in phage display. Novel display formats, innovative library designs and screening strategies are discussed. I will also briefly review some recent uses of the technology to illustrate its incredible versatility.
Collapse
Affiliation(s)
- Tomaz Bratkovic
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Hawinkels LJ, Zuidwijk K, Verspaget HW, de Jonge-Muller ES, Duijn WV, Ferreira V, Fontijn RD, David G, Hommes DW, Lamers CB, Sier CF. VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur J Cancer 2008; 44:1904-13. [PMID: 18691882 DOI: 10.1016/j.ejca.2008.06.031] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 12/14/2022]
|