1
|
Meyers M, Cismoski S, Panidapu A, Chie-Leon B, Nomura DK. Targeted Protein Degradation through Recruitment of the CUL4 Complex Adaptor Protein DDB1. ACS Chem Biol 2024; 19:58-68. [PMID: 38192078 PMCID: PMC11003717 DOI: 10.1021/acschembio.3c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional proteolysis targeting chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4 adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.
Collapse
Affiliation(s)
- Margot Meyers
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Sabine Cismoski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Anoohya Panidapu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Barbara Chie-Leon
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
2
|
Le‐Trilling VTK, Banchenko S, Paydar D, Leipe PM, Binting L, Lauer S, Graziadei A, Klingen R, Gotthold C, Bürger J, Bracht T, Sitek B, Jan Lebbink R, Malyshkina A, Mielke T, Rappsilber J, Spahn CMT, Voigt S, Trilling M, Schwefel D. Structural mechanism of CRL4-instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. EMBO J 2023; 42:e112351. [PMID: 36762436 PMCID: PMC9975947 DOI: 10.15252/embj.2022112351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.
Collapse
Affiliation(s)
| | - Sofia Banchenko
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Darius Paydar
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Zentrum für KinderpsychiatrieUniversitätsklinik ZürichZürichSwitzerland
| | - Pia Madeleine Leipe
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Lukas Binting
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Simon Lauer
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Robin Klingen
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Christine Gotthold
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jörg Bürger
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Thilo Bracht
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Robert Jan Lebbink
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anna Malyshkina
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Thorsten Mielke
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Christian MT Spahn
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sebastian Voigt
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mirko Trilling
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - David Schwefel
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
3
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
4
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Hwangbo DS, Biteau B, Rath S, Kim J, Jasper H. Control of apoptosis by Drosophila DCAF12. Dev Biol 2016; 413:50-9. [PMID: 26972874 DOI: 10.1016/j.ydbio.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/08/2016] [Accepted: 03/05/2016] [Indexed: 11/30/2022]
Abstract
Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD.
Collapse
Affiliation(s)
- Dae-Sung Hwangbo
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Benoit Biteau
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Sneha Rath
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Jihyun Kim
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
6
|
Hu Z, Holzschuh J, Driever W. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos. PLoS One 2015. [PMID: 26225764 PMCID: PMC4520591 DOI: 10.1371/journal.pone.0134299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.
Collapse
Affiliation(s)
- Zhilian Hu
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, 48109-5646, United States of America
| | - Jochen Holzschuh
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|
7
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kang S, Ren D, Xiao G, Daris K, Buck L, Enyenihi AA, Zubarev R, Bondarenko PV, Deshpande R. Cell line profiling to improve monoclonal antibody production. Biotechnol Bioeng 2013; 111:748-60. [DOI: 10.1002/bit.25141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/24/2013] [Accepted: 10/21/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Sohye Kang
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Da Ren
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Gang Xiao
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Kristi Daris
- Drug Substance Development; Amgen, Inc.; Thousand Oaks California
| | - Lynette Buck
- Drug Substance Development; Amgen, Inc.; Thousand Oaks California
| | - Atim A. Enyenihi
- Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
- SciLifeLab; Stockholm Sweden
| | - Pavel V. Bondarenko
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Rohini Deshpande
- Drug Substance Development; Amgen, Inc.; Thousand Oaks California
| |
Collapse
|
9
|
Okamoto T, Mandai M, Matsumura N, Yamaguchi K, Kondoh H, Amano Y, Baba T, Hamanishi J, Abiko K, Kosaka K, Murphy SK, Mori S, Konishi I. Hepatocyte nuclear factor-1β (HNF-1β) promotes glucose uptake and glycolytic activity in ovarian clear cell carcinoma. Mol Carcinog 2013; 54:35-49. [PMID: 24105991 DOI: 10.1002/mc.22072] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 11/10/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is a morphologically and biologically distinct subtype of ovarian carcinomas that often arises in ovarian endometriosis. We previously reported that a unique carcinogenic environment, especially iron-induced oxidative stress in endometriotic cysts may promote development of OCCC. We also identified a gene expression profile characteristic of OCCC (the "OCCC signature"). This 320-gene OCCC signature is enriched in genes associated with stress response and sugar metabolism. However, the biological implication of this profile is unclear. In this study, we have focused on the biological role of the HNF-1β gene within the OCCC signature, which was previously shown to be overexpressed in OCCC. Suppression of HNF-1β in the HNF-1β-overexpressing human ovarian cancer cell line RMG2 using short hairpin RNA resulted in a significant increase in proliferation. It also facilitated glucose uptake, glycolytic activity, and lactate secretion along with increased expression of the glucose transporter-1 (GLUT-1) gene and several key enzymes in the glycolytic process. Conversely, forced expression of HNF-1β in the serous ovarian cancer cell line, Hey, resulted in slowed cellular growth and repressed glycolytic activity. These data suggest that HNF-1β represses cell growth, and at the same time, it promotes aerobic glycolysis which is known as the "Warburg effect." As the Warburg effect is regarded as a characteristic metabolic process in cancer which may contribute to cell survival under hypoxic conditions or in a stressful environment, overexpression of HNF-1β may play an inevitable role in the occurrence of OCCC in stressful environment.
Collapse
Affiliation(s)
- Takako Okamoto
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hégarat N, Smith E, Nayak G, Takeda S, Eyers PA, Hochegger H. Aurora A and Aurora B jointly coordinate chromosome segregation and anaphase microtubule dynamics. ACTA ACUST UNITED AC 2011; 195:1103-13. [PMID: 22184196 PMCID: PMC3246887 DOI: 10.1083/jcb.201105058] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We established a conditional deletion of Aurora A kinase (AurA) in Cdk1 analogue-sensitive DT40 cells to analyze AurA knockout phenotypes after Cdk1 activation. In the absence of AurA, cells form bipolar spindles but fail to properly align their chromosomes and exit mitosis with segregation errors. The resulting daughter cells exhibit a variety of phenotypes and are highly aneuploid. Aurora B kinase (AurB)-inhibited cells show a similar chromosome alignment problem and cytokinesis defects, resulting in binucleate daughter cells. Conversely, cells lacking AurA and AurB activity exit mitosis without anaphase, forming polyploid daughter cells with a single nucleus. Strikingly, inhibition of both AurA and AurB results in a failure to depolymerize spindle microtubules (MTs) in anaphase after Cdk1 inactivation. These results suggest an essential combined function of AurA and AurB in chromosome segregation and anaphase MT dynamics.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, England, UK
| | | | | | | | | | | |
Collapse
|
11
|
Identification of DNA-damage DNA-binding protein 1 as a conditional essential factor for cytomegalovirus replication in interferon-γ-stimulated cells. PLoS Pathog 2011; 7:e1002069. [PMID: 21698215 PMCID: PMC3116810 DOI: 10.1371/journal.ppat.1002069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/29/2011] [Indexed: 01/17/2023] Open
Abstract
The mouse cytomegaloviral (MCMV) protein pM27 represents an indispensable factor for viral fitness in vivo selectively, antagonizing signal transducer and activator of transcription 2 (STAT2)-mediated interferon signal transduction. We wished to explore by which molecular mechanism pM27 accomplishes this effect. We demonstrate that pM27 is essential and sufficient to curtail the protein half-life of STAT2 molecules. Pharmacologic inhibition of the proteasome restored STAT2 amounts, leading to poly-ubiquitin-conjugated STAT2 forms. PM27 was found in complexes with an essential host ubiquitin ligase complex adaptor protein, DNA-damage DNA-binding protein (DDB) 1. Truncation mutants of pM27 showed a strict correlation between DDB1 interaction and their ability to degrade STAT2. SiRNA-mediated knock-down of DDB1 restored STAT2 in the presence of pM27 and strongly impaired viral replication in interferon conditioned cells, thus phenocopying the growth attenuation of M27-deficient virus. In a constructive process, pM27 recruits DDB1 to exploit ubiquitin ligase complexes catalyzing the obstruction of the STAT2-dependent antiviral state of cells to permit viral replication.
Collapse
|
12
|
Li T, Robert EI, van Breugel PC, Strubin M, Zheng N. A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 2009; 17:105-11. [PMID: 19966799 DOI: 10.1038/nsmb.1719] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 10/13/2009] [Indexed: 12/23/2022]
Abstract
The cullin 4-DNA-damage-binding protein 1 (CUL4-DDB1) ubiquitin ligase machinery regulates diverse cellular functions and can be subverted by pathogenic viruses. Here we report the crystal structure of DDB1 in complex with a central fragment of hepatitis B virus X protein (HBx), whose DDB1-binding activity is important for viral infection. The structure reveals that HBx binds DDB1 through an alpha-helical motif, which is also found in the unrelated paramyxovirus SV5-V protein despite their sequence divergence. Our structure-based functional analysis suggests that, like SV5-V, HBx captures DDB1 to redirect the ubiquitin ligase activity of the CUL4-DDB1 E3 ligase. We also identify the alpha-helical motif shared by these viral proteins in the cellular substrate-recruiting subunits of the E3 complex, the DDB1-CUL4-associated factors (DCAFs) that are functionally mimicked by the viral hijackers. Together, our studies reveal a common yet promiscuous structural element that is important for the assembly of cellular and virally hijacked CUL4-DDB1 E3 complexes.
Collapse
Affiliation(s)
- Ti Li
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
13
|
Al Khateeb WM, Schroeder DF. Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance. PLANT MOLECULAR BIOLOGY 2009; 70:371-83. [PMID: 19288212 DOI: 10.1007/s11103-009-9479-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 02/27/2009] [Indexed: 05/19/2023]
Abstract
Damaged DNA Binding protein 1 (DDB1) is a conserved protein and a component of multiple cellular complexes. Arabidopsis has two homologues of DDB1: DDB1A and DDB1B. In this study we examine the role of DDB1A in Arabidopsis UV tolerance and DNA repair using a DDB1A null mutant (ddb1a) and overexpression lines. DDB1A overexpression lines showed higher levels of UV-resistance than wild-type in a range of assays as well as faster DNA repair. However a significant difference between wild-type plants and ddb1a mutants was only observed immediately following UV treatment in root length and photoproduct repair assays. DDB1A and DDB1B mRNA levels increased 3 h after UV exposure and DDB1A is required for UV regulation of DDB1B and DDB2 mRNA levels. In conclusion, while DDB1A is sufficient to increase Arabidopsis UV tolerance, it is only necessary for immediate response to UV damage.
Collapse
Affiliation(s)
- Wesam M Al Khateeb
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
14
|
Matsuura K, Wakasugi M, Yamashita K, Matsunaga T. Cleavage-mediated activation of Chk1 during apoptosis. J Biol Chem 2008; 283:25485-25491. [PMID: 18550533 DOI: 10.1074/jbc.m803111200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Chk1 kinase is highly conserved from yeast to humans and is well known to function in the cell cycle checkpoint induced by genotoxic or replication stress. The activation of Chk1 is achieved by ATR-dependent phosphorylation with the aid of additional factors. Robust genotoxic insults induce apoptosis instead of the cell cycle checkpoint, and some of the components in the ATR-Chk1 pathway are cleaved by active caspases, although it has been unclear whether the attenuation of the ATR-Chk1 pathway has some role in apoptosis induction. Here we show that Chk1 is activated by caspase-dependent cleavage when the cells undergo apoptosis. Treatment of chicken DT40 cells with various genotoxic agents, UV light, etoposide, or camptothecin induced Chk1 cleavage, which was inhibited by a pan-caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethyl ketone. The cleavage of Chk1 was similarly observed in human Jurkat cells treated with a non-genotoxic apoptosis inducer, staurosporine. We have determined the cleavage site(s), Asp-299 in chicken and Asp-299 and Asp-351 in human cells. We further show that a truncated form of human Chk1 mimicking the N-terminal cleavage fragment (residues 1-299) possesses strikingly elevated kinase activity. Moreover, the ectopic expression of Chk1-(1-299) in human U2OS cells induces abnormal nuclear morphology with localized chromatin condensation and phosphorylation of histone H2AX. These results suggest that Chk1 is activated by caspase-mediated cleavage during apoptosis and might be implicated in enhancing apoptotic reactions rather than attenuating the ATR-Chk1 pathway.
Collapse
Affiliation(s)
- Kenkyo Matsuura
- Laboratory of Human Molecular Genetics, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsumi Yamashita
- Laboratory of Human Molecular Genetics, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|