1
|
Ishida K, Miyauchi K, Kimura Y, Mito M, Okada S, Suzuki T, Nakagawa S. Regulation of gene expression via retrotransposon insertions and the noncoding RNA 4.5S RNAH. Genes Cells 2015; 20:887-901. [PMID: 26333314 DOI: 10.1111/gtc.12280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
Short interspersed elements (SINEs) comprise a significant portion of mammalian genomes and regulate gene expression through a variety of mechanisms. Here, we show that Myodonta clade-specific 4.5S RNAH (4.5SH), an abundant nuclear noncoding RNA that is highly homologous to the retrotransposon SINE B1, controls the expression of reporter gene that contains the antisense insertion of SINE B1 via nuclear retention. The depletion of endogenous 4.5SH with antisense oligonucleotides neutralizes the nuclear retention and changes the subcellular distribution of the reporter transcripts containing the antisense SINE B1 insertion. Importantly, endogenous transcripts with antisense SINE B1 were increased in the cytoplasm after knockdown of 4.5SH, leading to a decrease in cellular growth. We propose a tentative hypothesis that the amplification of the 4.5SH cluster in specific rodent species might delineate their evolutionary direction via the regulation of genes containing the antisense insertion of SINE B1.
Collapse
Affiliation(s)
- Kentaro Ishida
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuko Kimura
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Jiang Y, Li Z, Nagy PD. Nucleolin/Nsr1p binds to the 3' noncoding region of the tombusvirus RNA and inhibits replication. Virology 2010; 396:10-20. [PMID: 19861225 PMCID: PMC2788044 DOI: 10.1016/j.virol.2009.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/13/2009] [Accepted: 10/03/2009] [Indexed: 01/11/2023]
Abstract
Previous genome-wide screens identified >100 host genes affecting tombusvirus replication using yeast model host. One of those factors was Nsr1p (nucleolin), which is an abundant RNA-binding shuttle protein involved in rRNA maturation and ribosome assembly. We find that overexpression of Nsr1p in yeast or in Nicotiana benthamiana inhibited the accumulation of tombusvirus RNA by approximately 10-fold. Regulated overexpression of Nsr1p revealed that Nsr1p should be present at the beginning of viral replication for efficient inhibition, suggesting that Nsr1p inhibits an early step in the replication process. In vitro experiments revealed that Nsr1p binds preferably to the 3' UTR in the viral RNA. The purified recombinant Nsr1p inhibited the in vitro replication of the viral RNA in a yeast cell-free assay when preincubated with the viral RNA before the assay. These data support the model that Nsr1p/nucleolin inhibits tombusvirus replication by interfering with the recruitment of the viral RNA for replication.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Koval AP, Kramerov DA. 5'-flanking sequences can dramatically influence 4.5SH RNA gene transcription by RNA-polymerase III. Gene 2009; 446:75-80. [PMID: 19619622 DOI: 10.1016/j.gene.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/17/2009] [Accepted: 07/06/2009] [Indexed: 11/26/2022]
Abstract
4.5SH RNA is a 94 nt small nuclear RNA with an unknown function. Hundreds of its genes are present in the genomes of rodents of six families including Muridae. 4.5SH RNA genes contain an internal RNA-polymerase III promoter consisting of A and B boxes. Here we studied the influence of 5'-flanking sequences on the transcription of a mouse 4.5SH RNA gene. We found that replacement of the upstream sequence can dramatically change the 4.5SH RNA gene transcription efficiency. Various DNA fragments inserted immediately upstream from 4.5SH RNA gene completely inhibited its in vitro transcription, whereas others promoted it. The shortening of the native mouse 5'-flanking sequence of 4.5SH RNA gene to 42 bp resulted in the activation of an additional illegal transcription start site in upstream region. Transcription of the 4.5SH RNA gene with various upstream sequences in transfected HeLa cells revealed the differences between the tests performed in vivo and in vitro: in whole cells, only the construct with 5'-flanking native sequence could be transcribed. Apparently, at least some regions of the native 5'-flanking sequence of 4.5SH RNA genes have been selected during evolution for high transcription activity.
Collapse
Affiliation(s)
- Anastasia P Koval
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|